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We study massive real scalar�4 theory in the expanding Poincare patch of de Sitter space. We calculate

the leading two-loop infrared contribution to the two-point function in this theory. We do that for the

massive fields both from the principal and complementary series. As can be expected at this order, light

fields from the complementary series show stronger infrared effects than the heavy fields from the

principal one. For the principal series, unlike the complementary one, we can derive the kinetic equation

from the system of Dyson–Schwinger equation, which allows us to sum up the leading infrared

contributions from all loops. We find two peculiar solutions of the kinetic equation. One of them describes

the stationary Gibbons–Hawking-type distribution for the density per comoving volume. Another solution

shows explosive (square root of the pole in finite proper time) growth of the particle number density per

comoving volume. That signals the possibility of the destruction of the expanding Poincaré patch even by

the very massive fields. We conclude with the consideration of the infrared divergences in global de Sitter

space and in its contracting Poincaré patch.
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I. INTRODUCTION

There are large IR loop contributions even in the mas-
sive field theories in the Poincaré patch (PP) of de Sitter
(dS) space [1–3]. See also Refs. [4–8] for the situation in
the case of massless fields. In global dS space there are IR
divergences [1,9,10] (see also Ref. [11]), which lead to the
inevitable breaking of the dS isometry in the loops for any
initial state. They are specific to the quantum fields in dS
space and are absent, e.g., in anti-dS space [12].

For the alternative point of view on the IR properties of
the massive field theories in dS space, see Refs. [13,14].
However, these papers heavily rely on the analytical prop-
erties of the correlators as functions of the dS-invariant
distances. But such an approach does not work when one
wants to understand whether or not the dS-invariant state is
stable under small nonsymmetric perturbations above the
dS-invariant state because, in the presence of the noninvar-
iant initial density perturbations, even the tree-level two-
point correlation functions start to depend on each of their
arguments separately rather than on the dS-invariant dis-
tances between them. Please note that, in such a case, the
vacuum is still dS invariant. We just consider a finite initial
particle density over this vacuum. (The notion of the
particle is meaningful at least at the past infinity of ex-
panding PP.)

The reason we consider such density perturbations is
that we find it as physically inappropriate to consider the
stability of a system in such a state in which all its sym-
metries are preserved. It is probably worth mentioning here
that Minkowski space is stable under the comparatively
small noninvariant particle density perturbations over the
Poincaré-invariant vacuum. That is just a consequence of

the energy conservation, which is not present in dS.
Moreover, in global dS, one does not even have to consider
initial density perturbations because dS isometry is broken
in the loops by the IR divergences.
In Refs. [1–3,9,10,15], the large IR contributions to the

two-point functions were calculated for the massive real
scalar field theory with the cubic, �3, self-interaction. The
cubic potential has the runaway instability. To show that
those IR effects, which are observed in our previous pa-
pers, are universal, we consider here the scalar field theory
with �4 self-interaction. Furthermore, in our pervious
papers, only massive fields from the principal series have
been considered. Here, we extend those considerations to
the complementary series.
We calculate loop corrections to the so-called Keldysh

propagator in the PP of dS space. In the�4 theory, there are
not any large IR contributions in the first loop. However, at
the two-loop order, we find such contributions in the sunset
diagrams. In the case of the fields from the principal series,
the contribution is linear logarithmic in the physical mo-
mentum. For the complementary series, the contribution is
powerlike, i.e., it is stronger than for the principal series.
We are not yet able to perform the summation of the

higher-loop contributions for the case of the complemen-
tary series. But for the principal series, it is possible to do
such a summation. That is done via a suitable IR ansatz for
the solution of the system of Dyson–Schwinger (DS) equa-
tions. This ansatz allows one to reduce this system to a
generalization of the Boltzmann kinetic equation. The
latter one has a clear physical meaning and describes
various particle decay and creation processes in the dS
space (see also Refs. [11,16–19]). We solve this kinetic
equation in two cases. One corresponds to the very mild

PHYSICAL REVIEW D 88, 024021 (2013)

1550-7998=2013=88(2)=024021(10) 024021-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.024021


initial density perturbation over the initial Bunch–Davies
state. In such a case, the state of the theory relaxes to the
eventual Gibbons–Hawking-type stationary distribution
for the density per comoving volume. Another situation
corresponds to the strong enough initial density perturba-
tion, which, however, is still much smaller than the cos-
mological constant. In this case, the state of the theory
shows the explosive (square root of the pole in finite proper
time) growth of the particle density per comoving volume.

We conclude with the consideration of the contracting
PP of dS space and of the global dS and draw similar
conclusions to those that have been made in Ref. [10] for
the �3 theory.

II. SETUP OF THE PROBLEM

D-dimensional dS space-time is the hyperboloid, X2
0 �

X2
i ¼ �1, i ¼ 1; . . . ; D, inside (Dþ 1)-dimensional

Minkowski space-time, ds2 ¼ dX2
0 � dX2

i . Throughout

this paper, we set its curvature to one and mostly consider
its half (e.g., X0 � XD), which is referred to as the expand-
ing PP, ds2 ¼ 1

�2 ðd�2 � d~x2Þ, where � 2 ðþ1; 0Þ. Note
that while � ! þ1 is the past, � ! 0 corresponds to the
future infinity. The action of the theory that we are going to
study is

S¼
Z
dDx

ffiffiffiffiffiffi
jgj

q �
1

2
@��@���m2�2� �

4!
�4

�
: (1)

Throughout this paper, we always assume that m> 0.
Corresponding free harmonics in the Fourier expansion

�ðx; �Þ ¼ R
dD�1k�

D�1
2 ½akhðk�Þe�ikx þ aþk h

�ðk�Þeikx�,
k ¼ j ~kj are defined via hðxÞ, which is a solution of the

Bessel equation with the index i� ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � ðD�1

2 Þ2
q

. The

choice of such a solution specifies the dS-invariant vacuum
akjvaci ¼ 0. For example, the Bunch–Davies (BD) state

(or in vacuum in the PP) corresponds to hðp�Þ ¼ffiffiffi
�

p
2 e�

��
2 Hð1Þ

i� ðp�Þ, where Hð1Þ
i� is the Hankel function of

the first kind. All other harmonics and vacua can be ob-
tained from those of BD via a one-parameter family of the
Bogolyubov rotations [20,21]. For example, the out vac-
uum corresponds to the so-called out Jost harmonics,

hðp�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

sinh ð��Þ
q

Ji�ðp�Þ, where Ji� is the Bessel func-

tion of the first kind. Conjugate harmonics in the latter case
are given by the Y’s—Bessel functions of the second kind.

In the nonstationary situation, every particle is described
by the matrix propagator (see, e.g., Ref. [22] for the
Feynman rules in the �3 scalar field theory on dS space),
for which the entries are the Keldysh propagator, GK ¼
1
2 hf�ðxÞ; �ðyÞgi, and the retarded and advanced prop-

agators,1GA
R ¼ �h½�ðxÞ; �ðyÞ�i�ð��x0Þ. The more de-

tailed discussion of the physics in dS space, which is
relevant for the present paper, can be found in
Refs. [1,3,9,10,15]. It is instructive for the further discus-
sion to keep in mind that the result of the calculation with
the use of the nonstationary Keldysh–Schwinger diagram-
matic technique provides a solution to a sort of the Cauchy
problem.
Because the PP is spatially homogeneous and because

below we concentrate on the spatially homogeneous states,
we find it convenient to make the spatial Fourier transform
of the aforementioned propagators:

DK;R;Að�1;�2;pÞ¼
Z
dD�1xei ~p ~xGK;R;Að�1; ~x;�2;0Þ;

DKð�1;�2;pÞ¼ ð�1�2ÞD�1
2 dKðp�1;p�2Þ;

DA
Rð�1;�2;pÞ¼��ð���Þð�1�2ÞD�1

2 d�ðp�1;p�2Þ;
(2)

where �� ¼ �1 � �2, p ¼ j ~pj and

d�ðp�1; p�2Þ ¼ 2 Im½hðp�1Þh�ðp�2Þ�;
dKðp�1; p�2Þ ¼ hðp�1Þh�ðp�2Þ

�
1

2
þ np

�

þ hðp�1Þhðp�2Þkp þ c:c:: (3)

Here, we use the convenient notations np ¼ haþp api and
�p ¼ hapa�pi. In the nonstationary situation, np and kp
can be zero only on the tree level, i.e., if the initial state is
chosen to be jvaci.
It is worth stressing here that, in our paper, we always

study the two-point correlation function. According to
Eqs. (2) and (3), the quantities np ¼ haþp api and kp ¼
hapa�pi are just elements of this correlation function.

Hence, all our conclusions about their behavior have in-
variant physical meaning. Furthermore, in the situation in
which the anomalous quantum average kp vanishes, np
acquires the clear physical meaning—it becomes the par-
ticle number density per comoving volume in the given
state of the theory. In fact, then free Hamiltonian of the
theory acquires the diagonal form. Moreover, then all
elements of the kinetic equation that is presented below
acquire the clear physical meaning.
Let us provide here a few more arguments favoring our

interpretation of np as the particle density. Various observ-

ers may indeed detect different particle fluxes. However,
one should separate the Unruh effect from what we would
like to call the real particle production. In Minkowski
space, both inertial and noninertial observers see the
same-state Minkowski (Poincaré-invariant) vacuum.
However, while the inertial observer sees it as the empty
space, the noninertial one sees it as the thermal state. That
is due to the specific correlation of the vacuum fluctuations
along its worldline [23]. Note that there is not any non-
trivial gravitational field in the circumstances under con-
sideration because the Riemanian tensor is exactly zero.

1Here, �x0 ¼ x0 � y0, f; g is the anticommutator, and [,] is the
commutator; �ð�Þ is the Heaviside � function.
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The real particle creation is due to the change of the
‘‘vacuum’’ state under the influence of the background
field. That is exactly what happens in the background
electric field in dS space and in the collapsing black hole
background.

Rephrasing, we would like to say here that, while in
Minkowski space there is one type of observers that does
not see any particle flux, in dS space, there is no such
observer that sees nothing. On general grounds, we expect
that the least particle flux is seen by inertial observers—
they do not see the extra Unruh type of flux, so to say. Our
calculations are actually done for the inertial observers
because the change from the proper time t to the conformal
one, � ¼ e�t, is just the change of the clock’s rate rather
than a transition to some nontrivial motion. In any case, all
our formulas can be trivially rewritten in the proper time t.

Finally, the IR dynamics depends on the value of the
mass m and on the choice of hðxÞ. Below, we separately
consider the following two cases: ðD�1

2 Þ2 <m2 (the princi-

pal series) and ðD�1
2 Þ2 >m2 (the complementary series).

The crucial physical difference between these two cases is
due to the fact that, while the harmonics of the principal
series oscillate at the future infinity, hðxÞ � Aþxi� þ
A�x�i�, x ! 0, those of the complementary series do
not do that because, in the latter case, � is pure imaginary.

III. TWO-LOOP CONTRIBUTION

In this section, we calculate loop corrections to the
Keldysh propagator, DKð�1; �2; pÞ, with the initial dS
invariant vacuum state at the past infinity of the PP. In

these settings, the tree-level DKð�1; �2; pÞ is given by
Eq. (3) with np ¼ 0 and �p ¼ 0. It is straightforward to

show that the �4 theory, unlike the �3 one, dose not
possess any large IR contributions to any propagator at
the first-loop order (��). However, in the second-loop
order (��2), there is a large IR contribution to DK, which
is of interest for us. We consider the IR limit in which
p

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p ! 0 and �1=�2 ¼ const [3,10,15]. It corre-

sponds to the situation in which both time arguments of
the propagator are taken to the future infinity, while the
time distance between them is kept finite.
The reason we pay attention only to the Keldysh propa-

gator is that it defines the state of the theory, i.e., shows the
dependence of np and kp on time. Moreover, in the case of

the principal series, it is the only propagator that receives
large corrections of the order �2 log ðp ffiffiffiffiffiffiffiffiffiffiffi

�1�2
p

=�Þ in the IR
limit in question. In fact, in Ref. [2], it was shown that the
retarded and advanced propagators of the �3 theory re-
ceive only finite corrections from the first loop—of the
order �2 log ð�1=�2Þ. In the case of the �4 theory, the
situation is similar in the second loop. Furthermore, it is
straightforward to show that, for the principal series, the
large IR contributions to the interaction vertex are also
suppressed by higher powers of �. For the complementary
series, the situation is more subtle, but we still would like
to start their study with the consideration of the loop
corrections to DK.
The large IR loop contribution to DK (if there is one)

at the order �2 can be expressed in the form (2) and (3)
with

npð�Þ � � �2

3ð2�Þ2ðD�1Þ
Z

dD�1q1d
D�1q2d

D�1q3
Z �

1
d�3

Z �

1
d�4ð�3�4ÞD�2

	 �ðD�1Þð ~pþ ~q1 þ ~q2 þ ~q3Þhðp�3Þhðq1�3Þhðq2�3Þhðq3�3Þh�ðp�4Þh�ðq1�4Þh�ðq2�4Þh�ðq3�4Þ;

kpð�Þ � 2�2

3ð2�Þ2ðD�1Þ
Z

dD�1q1d
D�1q2d

D�1q3
Z �

1
d�3

Z �3

1
d�4ð�3�4ÞD�2

	 �ðD�1Þð ~pþ ~q1 þ ~q2 þ ~q3Þh�ðp�3Þhðq1�3Þhðq2�3Þhðq3�3Þh�ðp�4Þh�ðq1�4Þh�ðq2�4Þh�ðq3�4Þ: (4)

Here, p ¼ j ~pj, q1;2;3 ¼ j ~q1;2;3j, and npð�Þ is real. Note that,
if one will take the flat space limit of these expressions, i.e.,
substitute � by t,

ffiffiffiffiffiffijgjp
by 1, and �ðD�1Þ=2hðk�Þ by ei	ðkÞt,

then np and kp would vanish, when � ! 0, as the conse-
quence of the energy conservation.

In deriving these expressions, we have used that hðp�Þ
depends only on j ~pj, and, hence, we can safely change ~p !
� ~p. Also in the IR limit in question inside the leading loop
corrections, one can neglect the difference between �1, �2,
and � ¼ ffiffiffiffiffiffiffiffiffiffiffi

�1�2
p

. In such an approximation, we drop the

subleading, �2 log ð�1=�2Þ, contributions from the expres-
sions for np and kp. The derivation of Eq. (4) is similar to

the one performed in Refs. [1–3,10,15], for the �3 theory.

A. Principal series

We start with the case D�1
2 <m and make the following

change of the integration variables in Eq. (4): ~qi to ~li ¼
~qi�3 and �4 to v ¼ �3

�4
, i ¼ 1, 2, 3. Then, we expand

hðp�3;4Þ � Aþðp�3;4Þi� þ A�ðp�3;4Þ�i� as p�3;4 ! 0
under the integrals, where A� are some mass-dependent
complex constants. After that, we neglect2 p in comparison
with q1;2;3 on the rhs of Eq. (4) and perform the integration

2The justification of all the approximations listed here can be
found in Refs. [1–3,9,10,15]. In particular, the reason we neglect
p in comparison with q1;2;3 is that the largest IR contribution
comes from this region of integration over q1;2;3.
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over �3. The largest IR contributions come from the integrals of the type
R�
�=p

d�3

�3
hðp�3Þh�ðp�3vÞ andR�

�=p
d�3

�3
h�ðp�3Þh�ðp�3vÞ, where h’s are Taylor expanded. The result is as follows:

np� � ��2 log ðp�=�Þ
3ð2�Þ2ðD�1Þ

Z 0

1
dvvD�2

Z
dD�1l1d

D�1l2d
D�1l3�

ðD�1Þð~l1 þ ~l2 þ ~l3Þ

	 h�ðl1Þhðl1vÞh�ðl2Þhðl2vÞh�ðl3Þhðl3vÞ½jAþj2v�i� þ jA�j2vþi��;

kp� � 2�2 log ðp�=�Þ
3ð2�Þ2ðD�1Þ

Z 1

1
dvvD�2

Z
dD�1l1d

D�1l2d
D�1l3�

ðD�1Þð~l1 þ ~l2 þ ~l3Þ

	 h�ðl1Þhðl1vÞh�ðl2Þhðl2vÞh�ðl3Þhðl3vÞAþA�½vi� þ v�i��; l1;2;3 ¼ j~l1;2;3j: (5)

The lower limit of integration over �3 we cut by � be-
cause, at p� 
 � the dD�1li, d�3, and dv, integrals are
rapidly convergent due to the oscillations of hðxÞ, while we
care only about the leading IR contribution. It is worth
stressing here that such a convergence of the dv and dD�1li
integrals is true in the sense of the generalized functions.
The latter fact is related to the behavior of the modes with
high momenta, discussed below.

Note that npð�Þ and kpð�Þ are functions of the physical
momentum, p�, rather than separately depending on
the momentum, p, and on the time, �. That is natural
because of the spatial homogeneity and the invariance of
the PP dS metric under the simultaneous rescaling ~x ! 
~x,
� ! 
�.

It was explained in Refs. [3,9,10,15], that such large log
contributions in DK appear due to the particle creation in
dS space (see also the discussion below). In the expanding
PP, the creation of particles with comoving momentum p
effectively starts after some moment of time �� & �=p
because the modes with high momenta, p� 
 �,
do not feel the curvature of the space-time and behave as
if they are in flat space. As a result, np and kp are propor-

tional to the proper time, log ð�=p�Þ, elapsed from�=p to
�. The coefficient of the proportionality is just the particle
production rate. It is worth stressing here that the presence
of the large kp, which is comparable to np, signals that

there is the strong backreaction on the initial state jvaci
[3,10,15].

For further reference, it is instructive to study also the IR
behavior of np and kp for the out Jost harmonics. Although

the UV behavior of the correlation functions for the out
Jost harmonics is different from the proper flat space type,
we are interested here in the IR limit, in which out Jost
harmonics may play a crucial role.3 In fact, in condensed

matter physics, it is the frequent situation that, in the IR
limit, one has to perform a Bogolyubov rotation to some
harmonics for which the UV properties may be different
from the proper ones; however, they properly describe the
IR physics. The seminal example is the BCS theory for
superconductivity.
In particular, we will see that the proper solution of the

IR limit of the system of DS equations is obtained via
the out Jost harmonics. The hint for that comes from the
following observation. For the out Jost harmonics, the
leading IR two-loop contribution has a crucial difference
with respect to that of BD harmonics or any other �
harmonics. In fact, the out Jost harmonics behave as
hðp�3;4Þ � Aðp�3;4Þi� in the future infinity, p�3;4 ! 0,
where A is some mass-dependent complex constant.
Then, it is straightforward to show that np has the same

form as Eq. (5) with jAj2vi� instead of [jAþj2vi� þ
jA�j2v�i�]. At the same time, kp does not receive any

large contributions in the IR limit in question; i.e., it is
negligible in comparison with np. This is going to be an

important observation for the derivation of the kinetic
equation below.
It is worth stressing here that, for the out Jost harmonics,

the dv and dD�1li integrals in the obtained expressions for
np and kp are also convergent. In fact, the situation in the

�4 theory is even simpler than in the �3 case [3].

B. Complementary series

We continue with the consideration of the complemen-
tary series, D�1

2 >m, corresponding to the imaginary �,

i.e., to the real index of the solution of the Bessel equation
hðp�Þ. Below, we use the notation � ¼ �i�. Then, for the
in harmonics, h ¼ J� þ iY�, where both Bessel functions
J� and Y� are real in the case of the real index �. Expanding
them near zero, we get Y�ðxÞ � A�x�� þ Bx��þ2 and
J�ðxÞ � Aþx�. Because of the possible differences be-
tween the behavior of h and h� near zero, we have to pay
attention separately to kp and k�p.
The contributions to np and kp, k

�
p can be expressed as

3While the theory under consideration shows the proper UV
behavior in the BD state, it does not do that in any other � state.
The reason for that is as follows. While BD harmonics behave as
single waves eip� in the UV limit, p� ! 1, the other �
harmonics behave as linear combinations of eip� and e�ip� in
the same limit.
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npð�Þ � � 2�2

3ð2�Þ2ðD�1Þ
Z 0

1
du

u

Z 0

1
dv

v2D�1
F½v�hðuvÞh�

�
u

v

�
�½uv� p���

�
u

v
� p�

�
;

kpð�Þ � 4�2

3ð2�Þ2ðD�1Þ
Z 0

1
du

u

Z 0

1
dv

v2D�1
F½v�h�ðuvÞh�

�
u

v

�
�½uv� p���

�
u

v
� uv

�
;

k�pð�Þ � 4�2

3ð2�Þ2ðD�1Þ
Z 0

1
du

u

Z 0

1
dv

v2D�1
F½v�hðuvÞh

�
u

v

�
�½uv� p���

�
u

v
� uv

�
;

(6)

with the use of the following notations:

Fð�3; �4Þ ¼
Z �Y3

i¼1

dD�1qihðqi�3Þh�ðqi�4Þ
�
ð�3�4ÞD�2�ðD�1Þð ~p� ~q1 � ~q2 � ~q3Þ; (7)

which, after the change of integration variables u ¼ p
ffiffiffiffiffiffiffiffiffiffiffi
�3�4

p
, v ¼

ffiffiffiffi
�3

�4

q
, can be expressed as Fð�3; �4Þ ¼

p2

ðuvÞ2ðD�1Þ u
2ðD�2ÞF½v�, where F½v� ¼ F�½1=v� is some function of one variable v.

The leading correction to np and kp is given by Eq. (6), where from the Hankel functions, hðuvÞ and hðu=vÞ, we
single out only Y’s. Such a contribution gives for np and kp the inverse powerlike behavior in p�, which, however, cancels

out after the substitution into DK because Y is real. The next order is obtained as follows. One also has to express
hðp�1;2Þ through J� and Y� in the full propagator DK. Then, from one of the four h’s [hðp�1;2Þ and hðuvÞ, hðu=vÞ], we
have to single out J�, while from the other three we have to single out Y�’s. This expression does not cancel out and
provides the leading IR contribution to DK:

DKð�1; �2; pÞ ¼ 8�2A3�Aþ�D�1

3ð2�Þ2ðD�1Þ
Z 0

1
duu�1�2�

Z 0

1
dvv1�2DF½v�

��
�1þ

�
u

p�v

�
2�
�
�

�
uv� u

v

�
�½�p�þ uv�

þ
�
1�

�
uv

p�

�
2�
�
�

�
�uvþ u

v

�
�

�
�p�þ u

v

��
: (8)

After the straightforward manipulations, the obtained expression can be reduced to

DKð�1; �2; pÞ ¼ � 8�2A3�Aþ�D�1 log ðp�Þ
3ð2�Þ2ðD�1Þðp�Þ2�

�Z 1

1
dvv1�2DF½v�

�
� 1

2�
v2� þ

�
1

v

�
2�
�

�
Z 1

0
dvv1�2DF½v�

�
1

2�
ðvÞ�2� þ v2�

��
: (9)

The integral over v is convergent in the IR limit (as
v ! 1) if D> 1þ 4�. In the UV limit (v ! 0), it is
convergent in the sense of the generalized function.

For the out harmonics, the situation is a bit different. In
this case, h ¼ J�, h

� ¼ Y�. The straightforward calcula-
tion shows that

npð�Þ / �2A�Aþ log ðp�Þ
Z 1

0
dvF½v�v2�þ1�2D;

kpð�Þ / �2A2�ðp�Þ�2�
Z 0

1
dvF½v�v2�þ1�2D;

k�pð�Þ / �2A2þ�2�
Z 1

0
dvF½v�v�2�þ1�2D þOððp�Þ2�Þ:

(10)

After the substitution into the Keldysh propagator, the
leading contribution comes from k�p and is as follows:

DK � �2A2�A2þ�2�

3�ð2�ÞD�1ðp�Þ2� �
D�1

Z 1

0
dvv�2�þ1�2DF½v�:

(11)

Thus, for the complementary series, the loop contributions
are powerlike, i.e., stronger than for the case of the prin-
cipal series.
Because of the character of these IR contributions for the

light fields, we do not yet understand their physical mean-
ing and think that the kinetic equation obtained in the next
section is not applicable for the fields from the comple-
mentary series. In the case of the complementary series, we
do not yet know how to perform the summation of the
leading IR contributions from all loops. But on general
physical grounds and from the two-loop result, we expect
that complementary series will show stronger IR effects
than the heavy fields from the principal series, which is
under study below.

IV. KINETIC EQUATION

Although �2 is small, the product �2 log ð�=p�Þ can
become large as p� ! 0. Hence, higher loops are not
suppressed in comparison with the tree-level contribution.
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Then, one has to perform the summation of the leading IR
contributions from all loops. This can be achieved via an
approximate IR solution of the system of DS equations in
the nonstationary diagrammatic technique. We can do that
only for the case of the principal series, m> ðD� 1Þ=2, at
least because, in this case, harmonics oscillate in the IR
limit. As the result, there is a clear separation of scales
between the time dependence of the harmonics hðp�Þ and
that of np� and kp�. This allows us to simplify DS equa-

tions in the limit under consideration and eventually to
solve them approximately. In the case of the complemen-
tary series, however, the character of the IR contributions
to DK and to the vertex does not allow us to have a clear
kinetic interpretation.

Putting it in other words, to move further, it is worth
observing that, above, we have calculated the loop correc-
tions to the Keldysh propagator under the assumption that
np and kp retain their initial values throughout all the time

evolution. In fact, in the calculations of the previous sec-
tion, we have used tree-level propagators, i.e., their initial
values. To make the problem self-consistent, one has to
take into account the change of np and kp in time. As we

will see, this also allows us to reduce the problem to the
solution of the DS equations for the nonstationary diagram-
matic technique. The latter ones represent a system of
equations for the matrix propagators, self-energy, and

vertex. In some circumstances, as we will see, this system
can be simplified and reduced to a single equation.
We assume that the evolution had started with some

density perturbation over the BD state at the past infinity
of the PP. Then, the UV behavior of the theory in question
is the same as in flat space, but the dS invariance is slightly
broken. We would like to trace the destiny of these density
perturbations in the future infinity, i.e., would like to see
whether the theory relaxes back to the dS-invariant state or
this density explodes, causing the modification of the
background geometry. The answer to the latter question
also can be obtained only after the solution of the IR limit
of the nonstationary DS equation.
Thus, we would like to sum up leading contributions,

which are powers of �2 log ðp ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
=�Þ, and drop the

subleading terms, which are suppressed by higher powers
of � and/or powers of �2 log ð�1=�2Þ. Having in mind that
retarded and advanced propagators and the vertex receive
only subleading IR contributions in the limit in question,4

we can assume that they take their classical (UV renor-
malized) values. At the same time, we assume that the
ansatz for the exact Keldysh propagator is given by
Eqs. (2) and (3) with undefined npð�Þ and kpð�Þ, where
� ¼ ffiffiffiffiffiffiffiffiffiffiffi

�1�2
p

.

Then, the relevant part of the system of DS equations has
the form

DKð�1; �2; pÞ ¼ DK
0 ð�1; �2; pÞ � �2

6ð2�Þ2ðD�1Þ
Z

dD�1q1d
D�1q2d

D�1q3
ZZ 0

1
d�3d�4

ð�3�4ÞD �ðD�1Þð ~p� ~q1 � ~q2 � ~q3Þ

	
�
3DK

0 ð�1; �3; pÞDKð�3; �4; q1ÞDKð�3; �4; q2ÞDA
0 ð�3; �4; q3ÞDA

0 ð�4; �2; pÞ

� 1

4
DK

0 ð�1; �3; pÞDA
0 ð�3; �4; q1ÞDA

0 ð�3; �4; q2ÞDA
0 ð�3; �4; q3ÞDA

0 ð�4; �2; pÞ

� 3

4
DR

0 ð�1; �3; pÞDKð�3; �4; q1ÞDA
0 ð�3; �4; q2ÞDA

0 ð�3; �4; q3ÞDA
0 ð�4; �2; pÞ

þDR
0 ð�1; �3; pÞDKð�3; �4; q1ÞDKð�3; �4; q2ÞDKð�3; �4; q3ÞDA

0 ð�4; �2; pÞ

� 3

4
DR

0 ð�1; �3; pÞDKð�3; �4; q1ÞDR
0 ð�3; �4; q2ÞDR

0 ð�3; �4; q3ÞDA
0 ð�4; �2; pÞ

� 1

4
DR

0 ð�1; �3; pÞDR
0 ð�3; �4; q1ÞDR

0 ð�3; �4; q2ÞDR
0 ð�3; �4; q3ÞDKðp�4; p�2Þ

þ 3DR
0 ð�1; �3; pÞDR

0 ð�3; �4; q1ÞDKð�3; �4; q2ÞDKð�3; �4; q3ÞDKð�4; �2; pÞ
�
; (12)

where p ¼ j ~pj, q1;2;3 ¼ j ~q1;2;3j and DA;R;K
0 are the Fourier transforms of the initial values of the retarded, advanced, and

Keldysh propagators5; DK is the exact Keldysh propagator. This equation is covariant under the Bogolyubov rotations
between different harmonics, hðxÞ. Because we are interested in its solution in the IR limit, we do not have to care about the
proper UV behavior and have to check the situation for all possible � harmonics.

4There are large IR contributions to DA;R and to the vertex, which are coming from those in DK. But they are suppressed by the
higher powers of � because they appear in the higher loops. Actually all one-loop contributions to the vertex have similar structure to
the one shown in Eq. (4) with one momentum integration less. It is straightforward to see that, because of that, there is not any large IR
contribution to the vertex at the �2 order.

5I.e., DK
0 is also given by Eqs. (2) and (3) with some initial values nð0Þp and kð0Þp .
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We would like to pick out the largest IR contribution from
the integral on the rhs of Eq. (12). The calculation is just a
straightforward generalization of the above two-loop one.
Similarly to Refs. [3,10,15], for all � harmonics, including
BD ones, we obtain that the ansatz (2) and (3) solves DS
equation in the IR limit in question. But kp is comparable
to np. This means that the backreaction on the background
state (specified by the choice of the harmonics) is big. The
only exception is given by the out Jost harmonics. For these
harmonics, kp remains zero if its initial value was zero.
Moreover, small perturbations of kp relax back to zero. For
the �3 theory, this was shown in Ref. [15]. For the �4

theory, the situation is similar.
As the result, with the use of the out Jost harmonics, the

IR limit of the DS equation is solved by Eqs. (2) and (3)

with kp ¼ 0. We would like to convert the integral DS

equation (12) into the integrodifferential form, i.e., into the
form of the kinetic equation [24]. This is done via a kind of
the renormalization group procedure as follows [15]. In the

given settings, nð0Þp is the particle density at some moment

after �� ��=p. In fact, as we have mentioned above and
will explain in the next section, before this moment, all the
kinetic processes, except maybe the irrelevant scattering
one, are suppressed. Hence, npð�Þ remains constant and is

equal to nð0Þp . Then, from Eq. (12), it is straightforward to

derive that the difference between npð�Þ and nð0Þp ¼ npð��Þ
is proportional to the proper time elapsed from �� to �.
The coefficient of the proportionality is the collision
integral—the rhs of the kinetic equation is

npð�Þ � npð��Þ
log ð�Þ � log ð��Þ !

dnp�
d log ðp�Þ

¼ ��2jAj2
6

Z dD�1l1
ð2�ÞD�1

dD�1l2
ð2�ÞD�1

Z 0

1
dvvD�2f3Re½vi�h�ðl1Þh�ðl2Þhðj~l1 þ ~l2jÞhðl1vÞhðl2vÞh�ðj~l1 þ ~l2jvÞ�

	 ½ð1þ np�Þnl1nl2ð1þ nj~l1þ~l2jÞ � np�ð1þ nl1Þð1þ nl2Þnj~l1þ~l2j� þ 3Re½vi�h�ðl1Þhðl2Þhðj~l1 � ~l2jÞhðl1vÞ
	 h�ðl2vÞh�ðj~l1 � ~l2jvÞ� 	 ½ð1þ np�Þnl1ð1þ nl2Þð1þ nj~l1�~l2jÞ � np�ð1þ nl1Þnl2nj~l1�~l2j�
þ Re½vi�h�ðl1Þh�ðl2Þh�ðj~l1 þ ~l2jÞhðl1vÞhðl2vÞhðj~l1 þ ~l2jvÞ� 	 ½ð1þ np�Þnl1nl2nj~l1þ~l2j

� np�ð1þ nl1Þð1þ nl2Þð1þ nj~l1þ~l2jÞ� þ Re½vi�hðl1Þhðl2Þhðj~l1 þ ~l2jÞh�ðl1vÞh�ðl2vÞh�ðj~l1 þ ~l2jvÞ�
	 ½ð1þ np�Þð1þ nl1Þð1þ nl2Þð1þ nj~l1þ~l2jÞ � np�nl1nl2nj~l1þ~l2j�g: (13)

In the process of the derivation of this equation, we have
neglected p in comparison with q1;2;3 on its rhs, denoted
~l1;2;3 ¼ ~q1;2;3�, and assumed that, on the rhs of Eq. (12),
nk� is a much slower function of time than hðk�Þ. The
latter fact is true because of the above-mentioned separa-
tion of scales. As a result, we can safely take out all n’s
from the argument of the time integral on the rhs of
Eq. (12) and substitute DK

0 by DK.
Note that one can reproduce np in Eq. (5) from Eq. (13)

if he will use Hankel functions in place of hðxÞ, change
jAj2vi� to [jAþj2vi� þ jA�j2v�i�], and put all n’s to zero
on the rhs of Eq. (13). This fact explains the physical origin
of the large IR effects, which are under consideration in the
present article.

V. SOLUTION OF THE KINETIC EQUATION

The kinetic equation (13) does not possess Planckian
distribution as its solution because of the violation of
energy conservation in the dS background gravitational
field. It can be mapped to the kinetic equation in flat space

via the substitution of the harmonics �ðD�1Þ=2hðk�Þ by the

plane waves ei	ðkÞt in the collision integral. In the latter

case, one has � functions ensuring energy conservation on
the rhs of Eq. (13) instead of the integrals of h’s. That, in
particular, means that for high-energy modes, k� 
 �, the
kinetics in dS space is the same as in the flat one: they can
scatter off each other but cannot be created in various
processes involving the dS background.
Thus, suppose we have started at past infinity of the PP

with some very mild density perturbation over the BD
state. After the Bogolyubov rotation to the out Jost har-
monics, one has some initial values of np and kp. As can be

understood from the discussion in the previous paragraph,
for the given p, the density np and the anomalous average

kp practically do not change before the moment �� �
�=p. After this moment they begin to evolve according
to the coupled system of kinetic equations for np and kp.

(To simplify the presentation, we do not show them here.
Similar equations for the �3 theory can be found in
Refs. [3,10].) If kp is sufficiently small, it relaxes to zero

[15], and the problem is reduced to the solution of Eq. (13).
Now, if the initial value of np after the rotation to the out

Jost harmonics is much smaller than one, we can use the
following approximations:
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ð1þ np�Þnl1nl2ð1þ nj~l1þ~l2jÞ � np�ð1þ nl1Þð1þ nl2Þnj~l1þ~l2j � 0

ð1þ np�Þnl1ð1þ nl2Þð1þ nj~l1�~l2jÞ � np�ð1þ nl1Þnl2nj~l1�~l2j � nl1

ð1þ np�Þnl1nl2nj~l1þ~l2j � np�ð1þ nl1Þð1þ nl2Þð1þ nj~l1þ~l2jÞ � �np�

ð1þ np�Þð1þ nl1Þð1þ nl2Þð1þ nj~l1þ~l2jÞ � np�nl1nl2nj~l1þ~l2j � 1:

(14)

Because of the rapid oscillations of hðxÞ as x ! 1, the integrals on the rhs of Eq. (13) are saturated at li ��. At the same
time, p� � �. Furthermore, it is natural to assume that nli�1 � np� in the situation of the very small initial density
perturbation and the vanishing production of the high momentummodes. Hence, we can neglect the second term on the rhs
of Eq. (13) in comparison with the third and the fourth ones.

As a result, Eq. (13) is reduced to

dnp�
d logðp�Þ��1np���2; where

�1 ¼�2jAj2
6

Z dD�1l1
ð2�ÞD�1

dD�1l2
ð2�ÞD�1

Z 0

1
dvvD�2Re½vi�h�ðl1Þh�ðl2Þh�ðj~l1þ ~l2jÞhðl1vÞhðl2vÞhðj~l1þ ~l2jvÞ�;

�2 ¼�2jAj2
6

Z dD�1l1
ð2�ÞD�1

dD�1l2
ð2�ÞD�1

Z 0

1
dvvD�2Re½vi�hðl1Þhðl2Þhðj~l1þ ~l2jÞh�ðl1vÞh�ðl2vÞh�ðj~l1þ ~l2jvÞ�: (15)

Here, �1 and �2 are the particle decay and production rates,
correspondingly. Note that p� is reducing to zero in the
approach toward the future infinity.

The obtained equation (15) has the solution with the flat
stationary point distribution np� ¼ �2=�1, which corre-

sponds to the situation in which the production (gain) of
particles on the level p� is equilibrated by the particle
decay (loss) from the same level. Note that here we are
talking about the number density per comoving volume,
which would stay constant if there were no particle decay
and production processes.

The obtained solution is self-consistent for the large
enough � because then �2=�1 � e�3�� � 1. Note that
the equilibrium distribution is n � e�3�� and is not
quite a Gibbons–Hawking one. Apparently, it looks
like the thermal Boltzmann one, but the temperature
depends on the power of the self-interaction potential.
In fact, the stationary distribution in the �3 theory is
n � e�2��.

So the result of the summation of the large IR contribu-
tions may lead to the finite exact two-point functions. But
what if the evolution had started with some quite strong
density perturbation (which is, however, still smaller than
the cosmological constant) over the BD vacuum state?
Now, we are going to show that there is another very
peculiar solution of the kinetic equation under considera-
tion. See Refs. [3,10] for the similar discussion in the case
of the �3 theory.
Suppose that, due to the particle creation by the back-

ground gravitational field and by the particle decays from
the other levels, the density per comoving volume on the
given level with p� � � became big in comparison with
one. Taking into account the flatness of the spectrum in
dS space, it is natural to expect that, for the harmonics
with the low physical momenta, the density very slowly
depends on its argument. Hence, we can assume that
nðp�Þ � nðq1;2;3�Þ for p� � � and q1;2;3� � �.

Then, we can make the following approximations:

ð1þnp�Þnl1nl2ð1þnl3Þ�np�ð1þnl1Þð1þnl2Þnl3 �0

ð1þnp�Þnl1ð1þnl2Þð1þnl3Þ�np�ð1þnl1Þnl2nl3 �2n3p�

ð1þnp�Þnl1nl2nl3 �np�ð1þnl1Þð1þnl2Þð1þnl3Þ��2n3p�

ð1þnp�Þð1þnl1Þð1þnl2Þð1þnl3Þ�np�nl1nl2nl3 �4n3p�

(16)

and accept that, on the rhs of Eq. (13), the main contribution to the li integrals comes form the region in which
li � � because nðxÞ 
 nðyÞ if x � � and y 
 �. As a result, the kinetic equation reduces to
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dnp�

d log ðp�Þ � � ��n3p�; where

�� ¼ �2jAj2
3

Z jl1j<� dD�1l1
ð2�ÞD�1

Z jl2j<� dD�1l2
ð2�ÞD�1

Z 0

1
dvvD�2

�
3jAj2ARe

��
vl2j~l1 � ~l2j

l1

�
i�

	 hðl1vÞh�ðl2vÞh�ðj~l1 � ~l2jvÞ
�
� ðA�Þ3 Re

��
v

l1l2j~l1 þ ~l2j
�
i�
hðl1vÞhðl2vÞhðj~l1 þ ~l2jvÞ

�

þ 2A3 Re½ðvl1l2j~l1 þ ~l2jÞi�h�ðl1vÞh�ðl2vÞh�ðj~l1 þ ~l2jvÞ�
�
: (17)

Note that �� is independent of p. This equation has the
solution

np� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �� log ð�=�?Þ

q ; (18)

where�? ¼ �
p e

� C
2 �� andC is the integration constant, which

depends on the initial conditions. The obtained solution is
valid if �=p ¼ �� >�>�?.

Thus, we see that there is a singular solution of the
kinetic equation under consideration, which corresponds
to the explosion of the particle number density per comov-
ing volume within a finite proper time. Of course, such an
explosion wins against the expansion of the PP because

DK / �D�1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log�=�?

p
. Hence, the energy-momentum

tensor of the created particles becomes huge, and the back-
reaction has to be taken into account. As a result, the dS
space gets modified. But that is the problem for a separate
study. At this point, we just would like to stress that we see
catastrophic IR effects even for the massive fields. It is
natural to expect that, for the light fields, the situation will
be even more dramatic.

VI. COMMENTS ON THE CONTRACTING PPAND
GLOBAL DS (INSTEAD OF CONCLUSIONS)

Contracting the PP of dS space is interesting at least
because it is complementary to the expanding PP within
global dS space, and we find it quite dangerous to study
such a geodesically incomplete subspace as the PP alone.
Contracting the PP is represented by the same metric,
ds2 ¼ 1

� ½d�2 � d~x2�, as the expanding one, but now the

conformal time� flows in the proper direction—from zero,
at the past, to infinity, in the future.

From Eq. (13), one can straightforwardly obtain the
kinetic equation in the contracting PP, if one will consider
perfectly spatially homogeneous states. The latter situ-
ation, while being stable in the expanding PP, is unstable
in the contracting one under small inhomogeneous density
perturbations. However, it is still instructive to consider
such an ideal situation in the contracting PP.6 In this

section, we restrict ourselves to the case of the principal
series.
To perform the map between the expanding and con-

tracting PPs, both in the few-loop calculations and in the
kinetic equation, one just has to flip the limits of d�
integrations and change hðxÞ and h�ðxÞ because of the
exchange between positive and negative energy states
under the flip of time.
Then, it is straightforward to see that loop corrections to

DK have the explicit IR divergence because particle crea-
tion starts right at the moment �0, when we switch on
self-interactions. The divergence reveals itself via the im-
possibility to move the �0 to the past infinity. Because of
the blueshifting of all modes, however, all the relevant
kinetic processes stop after �� ��=p. As a result, the
two-loop divergence in question is proportional to
log ð�=�0Þ, when p� � �, and to log ð�=p�0Þ, when
p� 
 �. The prefactors are easily derivable, in view of
the above discussion. Also, it is straightforward to show
that, for the in Jost harmonics (Bessel functions in place of
h’s) of the contracting PP, the kp behaves similarly to that

of the out Jost harmonics of the expanding PP.
In conclusion, in the contracting PP, we can find similar

solutions of the kinetic equation to those that have been
found in the previous section. For example, Eq. (15) is
mapped to

dnð�Þ
d log ð�=�0Þ

� ��1nð�Þ þ �2; (19)

which shows a very peculiar phenomenon that, despite that
in two loops �0—the moment of switching on self-
interactions—cannot be taken to the past infinity, after
the summation of all loops, we may find the theory at the
stationary point state, np ¼ �2=�1, which allows one to

remove the IR cutoff, �0.
At the same time, the solution (18) is mapped to

npð�Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �� log ð�?=�Þ

q ; (20)

where �? ¼ �0e
C=2 �� <�=p. Of course, whether the field

theory state goes into Eq. (20) or to Eq. (19) depends on the
initial conditions.
The situation in the global dS space is even more inter-

esting. On the one hand, all sorts of contributions to the
collision integral in global dS space are sums of those in

6Actually, it is not very hard to find the inhomogeneous
extension of the kinetic equation (13). In the case in which the
particle density starts to depend on the spatial position np ¼
npðxÞ, one has to substitute �d=d� on the lhs of Eq. (13) by
�@� þ �2 ~p ~@x.
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expanding and contracting PPs.7 But depending on the
choice of harmonics, we either have IR divergence in kp
or kp is divergent as the system advances toward the future

infinity. Or an even more generic situation for � vacua is
when kp has both types of such divergences simulta-

neously. As a result, there is no choice of harmonics in
which kp is negligible in comparison with np, which

probably means that there is no stationary state in global

dS, and the backreaction on the background geometry is
strong with any initial conditions.
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