Infrared imaging of IRAS sources near the Galactic Centre

Andrea Moneti, ${ }^{1}$ Ian Glass ${ }^{2}$ and Alan Moorwood ${ }^{3}$

 European Southern Observatory, Casilla 19001, Santiago 19, ChileSouth African Astronomical Observatory, PO Box 9, Observatory, So
Accepted 1992 April 14. Received 1992 April 9; in original form 1991 December 11

A number of IRAS sources in the direction of the Galactic Centre and suspected of being regions of recent or current star formation have been investigated by means of direct near-infrared imaging and limited spectroscopy in a further attempt to clarify various objects in the images on the basis of their near-infrared colours, coincidence with the $3.5-\mu \mathrm{m}$ sources of Glass, and general appearance. Photometry is derived from the images, and combined with the spectroscopy and with previously published esults to determine whether indeed these sources are close to the Galactic Centre
 and luminosities of early-type ZAMS stars. Most of them share the properties surrounded by a compact $\mathrm{H}_{\text {iI }}$ region. The new results generally confirm our earlier conclusion that star formation is ongoing in the vicinity of the Galactic Centre.

Key words: stars: formation - Galaxy: centre - infrared: stars.
objects ($K-L>2.0$) which he suggested could be the
exciting and dust-heating stars of the $\mathrm{H}_{\text {I }}$ regions. G88

 improve G88's identifications, we have obtained seeing-
limited near-infrared images of the IRAS fields using pixel limited near-infrared images of the IRAS fields using pixel
scales of 0.8 and 0.5 arcsec. The sources of interest were identified on the basis of their $H-K$ colours: assuming a visual extinction of $A_{\downarrow}=30 \mathrm{mag}$ to the Galactic Centre, and
using the Rieke \& Lebofsky (1985) reddening law, extinction
 Our plan was thus to search for sources with $H-K \gtrsim 2$ in
coincidence with the VR sources of G88, to obtain accurate positions and photometry, to obtain IR spectroscopy, and
 date further the nature of these objects.

We will present near-infrared images and selected spectroscopy of seven of G88's eight sources, and we will refer to number and the IRAS name can be found in Table 1. One of these objects, VR 5 , consisting of a group of six or more bright sources and many other fainter ones, has already been
studied in some detail (Glass, Moneti \& Moorwood 1990, henceforth GMM; Nagata et al. 1990; Okuda et al. 1990).
data are shown separately in Figs 2 (VR 5) and 3 (VR 6). In

 direction. The images of VR4 and 6 are mosaics of two
adjacent and overlapping fields. The individual panels were adjacent and overlapping fields. The individual panels were in the J and to a lesser degree the H images had to be

 defects were left in place, e.g. the dark band on the right side
of VR 4-J. Fig. 2 shows, from left to right, J, H and K mosaics of VR 5. Here, the original frames were $16 \operatorname{arcsec}$ on
 seeing conditions than the K-band image of this region)
shown in GMM (see the erratum for a good reproduction)

2.2 Photometry

 pəniəsqo aIəm (Z86I) ip a sellg worf siels piepuets

 $\approx 0.12 \mathrm{mag}$ too high.
As the observations were mostly made at low airmass and in no cases at more than 2 airmasses, no atmospheric extinc-
tion corrections have been applied. Errors arising from this source should be considerably smaller than those already discussed. The new photometry of the more interesting
sources is presented in Table 1. The photometry of G88 is also included for comparison.

2.3 Visible imaging

 Direct images through a Gunn i filter were also obtained for all the fields and were used to determine accurate positionsof the IR sources. The fields VR 1-5 were observed with a of the IR sources. The fields VR 1-5 were observed with a
direct CCD camera on the Danish $1.5-\mathrm{m}$ telescope, and the remaining fields were observed with the $3.5-\mathrm{m}$ New Tech-
 applied to these images.
Accurate source positions were determined by comparing
the IR images to the Gunn i images. In all cases, one or more
visible stars could be identified in the J images, and in a few

 engineering quality $32 \times 32 \mathrm{Hg}:$ Cd:Te arrays from Philips

 It should be noted that the Philips arrays are not optimized
for astronomical observations: the sensitive part of each pixel
 otal pixel area, and located in the geometrical centre of the pixel. This results in a low total efficiency (~ 5 per cent at H in uncertainties in the photometry when the large pixel scales are used (see below), as large differences in the signal will equidistant from four pixels. Furthermore, the short cut-off
 Within IRAC are a filter and a lens wheel, both of which are cooled and remotely controlled. The filter wheel carries a
set of ESO J, H and K filters, and a closed position used for bias and dark-current frames; the lens wheel carries four different objectives which yield pixel scales of $1.6,0.82,0.5$ and 0.3 arcsec.

Bias frames were obtained throughout the observing run,
and flat-fields were obtained on the evening and the morning sky for all necessary filter/lens combinations. The dark
 switch mode: a frame obtained on a source was followed by
another obtained with the same integration time on a reference sky position. A region of very low star density was 1987) at RA $17^{\mathrm{h}} 44^{\mathrm{m}} 31^{\mathrm{s}}$, Dec. $-28^{\circ} 54^{\prime}(2000)$, and was used for the reference exposures. Total integration times were of order $1-10 \mathrm{~min}$. All observations were carried out 1 and 2 arcsec.
 arcsec per pixel scale in order to obtain a large field, and
some further observations at higher spatial resolution were also obtained (see GMM). In 1990 we mostly followed up on the earlier observations by reobserving the regions at higher
 field 1989 observations were used mostly in conjunction accurate positions for the infrared sources.

All images of stellar fields were reduced by corresponding sky image, and by dividing the result by a normalized flat-field. In most cases the sky frame was first
multiplied by a constant close to unity to compensate for slight variations in the sky brightness

A montage of the images obtained at $0.82 \operatorname{arcsec}$ pixel $^{-1}$
resolution is shown in Fig. 1, while the $0.5 \operatorname{arcsec}$ pixel ${ }^{-1}$

 sensitivity was determined by fitting the $1-5 \mu \mathrm{~m}$ energy
distribution of the standards, as determined by their broadband magnitudes, and dividing that by the raw counts at each wavelength of observation. The result was then fitted by a

 was detected in VR 7, while no significant emission was

Infrared imaging of IRAS sources 709
[euoul!sod si! pue anojos $(X-H)$ si! fo siseq әq! uO

 et al. 1989), but none was found.
3.1.2 VR 2 (IRAS 17423-2855)
The VR 2 field is rather crowded: there are four sources with $K>10$ mag and $H-K \geqslant 2.0$ mag. Of these, VR $2-1$ is the
reddest, while the L-band source of G88 coincides with the reddest, while the L-band source of G88 coincides with the
combination of VR $2-2$ and $2-3$. Our combined H and K photometry of these two sources is in excellent agreement with that of G88. Furthermore, VR 2-3 appears slightly extended in the K image. All three sources lie within the
$I R A S$ error box which is centred 9 arcsec east and 6 arcsec

It is worth noting that an LRS spectrum of the IRAS
source (Volk \& Cohen 1989) shows a steep red continuum with a deep silicate absorption feature at $9.7 \mu \mathrm{~m}$.

$$
\text { 3.1.3 VR } 3 \text { (IRAS 17428-2854) }
$$

Here also there are several sources in the field. VR 3-2 is the

 G88's aperture. Curiously, the source in G88 is 0.5 mag
fainter at K than VR $3-2$ and it is redder in $(H-K)$; this behaviour cannot be explained by combining the photo-
metry of VR 3-2 and of VR 3-1. The location of VR 3 is on
 it is not clear whether it was included.
3.1.4 VR 4 (IRAS 17430-2851)
 western end of the IRAS error box, VR 4-1. The position given in $G 88$ is that of a less red star nearer to the $I R A S$
position; however, the published photometry is of the correct object whose coordinates were measured at the time and are

 a physical association between the two is unlikely.
3.1.5 VR 5 (IRAS 17430-2848)
This field corresponds to the cluster that has already been
discussed in GMM and in Nagata et al. (1990) and Okuda et al. (1990); this source is also known as AFGL2004. Our

Gaussian profile over a sloping continuum. The formal uncertainty for the $\operatorname{Br} \gamma$ measurements, as determined from continuum is comparable to that determined from the photometry.

3 DISCUSSION

We begin by considering which of the near-IR sources found in each field is the most likely counterpart of the IRAS source. This will be done on the basis of its colour, spatial coincident with an L source from G88, and the presence of
extended emission. Note that the density of stars in the K images is sufficiently high that the 9 -and 12 -arcsec diameter apertures of G88 included more than one object in almost all cases. At L, however, cool sources (i.e. $\leq 1000 \mathrm{~K}$) whose energy distributions peak in this band, will be more prominent than normal stars. It follows that the L photometry of G88 should not in general be contaminated by spurious
sources along the line of sight.

3.1 The individual fields

The reddest IR source in this field is VR 1-1. About $8 \operatorname{arcsec}$ west of VR $1-1$ is a second source, VR $1-2$, which is clearly
extended in both the H and the K images and which is also extended in both the H and the K images and which is also
detected at J. VR $1-2$ is much brighter than VR $1-1$ in H and in J, and it has rather peculiar near-IR colours which are not consistent with a reddened photosphere. The position of the
G88 counterpart coincides with our VR 1-1, as does the K magnitude. G88, however, gives $H-K=3.3 \mathrm{mag}$ compared to our 4.2 mag. This can be explained if his $9-\operatorname{arcsec}$ beam north of the IRAS position, or well outside the error box. Our low-resolution 1989 data do not reveal any other
east of VR 6-1. It overlaps partly with CCS no. 45, which has a diameter of 26 arcsec but is not completely coincident with
it. It is unclear whether the IR nebulosity and the extended CCS are related. If they are, the incompleteness of the overlap could be due to a band of high extinction close to the

The G88 source is not coincident with VR 6-1 but rather with VR $6-2$ which is also very red. Both sources fall within
the $I R A S$ error box, so that the $I R A S$ source is likely to be a the $I R A S$ error box, so that the $I R A S$ source is likely to be a
composite one.

3.1.7 VR 7 (IRAS 17434-2858)

An isolated bright source is the probable counterpart of the IRAS source. Our position is in good agreement with both the $I R A S$ position and with that of G88. Our photometry is
also in good agreement with that of G88. The region of this source was not surveyed by Downes et al. (1979).
3.2 Relationships to molecular clouds and other radio
features

The density of molecular material in the line of sight to these sources is extremely high and it is not possible to identify
individual clouds with the VR sources due to the comparatively low spatial resolution, 2 arcmin, of the best existing
 velocity-resolved spectroscopy showing absorption components from several clouds at negative radial velocities which
may form part of the $200-\mathrm{pc}$ expanding molecular ring ภвu $0 \varepsilon \approx^{\wedge} V$ јо uo!

 positive-velocity material.
All the VR sources are All the VR sources are located over the diffuse radio
emission that is present in the Galactic Centre as seen, for

3.3 The field stars

 During the course of the survey many field stars weredetected which are along the line of sight to the sources of

 different temperatures is also shown for comparison. Unfor-

 In general all the sources follow the reddening line, albeit
with some dispersion. Nearly all the VR sources are found in
the reddest part of the diagram, as they were selected on the

Infrared imaging of IRAS sources 711 the categories of indeterminate, stellar, and nebulous objects, with the last category including the characteristics of
H in regions and planetary nebulae. Assuming that there are no external galaxies in the fields, the two-colour diagram presented by Pottasch (1987) may be used as follows:
(i) if $F_{12} / F_{25}>0.3$ the source is a star;
(ii) if $F_{12} / F_{25}<0.3$ the source is a nebulous object, and
(iii) if (iii) if there is no reliable F_{12} / F_{25} and $F_{25} / F_{60}<0.2$, the
source is possibly an $\mathrm{H}_{\text {II }}$ region. The average $12-\mu \mathrm{m}$ flux from each field was also determined. The value of this is occasionally distorted by a few,
presumably foreground, stellar sources. The result of this

 the classifications of these are uncertain. Most of the sources
away from the lane are demonstrably stars. While the above away from the lane are demonstrably stars. While the above
result shows that the nebular sources lie close to the Galactic plane, the distribution of sources in the longitudinal direction is less clear-cut, but it is definitely peaked at the Centre. The ratio of the number of stellar sources to the number of
nebulous sources varies from 7.5 to 0.4 as we go from the nebulous sources varies from 7.5 to 0.4 as we go from the
Centre to 1.5 away. This striking difference may be enhanced somewhat if the 'uncertain' nebulous sources turn out to be stellar, or diminished if the indeterminate sources

 that field. Some of the averages have been affected by the
presence of a few exceptionally bright sources (see particularly the field at $l^{11}=-1.5$ and $b^{\mathrm{II}}=0.0$) whose colours are

 total number of IRAS sources in that field.

 part circumstantial, but on the whole it is fairly convincing. In
the case of VR 5 sources, the CO absorption spectroscopy
 sources (Okuda et al. 1990) provides further evidence for
their location close to the Centre.

3.5 Spectral energy distribution

$0.0 \quad 1.0 \quad 2.0$
Figure 5. $(J-H)$ versus $(H-K)$ colour-colour diagram for all
sources with J, H and K photometry. Filled symbols indicate VR
sources, empty symbols are the field stars. Most VR sources are
labelled, the unlabelled ones are two faint members of the VR 5
cluster. A reddening line extending from the locus of late-type stars
is shown and it is marked at intervals corresponding to $A_{V}=10$ mag.
The locus of (unreddened) blackbodies is also displayed; it is
marked with the corresponding temperature in intervals of 200 K ,
and a few positions are labelled with the temperature.
selected on the basis of its extended nature, and indeed it turns out to have colours rather untypical of a reddened star. have $1.5 \leq H-K \leq 3.0 \mathrm{mag}$ which, assuming an intrinsic colour of $H-K \geq 0.2$ mag, typical of nearly all stars and indeed of blackbodies with $T_{\mathrm{BB}} \geqslant 2500 \mathrm{~K}$, would imply an
extinction of $25 \leq A_{V} \leq 50 \mathrm{mag}$, using the Rieke \& Lebofsky (1985) reddening law. The remaining five stars are likely to

Overall, the IRAS counterparts are not clearly distinguishable from field stars in this plot, and the $I R A S$ counterparts
that are reddest in $(H-K)$, and which potentially might that are reddest in $(H-K)$, and which potentially might
show a larger displacement from the reddening line, are simply too faint at J for detection and do not appear on this diagram. Only for $J-H \geqslant 4$ mag do the $V R$ sources fall
consistently to the right of the reddening line.
3.4 The location of the VR sources

The evidence that the VR sources as a group are indeed in the Galactic Centre is derived from their spatial distribution. We have analysed 13 circular fields of 0.25 radius centred on the Galactic latitude and longitude axes, and separated by
0.50 each. The $I R A S 12-, 25-$ and $60-\mu \mathrm{m}$ fluxes, F_{12}, F_{25} 0.50 each. The IRAS $12-, 25-$ and $60-\mu \mathrm{m}$ fluxes, F_{12}, F_{25}
and F_{60} respectively, have been used to separate sources into
712 A. Moneti, I. Glass and A. Moorwood
Figure 6. Contents of 0.25 diameter $I R A S$ fields near the Galactic Centre. The fields are spaced by 0.25 in Galactic latitude and longitude, as
described in the text. Galactic longitude increases to the left, and latitude upwards. Ind: $=$ indeterminate type object, Neb: $=\mathrm{H}$ is region or

 The amounts of reddening for the individual sources
cannot be determined very precisely. However, because of

 largest amount of data is available. Their bolometric magni-

 intrinsic to the source, and the extinction derived from it is
consistent with the depth of the silicate features. The homo-

The SEDs of VR 1, 4, 6, and 7 clearly increase toward long wavelengths and peak beyond $100 \mu \mathrm{~m}$. Note that for
VR 4,6 , and 7 only upper limits are given at $25 \mu \mathrm{~m}$. The VR 4,6 , and 7 only upper limits are given at $25 \mu \mathrm{~m}$. The
SEDs of VR 2 and 3 are only plotted out to 60 and $25 \mu \mathrm{~m}$ respectively, as only upper limits are given beyond those wavelengths. The SED of VR 2 appears to flatten out at
$60 \mu \mathrm{~m}$, while that of VR 3 is still increasing at $25 \mu \mathrm{~m}$.
To determine apparent bolometric magnitudes, $m_{\text {bol }}$, and effective temperatures, T_{BB}, of the VR sources we have fitted the spectral energy distributions with Planck functions. Fig. 7 in Table 2. The choice of the blackbody curves to approximate the energy distributions is purely arbitrary and represents a method for extrapolation to wavelengths where we have no real knowledge of the true values of F_{v}. The IRAS
photometry was not used in the fits, since: (i) in many cases photometry was not used in the fits, since: (i) in many cases by spurious sources falling in the large $I R A S$ beam. Including the IRAS photometry, where available, would make the sources 1-2 mag brighter in $m_{\text {bol }}$.

absence of photospheric CO absorption in two of the cluster members (Okuda et al. 1990), which indicates that they are
not late-type, evolved objects. We suggest that these sources not late-type, evolved objects. We suggest that these sources
are indeed young, i.e. $\leq 10^{6} \mathrm{yr}$ old, but that they are probably
not typical young stellar objects.
The objects VR 2 and 7 are also of special interest, since
The objects VR 2 and 7 are also of special interest, since
they are associated with ionized gas: VR 2 is coincident with

 оұ uо!ฺขu! the cluster sources is comparable to that of other sources
toward the Centre, the cluster does not appear to be deeply
 extreme youth. On the other hand, the high luminosity and

714 A. Moneti, I. Glass and A. Moorwood
Cox, P. \& Laureijs, R., 1989. In: The Center of the Galaxy, IAU
Symp. No. 136, p. 121, ed. Morris, M., Kluwer, Dordrecht. Downes, D., Goss, W. M., Schwarz, W. \& Wouterlout, J. G. A., 1978.
Astr. Astrophys. Suppl., 35, 1. Elias, J. H., Frogel, J. A., Matthews, K. \& Neugebauer, G., 1982.
Astr. J., 87, 1029. Glass, I. S., 1988. Mon. Not. R. astr. Soc., 234, 115 (G88).
Glass, I. S., Catchpole, R. M. \& Whitelock, P. A., 1987. Mon. Not. R. Glass, I. S., Moneti, A. \& Moorwood, A. F. M., 1990. Mon. Not. R. Haller, J. W. \& Rieke, M. J., 1989. In: The Center of the Galaxy, IAU Kleinmann, S. G. \& Hall, D. N. B., 1986. Astrophys. J. Suppl., 62, Moorwood, A. F. M. \& Salinari, P., 1983. Astr. Astrophys., 125, Nagata, T., Woodward, C. E., Shure, M., Pipher, J. L. \& Okuda, H., Okuda, H., Shibai, H., Nakagawa, T., Matsuhara, H., Kobayashi, Y.,
Kaifu, N., Nagata, T., Gatley, I. \& Geballe, T. R., 1990. AstroPottasch, S. R., 1987. In: Planetary and Proto-Planetary Nebulae Dordrecht. 988 In: Galactic and Extragalactic Star Formation,

Sofue, Y., 1989. In: The Center of the Galaxy, IAU Symp. No. 136, p. 213, ed. Morris, M., Kluwer, Dordrecht.
Volk, K. \& Cohen, M., 1989. Astr. J., 98, 931. Wynn-Williams, C. G., 1982. Ann. Rev. Astr. Astrophys, 20, 587.
Yusef-Zadeh, F. V. \& Morris, M., 1987. Astr. J., 94, 1178.
 Kluwer, Dordrecht.
after dereddening for $A_{V}=30 \mathrm{mag}$, or about three times our
upper limit. Apart from the possibility of observational upper limit. Apart from the possibility of observational
errors, the line flux may be reduced by internal reddening or by the non-applicability of case B.
Data on the remaining objects are somewhat more scarce,
 We have presented further observations of suspected young sources in the vicinity of the Galactic Centre. The total uminosities and the spectral energy distributions of the these sources are very young: several may be objects that are still deeply embedded in the molecular clouds out of which they condensed, while others appear to be somewhat more
 ably compact) H in region or by showing that they are not
deeply embedded. We thus can conclude that stars are deeply embedded. We thus can conclude that stars are
forming in the vicinity of the Galactic Centre.

[^0]
[^0]: Altenhoff, W. J., Downes, D., Pauls, T. \& Schraml, J., 1979. Astr.
 Astrophys. Suppl., 35,23. Bally, J., Stark, A. A., Wilson, R. W. \& Henkel, C., 1988. Astrophys. Braz, M. A., Scalise, E., Hetem, J. C. G., Monteiro do Vale, J. L. \& Catchpole, R. M., Whitelock, P. A. \& Glass, I. S., 1990. Mon. Not. R. astr. Soc., 247, 479.

