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Abstract: To improve the detection ability of infrared small targets in complex backgrounds, a

novel method based on non-convex rank approximation minimization joint l2,1 norm (NRAM)

was proposed. Due to the defects of the nuclear norm and l1 norm, the state-of-the-art infrared

image-patch (IPI) model usually leaves background residuals in the target image. To fix this problem,

a non-convex, tighter rank surrogate and weighted l1 norm are instead utilized, which can suppress

the background better while preserving the target efficiently. Considering that many state-of-the-art

methods are still unable to fully suppress sparse strong edges, the structured l2,1 norm was introduced

to wipe out the strong residuals. Furthermore, with the help of exploiting the structured norm and

tighter rank surrogate, the proposed model was more robust when facing various complex or blurry

scenes. To solve this non-convex model, an efficient optimization algorithm based on alternating

direction method of multipliers (ADMM) plus difference of convex (DC) programming was designed.

Extensive experimental results illustrate that the proposed method not only shows superiority in

background suppression and target enhancement, but also reduces the computational complexity

compared with other baselines.

Keywords: infrared image; small target detection; non-convex rank approximation minimization;

structured norm

1. Introduction

Infrared search and track (IRST) systems have been widely used in many applications, especially

in the military field. As a basic function of IRST systems, infrared small target detection plays an

important role in early-warning, precision guidance, and long-range target detection. However, the

lack of texture and structure information of the target under infrared conditions, coupled with the

influence of long distance, complex background, and various clutter, means that the infrared small

target is often spot-like, even submerged in the background, which makes it extremely difficult to

detect. Therefore, it is a challenge to design a detection method that is effective and adaptable to

various complex backgrounds.

Generally speaking, infrared small target detection methods can be divided into two categories:

sequential-based and single-frame-based methods. Sequential-based methods need to join multiple

frames to capture the target trajectory and avoid noise interference. When the background is

homogeneous and the target moves slowly, sequential-based methods such as the Robinson Guard

spatial filter [1], dynamic programming algorithm [2], 3D matched filtering [3], and so on can perform

well. Nevertheless, in real applications, not only is it difficult to guarantee the homogeneity of the

background, but the movement between the target and imaging sensor is fast, resulting in the rapid

degrading of sequential-based methods. Meanwhile, high storage and hardware requirements make
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this approach unsuitable for large-scale engineering projects. Although there are still some studies

on sequential methods [4,5], single-frame based methods are more popular and have attracted more

research attention in recent years [6–8].

Conventional single-frame based detection approaches, like Tophat filter [9], Maxmean and

Maxmedian filter [10] utilize filtering to suppress the background and enhance the target under the

assumption of background consistency. These methods can achieve good performance with a uniform

background and are easily implemented. Unfortunately, most backgrounds do not meet the ideal

assumption, leading to a high false alarm ratio. Recently, approaches based on human visual system

(HVS) [11] have been developed to improve the performance of infrared small target detection with

the assumption that the target is the most salient object, most of which compute the saliency map

in a manner of filtering [7,12–18] or transforming [19,20]. Actually, in many real scenes, the most

prominent object is not the desired target while the highlight edges and salient non-target components

can destroy the whole detection. Both of these methods are sensitive to noise and do not perform well

when the size of the target varies within a large range.

Conventional detection methods based on simple assumptions merely consider either the

background or the target. In order to overcome the limitations of the traditional methods, a

state-of-the-art approach based on robust principal component analysis (RPCA) called the infrared

patch-image (IPI) model was proposed [21]. Focusing on the non-local self-correlation configuration

of the background, the assumption of the IPI model fits real scenes well. Unlike the general infrared

image model, the IPI model reformulates it as follows:

D = B + T + N (1)

where D, B, T, and N are the corresponding patch-images of the original infrared image, the background

image, the target image, and the random noise image, respectively. Then, with the low-rank property

of B and the sparsity of T, the conventional small target detection problem is converted to a RPCA

optimization problem (RPCA is also called sparse and low rank matrix decomposition) as follows:

min
B,T

‖B‖∗ + λ‖T‖1

s.t. D = B + T
(2)

where ‖•‖∗ denotes the nuclear norm of a matrix (i.e., the sum of singular values), ‖•‖1 is the l1 norm

(i.e., ‖X‖1 = ∑ij

∣

∣Xij

∣

∣), and λ is a positive weighting constant.

Convex problem (2) is efficiently solved in Reference [21] via the accelerated proximal gradient

(APG) [22] approach. However, since nuclear norm minimization (NNM) treats all singular values

equally, it may obtain suboptimal solutions [23]. The l1 norm faces the same problem, which means that

Equation (2) cannot recover the background and target image precisely. In other words, when facing

complex infrared scenes, the performance of IPI is weak, namely, strong edge residuals remain in the

recovered target image and the recovered background is blurry (poor edge retention). To approximate

the rank more accurately, many non-convex surrogates have been introduced to RPCA one after

another because of their flexibility including weighted nuclear norm minimization (WNNM) [24],

truncated nuclear norm minimization (TNNM) [25], capped norm [26], the Schatten-p norm [27] and

so forth. Similarly, weighted l1 norm [28], capped l1 norm [29], and l2,1 norm [30] have also been

proposed to improve the ability to represent sparsity.

Furthermore, alternating direction method of multipliers (ADMM) [31] has a faster convergence

rate when compared with APG and its precision is also higher [32]. Hence, ADMM is a popular

method to solve optimization problems in many fields, particularly in the computer vision and

image processing field. For instance, Gu et al. [33] utilized ADMM to solve the non-convex weighted

nuclear norm minimization (WNNM) problem efficiently, which was successfully applied to image

inpainting. Xue et al. [34] proposed a non-convex low-rank tensor completion model using ADMM

to obtain the best recovery result in color images. Based on total variation regularized tensor RPCA,
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Cao et al. [35] designed a non-convex and non-separable model to complete background subtraction

with an ADMM solver.

In this paper, a novel approach based on non-convex rank approximation minimization (NRAM)

joint l2,1 norm was proposed to overcome the deficiencies of Equation (2). Additionally, a more

accurate weighted l1 norm was introduced to better depict the target component. By incorporating

the structured sparse item, the strong non-target component, particularly borders, could be wiped

out. To solve this non-convex optimization problem, a method using alternating direction method of

multipliers (ADMM) plus difference of convex (DC) programming [36] is presented, which has a lower

computation complexity.

The remainder of this paper is organized as follows. In Section 2, we give an overview of

related works on infrared small target detection and briefly analyze the common existing problems.

The proposed NRAM model is presented in Section 3. In Section 4, extensive experiments on

various scenes and sequences are conducted to illustrate the efficiency of the proposed method.

Analysis and comparisons are also given. A discussion and conclusions are presented in Sections 5

and 6, respectively.

2. Related Works

Many algorithms have been proposed for infrared small target detection. The existing

single-frame-based detection algorithms mainly fall into three main groups: methods of

background-based assumption, methods of target-based assumption, and methods of target and

background separating.

2.1. Methods of Background-Based Assumption

These methods utilize filtering to estimate the background under the assumption of background

consistency. When the estimation is conducted, the target is enhanced by subtracting the background

from the original image. Obviously, the selection of filters directly affects the accuracy of the detection.

Tophat filter [9], Maxmean filter and Maxmedian filter [10] are three typical filters used in this

detection field. By selecting different structural elements or sliding windows, targets can be caught

easily in simple uniform scenes in real-time. In addition, the two-dimensional least mean square

(TDLMS) filter [37] can automatically estimate the background by adaptive iteration with strong

robustness compared with the above three filtering-based methods, yet does not perform in real-time.

Subsequently, some improved methods, like the bilateral TDLMS (BTDLMS) filter [38], edge directional

TDLMS (EDTDLMS) filter [39], and novel TDLMS filter [40] have been proposed for the sake of better

performance. Unfortunately, they work well only if the background meets the simple assumption.

Once the input infrared image becomes complex, the obtained residual image is frequently full of

noise and background disturbance, leading to a huge challenge in identifying the true targets in

post-processing. When considering complex input, they cannot handle strong target-like edges and, in

fact, regard the edges as targets.

2.2. Methods of Target-Based Assumption

In recent years, human visual system (HVS) [11] with properties including size-adaptation,

contrast mechanisms, and attention shift mechanisms have been developed to improve the performance

of infrared small target detection with the assumption that the target is the most salient object. By

means of filtering or transforming, the saliency map is calculated to make true targets as salient as

possible, most of which are based on a single contrast mechanism such as the Laplacian of Gaussian

(LoG) filter [12], and the difference of Gaussian (DoG) filter [13]. Obviously, how to define the

contrast between the target and background is one of the key steps for HVS-based methods. The

local contrast measure (LCM) [14] was first proposed to describe the dissimilarity between the current

cell and its eight adjacent cells, which is calculated pixel by pixel and is very time consuming. For

good performance in detection rate, false alarm rate and speed simultaneously, the improved LCM
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(ILCM) [15], the novel LCM (NLCM) [16], and the relative LCM (RLCM) [17] were provided to

calculate the saliency map. The multiscale patch-based contrast measure (MPCM) [18] focuses on the

multi-directional dissimilarity between the current patch and the surrounding patches. To improve the

performance of MPCM, Li et al. [41] extended it to a speed-up version, and exploited density clustering

to reduce the false alarm rate. From another perspective, Li et al. [19] and Tang et al. [20] analyzed

visual saliency in the frequency domain. On the whole, HSV-based methods are sensitive to edges

while the small targets fail to meet the requirements of the above assumption.

2.3. Methods of Target and Background Separating

Apart from concentrating merely on the single background or target, some recent methods can

separate the target and background simultaneously. The typical approach, IPI [21] utilizes the non-local

self-correlation of infrared background and the sparsity of the target to reveal the data structure, and

experimental results show an obvious superiority when compared with the traditional methods.

However, it is time consuming. Dai et al. [42] pointed out that IPI would either over-shrink the

small targets or leave some residuals in the target image because of the limitation of the l1 norm and

fixed constant weighting parameter. To address such problems, the authors proposed a weighted IPI

(WIPI) model via the column-wise weights. Focusing on the defect of the nuclear norm that leads

to background residuals in the target image, Dai et al. [43] analyzed the reason for the remaining

residuals resulting from the mismatching of the IPI model’s implicit assumption of a large amount of

observations with the reality of deficient observations of strong cloud edges, and developed NIPPS

exploiting partial sum minimization of singular values (PSSV) [44] to preserve the large singular

values related to the observed noise data, not the whole input matrix. However, the accuracy of NIPPS

depends on estimating the rank of the background matrix, whose performance degrades when facing

complex backgrounds. ReWIPI [28] combines WNNM and the weighted l1 norm to restrain low rank

and sparsity, penalizing the larger singular values by smaller weights, so that the non-target sparse

points could be efficiently suppressed.

Considering the fact that the original data were drawn from a union of low-rank subspaces,

low-rank representation (LRR) [45] is used to recover background and target by a self-expressive

dictionary with low-rank coefficients and the sparse noise. Based on LRR, low-rank and sparse

representation (LRSR) [30] has been proposed, which adds the sparse representation of the special

structure into the LRR with two additional input dictionaries. Liu et al. [46] utilized fractal background

over-complete dictionary (FBOD) and generalized Gaussian target over-complete dictionary (GGTOD)

together to suppress the heavy sky clutter in infrared images. Note that the projection onto the

dictionary is applied to every overlapped patch, which takes lots of time, and it is difficult to generate

the appropriate dictionaries. From another perspective, Wang et al. [47] presented a method named

the stable multisubspace learning (SMSL) method that took into account the inner structure of

actual images in heterogeneous scenes. Moreover, compared with IPI-based methods in general,

multisubspace-based methods do not show superiority in terms of performance. To better recognize

strong edges, Dai et al. [48] introduced structure tensor into a reweighted infrared patch-tensor model

(RIPT), employing both the local and nonlocal priors. Nevertheless, it does not work well when the

targets are close to or on the boundaries, leaving much noise. Worse still, this approach breaks down

when the target is not sufficiently salient. Table 1 below shows a summary of the common approaches

based on the separation of background and target image.
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Table 1. Characteristics of typical methods based on target and background separation.

Methods Advantages Disadvantages

IPI Works well with uniform scenes.
Over-shrinks the small targets, leaving residuals
in the target image, time consuming.

NIPPS
Works well when strong edges and
non-target interferences are few.

Difficult to estimate rank of data, fails to eliminate
strong edges and non-target interference.

ReWIPI
Works well when background
changes slowly.

Sensitive to rare highlight borders, performance
degrading with the increasing of complexity.

LRR Works well with simple scenes. Cannot handle complex backgrounds.

LRSR
Works well with homogeneous
backgrounds.

Difficult to choose two dictionaries
simultaneously, leaving noise in target component.

FBOD + GGTOD Work well with sky background clutter.
Difficult to choose two dictionaries
simultaneously, cannot handle other scenes well.

SMSL
Works well when the target is salient and
the background is clean.

Sensitive to boundaries, poor at background
suppression, loses target easily.

RIPT Works well when the target is salient.
Does not work well when the targets are close to
or on the boundaries, leaving much noise, loses
target totally when target is not sufficiently salient.

With simple homogenous scenes, most of the listed methods can achieve good results. Table 1

shows that almost all of the approaches had a poor performance when facing real complex scenes

or strong edges generated by the non-target interference sources. To improve the detection ability in

complex backgrounds with non-target interference sources, we proposed a novel approach based on

non-convex rank approximation minimization (NRAM) and the weighted l1 norm. Figure 1 shows

the recovered target image of one typical scene via IPI, NIPPS, ReWIPI, SMSL, and RIPT, respectively.

Considering the common challenge that most state-of-the-art methods currently face, which is the

inability to completely sweep the strong edges and interferences as observed in Figure 1, the strong

edges left in the target images are of linearly structured sparsity with respect to the whole image

because of the streamlined appearance of real objects and the fact that most of the buildings contain

perpendicular edges [49]. The l2,1 norm can identify the sample outliers, most of which are related to

sparse structures. Hence, to better suppress strong edges, we introduce an extra regularization term

on residual strong edges utilizing the l2,1 norm.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 1. The target image recovered by five state-of-the-art methods under one typical scene. The red

circle represents the near-linear background residuals left behind. (a) Original image; (b) IPI; (c) NIPPS;

(d) ReWIPI; (e) SMSL; (f) RIPT.
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The main contributions of this paper are as follows:

(1). We developed a novel infrared small target detection method based on non-convex rank

approximation minimization and the weighted l1 norm, which can approximate rank function

and l0 norm better, leading to a better ability to separate the target from the background than the

state-of-the-art methods including IPI, NIPPS, ReWIPI, SMSL, and RIPT.

(2). Considering that most of the existing approaches suffer from residual strong edges, we introduced

an additional regularization term on the remaining edges utilizing the l2,1 norm because of the

linearly structured sparsity of most interference sources.

(3). An optimization algorithm based on ADMM with DC programming was presented to solve

the proposed model. Since the constraints are more powerful than the IPI-based methods, the

proposed algorithm converged faster.

3. Proposed Method

On the whole, an infrared image with a small target can be regarded as

fD = fB + fT + fN (3)

where fD, fB, fT , fN are the original image, the background image, the target image and the noise

image, respectively. As mentioned in Section 1, Gao et al. [21] presented a more general model

to describe the original infrared image named IPI model based on the patch-image constructed by

vectorizing the matrix within the sliding window, which is in the form of Equation (1). Since the

infrared background changes slowly, this means the patches are highly correlated with both local and

global patches. In other words, B is a low-rank matrix. Additionally, the small target only occupies a

spot of pixels, so that T is a sparse matrix with respect to the whole image. To separate the background

and target is to seek two solutions adapted to the original condition.

3.1. The Surrogate of Rank

To provide a tighter approximation than the nuclear norm does, Zhao et al. [50] proposed a novel

non-convex function to directly approximate the rank named as the γ norm. Note that the γ norm is

actually a pseudo norm. The γ norm of matrix B is

‖B‖γ = ∑
i

(1 + γ)σi(B)

γ + σi(B)
, γ > 0 (4)

It can be observed that lim
γ→0

‖B‖γ = rank(B) and lim
γ→∞

‖B‖γ = ‖B‖∗. Furthermore, for any

orthonormal U ∈ Rm×m and V ∈ Rn×n, ‖B‖γ = ‖UBVT‖γ, namely, the γ norm is unitarily invariant.

Figure 2 indicates several surrogates of rank in the literature. Obviously, the γ norm is almost in line

with the true rank (γ = 0.002 is used here), solving the imbalanced penalization by different singular

values in a traditional convex nuclear norm, while the nuclear norm deviates considerably if the

singular value is far away from 1 because of the equal treatment mechanism. The log-det heuristic [51]

is poor at small singular values, especially those close to 0. As can be seen, the weighted nuclear norm

fits the reality better than both the nuclear norm and log-det heuristic; however, every time the weight

is determined, extra singular value decomposition (SVD) occurs (see more details in Reference [24]),

which increases the running time of the algorithm. To maintain both accuracy and speed, the γ norm

is the best candidate to describe the rank of a background patch-image.
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Figure 2. The contribution of different surrogates to the rank with respect to a varying singular value.

The true rank is 1 for a nonzero σi.

3.2. The Surrogate of Sparsity

Given that dealing with the non-convex non-smooth l0 norm is NP-hard, many methods [52–54]

utilize the l1 norm to depict the sparsity of the target patch-image. Similar to the nuclear norm, the l1
norm gives every single element the same weight; this is a dilemma when there exist many strong

edges and non-target sparse points. Taking into account that the brightness of most non-target sparse

points is lower than that of small targets, a weighted l1 norm [28] can be used to describe the target

patch-image more accurately, which is given as

‖T‖W,1 = ∑
ij

Wij

∣

∣Tij

∣

∣ (5)

Wij =
C

∣

∣Tij

∣

∣+ εT
(6)

where Wij is one element of the weight matrix W at position (i, j); C is a compromising constant and

εT is a small positive number to avoid dividing by zero.

As analyzed in Section 2, many state-of-the-art approaches fail to address the strong edges well

with complex backgrounds, leaving residuals in the target images. To deal with this problem and

considering the strong edges left in the target image are of linearly structured sparsity with respect to

the whole image, we introduced the l2,1 norm to efficiently remove the residuals, which is defined as

‖E‖2,1 = ∑
i

√

∑
j

E2
ij (7)

where E denotes the sparse residual edges(w.r.t the whole patch-image).

Then, the proposed infrared patch-image model via non-convex rank approximation minimization

(NRAM) is formulated as follows:

min ‖B‖γ + λ‖T‖w,1 + β‖E‖2,1

s.t. X = B + T + E
(8)

where λ and β are positive trade-off coefficients.
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3.3. Solution of the NRAM Model

An alternating direction method of multipliers (ADMM)-based optimization algorithm was

devised to solve Equation (8). By introducing a Lagrange multiplier Y and a penalty term, the

constrained optimization problem becomes an unconstrained optimization problem and Equation (8)

can be rewritten as the augmented Langrangian function:

L(D, B, T, E, Y, µ) = ‖B‖γ+ λ‖T‖w,1 + β‖E‖2,1 + 〈Y, D − B − T − E〉+
µ
2 ‖D − B − T − E‖2

F (9)

where 〈•〉 denotes the inner product of two matrices; ‖•‖F is the Frobenius norm. Based on ADMM,

an efficient iterative approach was proposed to update B, T and E, respectively. At the (k + 1)th step,

update Bk+1, Tk+1 and Ek+1 by solving the following subproblems:

Bk+1 = argmin
B

‖B‖γ +
µk

2
‖D − B − Tk − Ek −

Yk

µk
‖

2

F

(10)

Tk+1 = argminλ
T

‖T‖W,1 +
µk

2
‖D − Bk+1 − T − Ek −

Yk

µk
‖

2

F

(11)

Ek+1 = argmin
E

β‖E‖2,1 +
µk

2
‖D − Bk+1 − Tk+1 − E −

Yk

µk
‖

2

F

(12)

Since the γ norm is a non-convex function and Equation (10) is a combination of non-convex and

convex terms, it is appropriate to utilize difference of convex (DC) programming to solve Equation (10)

(for details please see [50]). The DC algorithm regards the original non-convex problem as the difference

of two convex functions and optimizes it iteratively by linearizing the concave term at each iteration.

At the (t + 1)th inner iteration

σt+1 = argmin
σ≥0

〈ωt, σ〉+
µk

2
‖σ − σA‖

2
2 (13)

which admits a closed-form solution

σt+1 = max(σA −
ωt

µk
, 0) (14)

where A = D − Tk − Ek − Yk

µk , ωt =
(1+γ)γ

(γ+σt)2 and Udiag{σA}VT is the SVD of A. After a few iterations

(actually within two iterations), it converges to a local optimal point σ∗. Then, Bk+1 = Udiag{σ∗}VT.

According to [55] and [28], Equations (11) and (12) can be solved as

Tk+1 = SλW/µk (D − Bk+1 − Ek −
Yk

µk
) (15)

[Ek+1]:,i =







‖Q:,i‖2−
β

µk

‖Q:,i‖2
Q:,i if ‖Q:,i‖2 >

β

µk

0 otherwise
(16)

where Q = D − Bk+1 − Tk+1 − Yk

µk and [Ek+1]:,i is the i-th column of Ek+1.

Y and µ updates in the standard way:

Yk+1 = Yk + µk(D − Bk+1 − Tk+1 − Ek+1) (17)

µk+1 = ρµk (18)
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where ρ > 1. Finally, the whole process is described in Algorithms 1 and 2.

Algorithm 1: ALM/DC solver to the NRAM model

Input: Original patch-image D, λ, β, µ0, γ;

Output: B = Bk + Ek, T = Tk;

Initialize: B0 = T0 = E0 = Y0 = 0, ρ = 1.1, ε = 10−7, k = 0, W0 = 1 ∗ 1T, Λ0 = 0 ∈ Rmin(m,n)×1;

While not converged do

1: Fix the others and update B by DC programming;

2: Fix the others and update T by

Tk+1 = SλW/µk (D − Bk+1 − Ek −
Yk

µk
);

3: Fix the others and update E by

[Ek+1]:,i =















‖Q:,i‖2 −
β

µk

‖Q:,i‖2

Q:,i if ‖Q:,i‖2 >
β

µk

0 otherwise

;

4: Fix the others and update Y by

Yk+1 = Yk + µk(D − Bk+1 − Tk+1 − Ek+1);

5: Update W by

Wij =
C

∣

∣

∣
Tij

∣

∣

∣
+ εT

;

6: Update µ by

µk+1 = ρµk;

7: Check the convergence conditions

‖D − Bk+1 − Tk+1 − Ek+1‖F

‖D‖F
< ε;

8: Update k;

k = k + 1;

End while

Algorithm 2: DC programming

Input: Bk, γ, A = D − Tk − Ek −
Yk

µk
, Λ0;

Output: Bk+1, Λt+1;

Initialize: t = 0, [U, S, V] = svd(A);

While not converged do

1: Calculate

ωt =
(1 + γ)γ

(γ + Λt)
2

, Λt+1 = max(S −
ωt

µk
, 0);

2: Check the convergence conditions

‖Λt+1 − Λt‖2 < ε;

End while

3: Bk+1 = UΛt+1V;

3.4. The Whole Process of the Proposed Method

Figure 3 shows the whole process of the proposed method in this paper, which can be summarized

as follows:

(1). Patch-image construction. By sliding a window of size k × k from top to bottom and from left to

right to transform the original infrared image I ∈ Rm×n into a patch-image D ∈ Rk2×t, where t is

the number of window slips, the matrix inside each matrix was vectorized as a column of the

constructed patch-image D.
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(2). Target-background separation. The input patch-image D was decomposed into a low-rank matrix

B, a sparse matrix T and a structural noise (strong edges) matrix E. Since the structural noise

belongs to the background, we summed B and B as the final recovered background patch-image B.

(3). Image reconstruction and target detection. Reconstruction is the inverse process of construction.

For the position overlapped by several patches, we utilized the one-dimensional median filter

to determine the value. Small targets were detected by adaptive threshold segmentation; the

selection of the threshold was based on [21].

 

Figure 3. The overall procedure of the roposed model in this paper.

4. Experiment and Analysis

4.1. Experimental Preparation

In this section, eight single practical scenes and six real sequences (the scene of each sequence

was contained in the eight tested scenes) were used to test the validity of the proposed method.

The eight scenes are shown in Figure 4. As most of the existing algorithms have a good effect

on an infrared image with a salient target and clean background, the six sequences were not easy

to deal with. Sequences 1–4 are characterized by complex backgrounds with salient strong edges

and interference sources. Although both of the backgrounds were homogeneous and uniform,

Sequences 5 and 6 are actually difficult because of the dim targets, which also shows the adaptability

of the proposed method to different scenes. A detailed description is given in Table 2. Meanwhile,

eight other state-of-the-art methods including Tophat transformation [9], local contrast measure

(LCM) [14], multiscale patch-based contrast measure (MPCM) [18], infrared patch-image model

(IPI) [21], non-negative infrared patch-image model based on partial sum minimization of singular

values (NIPPS) [43], reweighted IPI (ReWIPI) [28], stable multisubspace learning (SMSL) [47],

reweighted infrared patch-tensor model (RIPT) [48] were employed as the baselines for the sake

of comparison. All parameters of the seven approaches given by the authors were fine tuned for

each specific sequence due to the lack of robustness of some of the approaches in addressing complex

backgrounds. The final parameter settings are presented in Table 3. In addition, all experiments were

performed with Matlab R2018a in Windows 7 based on an Intel Celeron 2.90 GHz GPU with 4 G RAM

(The code is available at https://github.com/Lanneeee/NRAM).

https://github.com/Lanneeee/NRAM
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Table 2. Detailed description of the eight real scenes.

Sequence Frame Number Size Background Description Target Description

Scene 1 (Sequence 1) 50 208 × 152 Homogenous with a highlight punctate disturbance Small, very dim with low contrast
Scene 2 (Sequence 2) 67 320 × 240 Very bright, heavy noise Moves fast with changing shape, brightness
Scene 3 (Sequence 3) 52 128 × 128 Sky scene with banded cloud Tiny
Scene 4 (Sequence 4) 30 256 × 200 Heavy banded cloud and floccus Small, size varies a lot
Scene 5 (Sequence 5) 200 252 × 220 Complex background with trees and buildings Quite small size, changing slightly in the sequence
Scene 6 (Sequence 6) 185 252 × 213 Swinging plants that obscure the target frequently Small, keeps moving in the sequence and changing brightness

Scene 7 — 320 × 240 Sea and mountain scene with obvious artificial structure Ship target, bright, Gaussian shape
Scene 8 — 128 × 128 Low contrast with a lot of noise Tiny and not so salient

Table 3. Detailed parameter settings of the nine tested methods.

Method Parameters

Tophat Structure shape: disk, structure size: 3 × 3
LCM Cell size: 3 × 3

MPCM N = 3, 5, 7, 9, mean filter size: 3 × 3

IPI Patch size: 50 × 50, sliding step: 10, λ = 1/
√

min(m, n), ε = 10−7

NIPPS Patch size: 50 × 50, sliding step: 10, λ = 1/
√

min(m, n) for sequence 3, λ = 2/
√

min(m, n); for the rest, ε = 10−7

ReWIPI Patch size: 50 × 50, sliding step: 10, λ = 1/
√

min(m, n) for sequence 3, λ = 2/
√

min(m, n); for the rest, ε = 10−7, εB = εT = 0.08

SMSL Patch size: 30 × 30, sliding step: 10, λ = 3/
√

min(m, n), µ0 = 0.5 ∗ s4, µ = 0.05 ∗ s5, ε = 10−7

RIPT Patch size: 30 × 30, sliding step: 10, λ = L/
√

min(m, n), L = 0.7, h = 1, ε = 10−7

NRAM Patch size: 50 × 50, sliding step: 10, λ = 1/
√

min(m, n), µ0 = 3
√

min(m, n), γ = 0.002, C =
√

min(m, n)/2.5, ε = 10−7
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Figure 4. The eight real scenes used in the experiments. For the sake of visualization, all the images are

changed to the same size. (a) Scene 1 (Sequence 1); (b) Scene 2 (Sequence 2); (c) Scene 3 (Sequence 3);

(d) Scene 4 (Sequence 4); (e) Scene 5 (Sequence 5); (f) Scene 6 (Sequence 6); (g) Scene 7; (h) Scene 8.

4.2. Evaluation Metrics

For a comprehensive comparison, the whole evaluation process was based on qualitative and

quantitative evaluations. All the separated target images obtained by the different methods were

evaluated via several commonly used metrics to show the ability of background suppression and

target enhancement, namely the signal-to-clutter ratio gain (SCRG), the background suppression factor

(BSF) and the receiver operating characteristic (ROC) curve.

SCRG is the most widely used criterion whose definition is

SCRG =
SCRout

SCRin
(19)

where SCR is a measurement of detection difficulty and target saliency; the subscripts out and in

denote the original image and the separated target image, respectively. SCR is defined as

SCR =
|µt − µb|

σb
(20)

where µt and µb are the average pixel value of the target region and surrounding local neighborhood

region and σb is the standard deviation of the surrounding local neighborhood region. The local region

used in the experiment is illustrated in Figure 5. The size of the target is a × b, the local region size is

(a + 2d)× (b + 2d), we set d = 40 in this paper.

 

γ

Figure 5. Local region of a small target in an infrared image.
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Another widely used metric is BSF, showing the performance of background suppression, which

is defined as

BSF =
σin

σout
(21)

where σin and σout represent the corresponding standard variances of the background neighborhood

before and after processing. Higher SCRG and BSF values mean the better performance of an algorithm.

Besides these two metrics, the detection probability Pd and false-alarm rate Fa are a pair of

indicators for comprehensive detection ability. Pd and Fa are defined as follows:

Pd =
number of true detections

number of actual targets
(22)

Fa =
number of false detections

number of images
(23)

The ROC curve shows the trade-off between the true detections and false detections.

4.3. Parameter Analysis

There are several vital parameters like the penalty factor µ, the compromising constant C that

determines the weight coefficient matrix and the norm factor γ that affects the low-rank approximation.

Hence, to obtain a better performance with real datasets, it is necessary to choose proper parameters.

The ROC curves corresponding to different parameters are shown in Figure 6 for Sequences 1–5. It

should be noted that the performances obtained by tuning one of the parameters with the others fixed

may not be globally optimal.

4.3.1. Penalty Factor µ

µ has a direct impact on the whole process, especially the soft-thresholding operator which

determines the target component, thus one has to choose µ properly in order to ensure both optimality

and fast convergence rate. A smaller µ would improve the ability of preserving details in the

background image; however, the details of the target might also be recovered, leading to over-shrinking

of the small target or no target in the target image. On the other hand, a larger µ can protect the target

but would also leave more noise in the target image. In fact, the small singular value corresponds

to the noise in the image, as illustrated in Figure 2; the γ norm fit the true rank well in most cases

but when it came to the singular value that approached zero, the weight given to it dropped sharply

until reaching zero, leading to an over-smooth background and a noisy target image. To address

this problem, a larger µ is needed. Furthermore, a larger µ conducts a faster convergence. In order

to change µ adaptively, we set µ = c
√

min(m, n), where m and n are the length and width of patch

image and c is a positive constant. To figure out the influence of the penalty factor on Sequences 1–5,

instead of changing µ directly, we varied c from 0.5 to 5. For all 5 sequences, c = 2 or 3 achieved the

best performance, while c = 0.5 or 5 performed the worst. This is because a smaller µ would lose the

target and a too large µ would regard the salient non-target noise as the “true” target, also resulting in

incorrect recovery in most cases, especially when the target was not so prominent. In fact, c = 2 shrank

the target a little. We chose c = 3 as the best value.

4.3.2. Norm Factor γ

γ is an important factor determining the ability of background recovery. With smaller γ, the rank

surrogate γ norm closely matches the true rank. However, if γ is too small, the target would also be

treated as a low-rank component. Apparently, γ cannot be too large as that leads to deviation from the

real rank, just as the nuclear-norm does. Thus, it is important to find an appropriate value for γ to

keep the balance between detection probability and the false-alarm ratio. We show the effects of γ in

the third and fourth rows of Figure 6. We varied the value of γ from 0.001 to 0.005 with an interval of
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0.001. It can be observed that even if γ changes slightly, this change has a great impact on the results.

γ = 0.002 remained at a stable level while the rest had some fluctuations. The larger the γ, the worse

the performance, thus the best choice for γ was 0.002.

4.3.3. Compromising Constant C

C plays an important role in controlling the adaptive weight value, which has to be chosen

carefully. With reference to [24] with slight modification, we set C as α
√

min(m, n) in our experiment

for the sake of self-adaption. The performance of different α is shown in the last two rows of Figure 6,

from which we can conclude that the algorithm was quite insensitive to the variation of C. Different C

all performed well on Sequence 5 resulting from the target being easy to detect while the non-target

noise was hard to suppress. Synthesizing the results of all sequences, we set
√

min(m, n)/2.5 as the

optimum value.
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Figure 6. Detection performances under different parameters. Rows 1–2: ROC curves with respect to

different penalty factors, Rows 3–4: ROC curves with respect to different norm factors, Rows 4–5: ROC

curves with respect to different compromising constants.

4.4. Qualitative Evaluation under Different Scenes

In this section, the proposed method was compared with eight state-of-the-art methods in

background suppression performance. Figures 7–9 are the results obtained by all the tested methods

under different scenes. Note that the target has been marked with a red box.

The Tophat operator did enhance the target; however, it was extremely sensitive to edges and

noise leading to a high false-alarm ratio, especially in the case of a complex background such as in

Figures 8A, 9B and 10B. The main reason comes down to the fixed structure element and the hypothesis

of smooth background. There is no doubt that the performance of the LCM was the worst among all

results produced by the tested methods. This is because the contrast mechanism was not so applicable

with a complex background. Moreover, when the local region of the target had low contrast, some

other strong edges or brighter non-target components were highlighted instead. The worst was in

Figure 10B because the contrast was almost uniform everywhere. Unlike LCM, another HSV-based

approach, MPCM, defines the local contrast measure based on the difference between the reference

patch and the background patches and not on the ratio of the maximum grayscale of the central cell

to the average value of the surrounding cells. MPCM worked much better when facing different

backgrounds, particularly in clean and uniform scenes such as in Figure 7 and showed more robustness

when compared with LCM. Nevertheless, from Figures 8–10, we can see that it still suffered from

salient non-target objects caused by the inaccuracy of the local dissimilarity measure. In other words,

the simple local dissimilarity measure or assumption based on background consistency cannot deal

with various scenes.

The other five baselines aim at separating the background and target by solving optimization

problems, which have relative superiority over conventional approaches. From the obtained target

images, it was clear that IPI could recover the target well while also preserving the background

residuals because of the deficiencies of both the nuclear norm and l1 norm, as analyzed in Section 1.

This phenomenon was most conspicuous when the target was very dim and the background edge

was abundant such as in Figure 8A. NIPPS was better than IPI and could suppress most of the strong

clutter and keep the shape of the target by minimizing the partial sum of singular values. Still, as

observed in Figure 8, complex scenes including highlight interference sources and intensive noise is a

challenge for NIPPS. By observing Figures 8–10, it can be said with certainty that the NIPPS model

does not satisfy scenario robustness. Furthermore, the rank estimation task was harder to address
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when salient clusters and non-target components exist, as shown in Figures 9A and 10B. Based on the

weighted nuclear norm minimization, ReWIPI applies weighted technology to restore background and

target simultaneously. However, this method showed little improving effect given that, considering

the backgrounds in Figure 9, the residual problem of sparse edges remained unsolved. Moreover, the

convergence rate of ReWIPI was slow, resulting in high computation complexity, which will be further

discussed later.

SMSL and RIPT had an unstable performance as concluded from their produced target image.

From Figures 7, 8A and 9A, both approaches lost the target totally. For SMSL, when the target

was so dim that it was difficult to distinguish the target from the background clearly, the learning

mechanism would assign the target to a subspace of the background, thus the target would disappear.

In addition, in Figure 8B, spot-like components lying on the boundaries would also bring about false

detection because of the inaccuracy of the subspace construction. With the purpose of wiping out

disturbance caused by complex backgrounds, RIPT utilizes the local structure tensor to suppress the

salient background edges, which need an obvious structure. RIPT indeed achieved a good performance

with some heterogeneous scenes such as in Figures 8B and 10A, with the help of the structure tensor.

Unfortunately, like in Figure 7, a dim target overwhelmed by background clutter did not meet the

requirement and fuzzy edges even caused strange detection results. Merely using the single prior of

background and not incorporating it with the target prior also explained the bad results.
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Figure 7. Results of the different approaches to Scenes 1 and 2. (A) Scene 1 (Sequence 1); (B) Scene 2

(Sequence 2); (a) Original image; (b) Tophat; (c) LCM; (d) MPCM; (e) IPI; (f) NIPPS; (g) ReWIPI;

(h) SMSL; (i) RIPT; (j) NRAM.

Compared with all of the above baselines, it can be concluded that the proposed NRAM model

provided satisfactory performances in various scenes not only in keeping the shape of the target but

also in wiping out rare clutter, especially in Figures 8–10 whose targets were dim and the disturbances
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were strong. In Figure 10B, when the target was seriously disturbed by noise, all baselines failed

to detect the target and only the proposed NRAM worked relatively well even though the given

target had been shrunk because of the overwhelming clutter. This demonstrates the strong scenario

robustness that is lacking in the other state-of-the-art methods.
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Figure 8. Results of different approaches to Scenes 3 and 4. (A) Scene 3 (Sequence 3); (B) Scene 4

(Sequence 4); (a) Original image; (b) Tophat; (c) LCM; (d) MPCM; (e) IPI; (f) NIPPS; (g) ReWIPI;

(h) SMSL; (i) RIPT; (j) NRAM.
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Figure 9. Results of different approaches to Scene 5 and 6. (A) Scene 5 (Sequence 5); (B) Scene 6

(Sequence 6); (a) Original image; (b) Tophat; (c) LCM; (d) MPCM; (e) IPI; (f) NIPPS; (g) ReWIPI;

(h) SMSL; (i) RIPT; (j) NRAM.
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Figure 10. Results of different approaches to Scenes 7 and 8. (A) Scene 7; (B) Scene 8; (a) Original

image; (b) Tophat; (c) LCM; (d) MPCM; (e) IPI; (f) NIPPS; (g) ReWIPI; (h) SMSL; (i) RIPT; (j) NRAM.

To visualize the complexity of the scenes and to compare the effectiveness of the other seven

methods more intuitively, 3D gray maps of several representative tested images and obtained images

(Figures 8A,B and 10B) are displayed in Figure 11. It was obvious that the three scenes were all

complex. From Figure 11, we can see that background components usually exist with a brightness

close to or above the targets, which makes it more difficult to detect infrared dim targets accurately.

MPCM enhanced the targets as well as the clutter, leaving a locating challenge. IPI, NIPPS and ReWIPI
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performed relatively well in most cases but there were two drawbacks: first, some strong clutter was

not removed; and second, the degree of background suppression was not high (in other words, in the

3D gray maps, the minimum gray value did not reach 0). In contrast, the proposed NRAM model

almost completely suppressed the background and clutter with fewer false alarms, showing strong

robustness. Moreover, in the third scene, all but the proposed method were not successful. Hence,

from a qualitative perspective, the NRAM model has huge advantages.
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Figure 11. 3D gray maps of three representative scenes and corresponding results. (a) Original image;

(b) MPCM; (c) IPI; (d) NIPPS; (e) SMSL; (f) RIPT; (g) NRAM.

4.5. Quantitative Evaluation of Sequences

Aside from the qualitative evaluation based on different scenes, to evaluate the ability of

background suppression and target enhancement in a quantitative way, evaluation indices including

signal-to-clutter ratio gain (SCRG) and background suppression factor (BSF) were used to assess the

performance. The experimental results of six actual sequences (Figures 7–9) are shown in Table 4.

Note that because SMSL and RIPT failed in most cases, the corresponding quantitative values were

not calculated. It can be seen that the proposed method almost always achieved the highest values,

showing great superiority in background suppression. In general, as before, the last six methods were

better than the former simple assumption-based methods and there was no surprise that the LCM

obtained the lowest scores.

Table 4. SCRG and BSF values of the nine methods.

Method
Seq 1 SCRG

BSF
Seq 2 SCRG

BSF
Seq 3 SCRG

BSF
Seq 4 SCRG

BSF
Seq 5 SCRG

BSF
Seq 6 SCRG

BSF

Tophat
4.92 2.09 1.54 2.29 3.78 0.53
5.55 10.66 7.55 8.59 3.00 0.47

LCM
0.49 0.75 2.17 0.25 0.40 0.91
0.69 0.93 1.18 0.69 0.96 0.95

MPCM
4.56 2.05 1.22 0.49 2.59 2.44
5.49 8.20 6.85 1.96 2.50 3.76

IPI
7.36 7.64 2.59 4.24 2.10 3.25
2.25 2.10 4.46 5.08 4.29 3.08

NIPPS
35.85 11.48 2.89 4.03 3.94 6.29
14.32 4.42 7.30 5.61 11.84 3.95

ReWIPI
10.71 11.01 3.26 3.40 2.03 2.52
6.72 2.93 8.36 3.18 3.93 2.58

SMSL — 1.86 2.80 — — —
10.34 2.99

RIPT — 4.39 2.12 — — —
23.39 11.5

NRAM
87.34 11.02 2.72 8.81 7.75 7.87
60.30 50.01 21.29 25.70 32.58 59.21

NOTES: Red represents the highest value and blue represents the second highest value.

To further demonstrate the advantages of the developed method, we provide the receiver

operating characteristic (ROC) curves of the test sequences used in Table 4, whose horizontal axis

was the false-alarm ratio of the sequence and whose vertical axis was the probability of detection of

the sequence. The ROC curves are illustrated in Figure 12. Note that again, we did not consider the

SMSL and RIPT for the same reason. Tophat always performed the worst since the simple structural
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elements could not handle the complex background. The performance of MPCM fluctuated greatly.

For Sequences 1 and 2, MPCM worked very well but failed in the other sequences, which confirmed

that MPCM is poor at addressing scenes filled with clutter and disturbances. IPI, NIPPS and ReWIPI

achieved similar results, with the latter two performing slightly better than IPI on the whole. The

biggest difference was in Sequence 3, which showed that ReWIPI performed the worst out of all

methods. In general, the proposed method almost always reached the highest detection probability

with respect to the same false-alarm ratio, implying that the proposed method outperformed the other

state-of-the-art methods.
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Figure 12. ROC curves of detection results of six real sequences. (a) Sequence 1; (b) Sequence 2;

(c) Sequence 3; (d) Sequence 4; (e) Sequence 5; (f) Sequence 6.

Figure 13 displays the convergence rates of the last six methods. For the sake of comparison, the

maximum value of relative error was set to 0.0008. Meanwhile, the condition of stopping iteration was

that the relative error was less than 10−7 for all of the used methods. The IPI model and SMSL model

both had slow convergence rates resulting from time-consuming APG, while the rest were based on

the faster ADMM. Compared with IPI, the number of iterations in the proposed method was about

1/20 that of the IPI model. The RIPT model converged as fast as the NRAM, however, it had trouble

dealing with the very dim target.

Moreover, to compare the computational cost of the nine methods more clearly, Table 5 shows the

algorithm complexity and computing time for Figure 8B. Suppose the image size is and m, n are the

rows and columns of the patch-image. The computational cost of Tophat is O(I2logI2), where the I2 is

the size of the structure element. Considering the image size, the final cost of Top-Hat is O(I2logI2MN).

For LCM and MPCM, it is obvious that the major time-consuming part is calculating the saliency map

pixel by pixel. A sliding window of size is needed for computing the saliency value of the central

pixel. Thus, k2 to 8k2 times mathematical operation per pixel is required, namely, in a single scale, the

computational cost is O(k2MN). Therefore, the total cost in all scales is O(K3MN). For the rest of the

methods, except for SMSL, the dominant factor is singular value decomposition (SVD), which has a

computational complexity of O(mn2). Since an iterative reweighted scheme is used in ReWIPI, the cost

of ReWIPI is O(kmn2). For SMSL, its complexity is determined by the subspace dimension and the

matrix size, that is, O(lmn), where l denotes the subspace dimension.
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It can be seen that the methods based on target and background separation (i.e., the last six

methods) are generally slower than the filtering and HSV-based methods (i.e., the first three methods),

resulting from the iterative procedure and singular value decomposition (SVD). However, considering

the robustness and performance of each method, this sacrifice is acceptable. In addition, although SMSL

and RIPT were faster than NRAM, their performances were not satisfactory in many cases. Therefore,

there is no doubt that the developed NRAM model not only improves background suppression and

target detection with complex backgrounds but also reduces the computational complexity compared

with most baseline approaches.

γ

γ

Figure 13. Convergence rates of the IPI, NIPPS, ReWIPI, SMSL, RIPT and NRAM models.

Table 5. Comparison of computational complexity and computing time of nine methods.

Tophat LCM MPCM IPI NIPPS ReWIPI SMSL RIPT NRAM

Complexity O(I2logI2MN) O(K3MN) O(K3MN) O(mn2) O(mn2) O(kmn2) O(lmn) O(mn2) O(mn2)
Time(s) 0.022 0.074 0.089 11.907 7.486 15.469 1.245 1.352 3.378

5. Discussion

The separation of target and background utilizing optimization methods and sparse representation

is widespread in the field of infrared small target detection based on the non-local self-correlation

of infrared background and the sparsity of the target. The classic IPI exploits the nuclear norm to

represent the low-rank patch-background matrix and when the infrared images are uniform, it works

well. However, as discussed in Section 3, the larger the singular values, the farther the nuclear norm

deviates. In fact, large singular values contain more details and information of the image. In other

words, the nuclear norm cannot handle complex infrared scenes because of the rich details, which

causes residuals and the reconstructed background is blurred. This is also the case with the l1 norm.

Unbalanced weights result in incomplete target reconstruction; that is the aforementioned over-shrink.

NIPPS utilizes partial sum minimization of singular values (similar to the truncated nuclear norm)

aiming to overcome the defect of the nuclear norm. One key step of NIPPS is to estimate the rank

of the image, which is challenging. The small singular value of the image corresponds to the noise.

Inaccurate estimation can easily minimize that part of the singular value, leading to the remaining

components in the target image. ReWIPI and SMSL also make improvements to the nuclear norm and

l1 norm but still suffer from strong edges.

Currently, most state-of-the-art methods concentrate on the prior background and target, which is

insufficient. RIPT introduces the structure tensor to address the problem of residuals. The performance
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with complex scenes is much better but unfortunately, RIPT ignores low SNR situations which lack

structural information, resulting in loss of the target. Based on the IPI model, to overcome the existing

problems, a tighter surrogate of rank named the γ norm with a weighted l1 norm has been introduced

to recover the background accurately. Motivated by the structural information of edges and remaining

noise in the target images, the structured l2,1 norm can handle the residuals well. Therefore, as well

as the background and the target, a third component, which we called strong edges (actually not

just edges), was developed. Namely, the γ norm only needs to recover a low-rank component of the

background, so the weighted l1 norm only has to reconstruct the target and the l2,1 norm is in charge

of the components that are sparse but belong to the background. A single recovery task for each

component makes the problem easier to solve.

There are several vital parameters in the proposed NRAM model including the penalty factor

µ, the norm factor γ and the compromising constant C. As analyzed in Section 4, the γ norm has

some disadvantages but thanks to the penalty factor µ, we can overcome them. The norm factor γ,

affecting how close the surrogate is to the true rank and the compromising constant C, is the key factor

determining the recovery of the target image. We have discussed experiments around choosing the

best value of them with self-adaption.

By comparing the performance of the proposed method with eight state-of-the-art methods from

qualitative and quantitative perspectives, it is fair to say that the proposed NRAM model showed

relative superiority in both background suppression and target enhancement. Furthermore, the

robustness of the algorithm when faced with various scenes outperformed the baselines.

6. Conclusions

To improve the ability of background suppression with complex backgrounds, a novel method

based on non-convex rank approximation minimization was proposed to reconstruct the low-rank

component more accurately, namely the background. Furthermore, a more powerful sparse constraint

item, the weighted l1 norm, was exploited to enhance the target detection performance. Considering

the common challenge that most state-of-the-art methods currently face, which is an inability to

completely wipe out the strong edges and rare structures, an additional structured l2,1 norm was

employed to address this issue. By carefully choosing the vital parameters, an optimization algorithm

combining ADMM and DC strategy was presented to solve this new model. Experimental results

based on diverse scenes and sequences demonstrated that the proposed method outperformed the

other state-of-the-art methods, showing more robustness and less computational complexity.

Several problems still need to be solved. For instance, if there are non-target elements at one of the

four corners of the image (i.e., lower-left corner) that are much more salient than the target, all methods

including the proposed NRAM model would incorrectly regard the non-target noise as the real target.

Our plan is to utilize more features of targets to depict the target component better. Moreover, seeking

the major dissimilarity between non-target components and targets also plays an important role. In

addition, although our method reduced the computing time when compared with similar methods, it

was still inferior to the traditional filtering method, which is a problem that needs to be solved.
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