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Abstract 

Background: Widespread elimination of malaria requires an ultra-sensitive detection method that can detect low 

parasitaemia levels seen in asymptomatic carriers who act as reservoirs for further transmission of the disease, but is 

inexpensive and easy to deploy in the field in low income settings. It was hypothesized that a new method of malaria 

detection based on infrared spectroscopy, shown in the laboratory to have similar sensitivity to PCR based detection, 

could prove effective in detecting malaria in a field setting using cheap portable units with data management sys-

tems allowing them to be used by users inexpert in spectroscopy. This study was designed to determine whether the 

methodology developed in the laboratory could be translated to the field to diagnose the presence of Plasmodium in 

the blood of patients presenting at hospital with symptoms of malaria, as a precursor to trials testing the sensitivity of 

to detect asymptomatic carriers.

Methods: The field study tested 318 patients presenting with suspected malaria at four regional clinics in Thailand. 

Two portable infrared spectrometers were employed, operated from a laptop computer or a mobile telephone with 

in-built software that guided the user through the simple measurement steps. Diagnostic modelling and validation 

testing using linear and machine learning approaches was performed against the gold standard qPCR. Sample spec-

tra from 318 patients were used for building calibration models (112 positive and 110 negative samples according to 

PCR testing) and independent validation testing (39 positive and 57 negatives samples by PCR).

Results: The machine learning classification (support vector machines; SVM) performed with 92% sensitivity (3 false 

negatives) and 97% specificity (2 false positives). The Area Under the Receiver Operation Curve (AUROC) for the SVM 

classification was 0.98. These results may be better than as stated as one of the spectroscopy false positives was 

infected by a Plasmodium species other than Plasmodium falciparum or Plasmodium vivax, not detected by the PCR 

primers employed.

Conclusions: In conclusion, it was demonstrated that ATR-FTIR spectroscopy could be used as an efficient and reli-

able malaria diagnostic tool and has the potential to be developed for use at point of care under tropical field condi-

tions with spectra able to be analysed via a Cloud-based system, and the diagnostic results returned to the user’s 

mobile telephone or computer. The combination of accessibility to mass screening, high sensitivity and selectivity, 
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Background
Over 3.4 billion people are at risk of malaria, which 

remains one of the most devastating vector-borne dis-

eases on the planet. It is also one of the world’s leading 

causes of childhood death [1]. Early detection and treat-

ment is critical to saving lives and protecting the com-

munity from transmission of Plasmodium ssp. The focus 

on malaria prevention has now shifted to elimination of 

the disease, which the World Health Organization has 

set as a goal to achieve by 2030 [2]. Malarial elimina-

tion requires mass screening with diagnostics sensitive 

enough to detect asymptomatic carriers that act as res-

ervoirs of infection. However, there is a lack of suitable 

inexpensive, highly sensitive and highly specific rapid 

diagnostic tests. Malaria diagnosis is currently reliant 

on rapid diagnostic tests (RDTs) based on antigen cap-

ture and immunochromatography, that do not attain the 

sensitivity and specificity required for effective malaria 

elimination [3, 4]. More sensitive approaches, such as 

reverse transcriptase polymerase chain reaction (RT-

PCR), are time-consuming, require a large degree of 

technical expertise, expensive instrumentation and con-

sumables, and are therefore not practical for malaria test-

ing [3]. Light microscopy diagnosis also has sub-optimal 

sensitivity, and requires highly trained technicians, which 

has hampered implementation in resource-poor regions. 

Declining malaria transmission is accompanied by an 

increasing proportion of asymptomatic infections with 

extremely low, sub-microscopic parasite densities [5, 6]. 

This presents a major challenge for elimination, since a 

large proportion of the parasite reservoir is not detect-

able with the currently available tools; this problem exists 

for both Plasmodium vivax and Plasmodium falciparum 

[7]. A new approach for malaria diagnosis, that would be 

rapid, inexpensive, highly sensitive and selective, without 

the need for heavy logistics, would be a “game changer” 

in clinical diagnostics and public health surveillance, and 

would undoubtedly become a cornerstone of malaria 

elimination campaigns.

Fourier transform infrared (FTIR) spectroscopy is an 

emerging tool gaining ground in clinical diagnostics [8, 

9]. It relies on the direct acquisition of the FTIR spectra 

from a biological sample without the need for any dye 

or reagent targeting the analyte or pathogen of interest 

[10]. When the energy of IR light matches the energy 

of vibrational transitions from a molecule or functional 

group an FTIR spectrum is generated, which is repre-

sentative of the molecular composition of the sample 

[11, 12]. Multivariate data analysis methods can be 

employed to reveal changes in the spectra produced 

by variations in the biochemical composition that can 

be associated with changes of the phenotype caused 

by the presence of a pathogen [13, 14]. In 2014, a foun-

dation paper for the detection and quantification of 

malaria parasite-infected cells using Attenuated Total 

Reflection-Fourier transform infrared (ATR-FTIR) 

spectroscopy on spiked red blood cell samples was pub-

lished [15]. The technique and algorithms enabled the 

detection of early stage ring and gametocyte forms of 

the parasite to a level of detection 100 times lower than 

that of the current gold standard microscopy-based 

testing (i.e., able to detect a parasitaemia of 0.00001%). 

The method was also able to quantify parasitaemia lev-

els with a quantification sensitivity limit of 0.1% with 

a 0.05 standard deviation. The approach combines the 

ability to detect malaria life stages that are found in the 

peripheral blood with rapid time-to-result, minimal 

sample preparation and portability of the device.

The next phase is to determine whether the approach 

can be adapted to a field setting, by comparing results 

of patient-derived clinical samples with parasite-spiked 

red blood cells under laboratory conditions as previ-

ously reported [15]. To this end, an assessment of the 

technology under clinical field conditions in Thailand, 

which  included  symptomatic patients with suspected 

malarial infection, was undertaken. The approach was 

optimised  for non-expert users in remote settings 

by  using  quality control software that detects potential 

problems, such as spectral contamination from water 

vapour, poor absorbance and solvent contamination 

by cleaning agents. This ensured that only good quality 

spectra were presented to the model and subsequently 

processed. To facilitate translation of the technology, 

a “Cloud”-based system, with diagnostic algorithms 

located in secure remote servers was developed. This 

(i) protects the valuable models and algorithms from 

theft and retro-engineering of the device, and (ii) ena-

bles acquisition of databases that include de-identified 

patients, as well as GPS and spectral data with an epide-

miological value. Users receive a simple diagnostic result 

without the need for any knowledge of spectroscopy or 

interpretation of the spectral data.

low logistics requirements and portability, makes this new approach a potentially outstanding tool in the context 

of malaria elimination programmes. The next step in the experimental programme now underway is to reduce the 

sample requirements to fingerprick volumes.

Keywords: Malaria diagnosis, Infrared spectroscopy, Cloud based diagnostics, Plasmodium
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Methods
Sample collection, preparation and processing

Herein, we report the information regarding the study 

following the STARD (Standards for Reporting Diag-

nostic accuracy studies, see Additional file  1) [16]. 

Blood samples were acquired from regional clinics 

located in Thailand: Sunpasittiprasong Hospital, Ubon-

ratchathani (UB); Srinagarind Hospital, Khon Kaen 

(MN); Kap Choeng Hospital, Surin (KS); Phop Phra 

Hospital, Tak (PP). This was covered by Khon Kaen 

University ethics applications HE 591238 and 033/2559. 

All patients presented with symptoms characteristic 

of suspected malaria infection. All patients were diag-

nosed for malaria at point of care by the hospital staff 

present using a combination of RDT and microscopy 

or microscopy alone. 3  mL EDTA blood was collected 

from each patient, to provide sub-samples for subse-

quent analysis at Khon Kaen University. The sample 

was used to prepare thick and thin blood smears for 

malaria examination by microscopy. 500 µL of packed 

red cells were aliquoted and resuspended into 4.5  mL 

absolute methanol (Additional file 2: Fig. S1). All sam-

ples were kept at 4  °C and transported to Khon Kaen 

University within 24  h (Additional file  2: Fig. S1 sum-

marizing sample preparation steps). Samples were kept 

at 4  °C until analysis. Preliminary tests showed that 

samples could be stored at 4 °C for months without any 

appreciable change in the resulting ATR-FTIR spectra. 

Further details about the demography of the partici-

pants can be found in Additional file 3.

Conventional malaria diagnostics at collection site

Blood smears from all patients were stained with 

Wright-Giemsa and used to diagnose malaria species 

by morphology under a light microscope. EDTA blood 

was checked for P. falciparum (Pf ) and Pan (non-Pf) 

infections using SD Bioline malaria antigen strip (SD 

Diagnostics Inc., Republic of Korea) as rapid diagnostic 

test (RDT) according to manufacturer protocol.

Reanalysis of blood smears by light microscopy

Blood smears of all collected samples (both positive and 

negative) were independently checked for the presence 

of Plasmodium species by 3 trained medical technolo-

gists at Srinagarind hospital, Khon Kaen University. A 

magnification of 1000× was used with 50 microscopic 

field typically examined.

Identification of Plasmodium spp. using real time‑PCR

Preparation of the DNA template

DNA was extracted from packed red cell preserved in 

methanol by  QIAamp® DNA Blood Mini Kit (QIAGEN, 

Germany) following the manufacturer’s ‘spin protocol’ 

procedure. In brief, 200  µL of lysis buffer containing 

20  µL of QIAGEN protease solution was added into 

200 µL of packed red cells. The mixture was incubated 

at 56 °C for 10 min and subsequently put through a spin 

column. Absolute ethanol was then used to wash and 

elute DNA. Eluded DNA was estimated for DNA con-

centration by spectroscopy measurement (Nano drop 

2000, Wilmington, USA) at OD 260 nm. DNA samples 

were kept at − 20 °C until used.

Analytical performance of qPCR

Plasmids containing PCR products of 18s rRNA gene P. 

falciparum and P. vivax were used as standards. Plasmid 

DNA was diluted with sterile water to obtain  103 to  108 

copies and used to establish a calibration curve for meas-

uring P. falciparum and P. vivax by real time PCR using 

a  TaqMan® probe assay. The oligonucleotide sequences 

of primers and probes followed Perandin et al. [17], and 

purchased from BIONEER Corp., Korea (Additional 

file 4: Table S1). Fifty microliters of PCR mixture contain-

ing 1× of  AccuPower® Plus DualStar qPCR MasterMix 

(BIONEER Corp.), 0.3 µM of primers and probes and 1× 

of Rox dye. Amplification was initiated at 95 °C for 5 min, 

followed by 45 cycles at 95 °C for 15 s and 60 °C for 60 s 

using Exicycler™ 96 (BIONEER Corp.). The detection 

range of P. falciparum and P. vivax was estimated from 

standard curves.

Low  (103 copies), medium  (104 copies) and high  (108 

copies) concentrations of both P. falciparum and P. vivax 

were used as internal controls for each run. Analytical 

precision was estimated from 3 levels of controls. The 

coefficient of variation (CV) represented the qPCR preci-

sion that were tested by using P. falciparum and P. vivax 

plasmids as the internal control materials for each run 

indicating repeatability of results in different runs.

CV was obtained from following formula

Analytical imprecision less than 15% CV was accepted 

for within runs and between runs. Reaction lacking DNA 

template was used as negative control in each batch. Cut-

off values were selected according to the recommenda-

tions of the manufacturer.

Malaria diagnosis using ATR‑FTIR spectroscopy

ATR‑FTIR spectroscopy data acquisition

The methodology for data acquisition using ATR-FTIR 

spectroscopy from methanol fixed packed red blood cells 

was identical to that previously described [15], except 

that a portable Agilent 4500 ATR-FTIR spectrometer 

was employed. IR spectra were acquired over the range 

from 4000 to 650 cm−1 at a spectral resolution of 4 cm−1, 

CV = [Standard Deviation/Mean] × 100.
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using 64 co-added interferograms for the background 

measurement and 128 co-added interferograms  for 

the sample measurements. Background measurements 

were acquired in air before every new sample measure-

ment following cleaning of the ATR crystal with absolute 

ethanol.

In‑house quality control software

A methodology was established to perform quality con-

trol of the spectrum prior to the inclusion in the calibra-

tion set or the malaria prediction  model. This ensures 

that an acquired spectrum has features similar to the fea-

tures included in the model. It also ensures that technical 

issues are not going to interfere in the extraction of infor-

mation from the model. For example, the following two 

methods of quality control were developed.

Quality controls (QCs) independent of the model 

(only dependent of the database)

The QCs endeavour to monitor excess (or  deficit) of 

the different components and interferences included in 

the sample. The component relative concentration was 

estimated using the height of a band (with two minima 

baseline points) of the spectra specifically assigned to 

the specific component. This relative concentration, i.e. 

the height of a band, was compared to a distribution of 

relative concentration values of the components in the 

database. If the relative concentration fell inside the dis-

tribution, the spectrum was considered to be acceptable, 

otherwise the spectrum was rejected and measured again 

until it met all the criteria. To this end, a threshold was 

defined from the distribution tails  as depicted in Addi-

tional file 5: Fig. S2, using the average and the standard 

deviation of the distribution values.

Three components were studied sequentially. Addi-

tional file  4: Table  S2 summarizes the pre-processing 

used prior to the calculation of the relative component 

concentration, the band used for calculating the concen-

tration, and the thresholds established. The three compo-

nents were:

 (i) Water vapour interferences (excess and  deficit): 

Fluctuation in IR active atmospheric water between 

the background and sample measurements can 

cause negative and positive bands, which are 

detected by using positive and negative thresholds.

 (ii) Methanol (excess): Methanol was used for fixing 

the samples and sometimes the drying process 

was not completely effective and some methanol 

remained.

 (iii) Sample absorbance (deficit): Due to an irregu-

lar distribution of the RBCs between the clamp 

and the ATR crystal, in some cases there was not 

enough sample in contact with the crystal and the 

absorbance was too low.

Quality controls associated to the model

After a spectrum passed the quality controls (QCs) for 

water vapour, methanol and sample absorbance, it was 

projected onto the selected PLS-DA model. For the 

validation process, any result was rejected if it showed 

both, Hoteling’s  T2 and SQ residuals values outside of 

the 95% of confidence interval. For the calibration pro-

cess, if the spectrum showed significantly high Hotel-

ing’s  T2 and SQ residuals, it was investigated for any 

spectral anomaly and if none was found, it was included 

in the database for extending the representativeness of 

the calibration set.

“Cloud”‑based data processing

The cloud system was used for two main proposes: (1) 

The creation of the dataset; and (2) the analysis and diag-

nostic output of samples.

Creation of the dataset

First, the aim was to construct a database from spectra of 

high quality. This goal was challenging because the acqui-

sition of the spectrum is designed to be performed in 

remote locations by staff untrained in spectroscopy and 

multivariate analysis. A MATLAB-based graphical user 

interface (GUI) was designed for the collection of the 

dataset. The user introduces the spectrum file into the 

GUI, which performed the different QCs of the spectra 

outlined in “Background” section. Prior to the QCs, the 

GUI loads the database from the Cloud to have access to 

the thresholds and the current PLS-DA model for the last 

QC (see Additional file 6: Fig. S3). If the spectra passed 

all the QCs it was included in the Cloud database. The 

PLS-DA model used on the “distance to the model” QC 

was a non-optimized preliminary PLS-DA model per-

formed with the whole database, using first derivative (9 

smoothing points), SNV, Pareto scaling and mean cen-

tring as the pre-processing steps and the 1800–800 cm−1 

and the 3200–2800  cm−1 regions. For each new set of 

samples the PLS-DA model was updated. For the first 

100 samples, the QCs were deactivated because there 

was not a database to compare. Along with the spectra, 

the GUI enabled one to load other sample parameters 

(Microscopy result, RDT result, PCR result, age, gender 

and other clinical parameters) to the dataset.
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Calibration, optimization and test of SVM and PLSDAs 

model

Additional file  7: Fig. S4 depicts the process employed 

in the creation, selection and testing of the PLS-DA and 

SVMs models. The whole routine aimed to select the best 

conditions in terms of pre-processing and spectral regions 

before the independent assessment of the classification 

performance with an external dataset:

 (i) Samples were split between a calibration and vali-

dation dataset. To ensure representative calibration 

and validation subsets, the dataset was spit accord-

ing to the Kennard-Stone [18] algorithm. In each 

classification 70% of the samples were used for 

calibration and the other 30% composed the exter-

nal dataset. This set was ignored in the subsequent 

selection of the model.

 (ii) Calibration samples were used for creating multi-

ple PLS-DA and SVM models combining different 

pre-processing and spectral regions. The spectral 

pre-processing steps employed were: (1) first deriv-

ative, standard normal variate and mean centred; 

(2) second derivative, standard normal variate and 

mean centred; (3) first derivative, standard normal 

variate, Pareto scaling and mean centred; and (4) 

second derivative, standard normal variate, Pareto 

scaling and mean centred. The Savitzky Golay algo-

rithm was employed for the derivation (Polynomial 

degree = 2), but for each pre-processing 7, 11 or 15 

smoothing points were used in the derivative, giv-

ing 12 different pre-processing step combinations 

trialed. In addition, the following spectral regions 

were employed: 3140–3000, 2999–2770, 1784–

1589, 1588–1470, 1469–1355, 1354–1186, 1185–

1006, 1005–700  cm–1, giving 3060 combinations of 

different regions used in the models. In total 3060 

(255 combination of spectral regions combined 

with 12 different pre-processing combinations) 

SVMs and 3060 PLSDA models were performed, 

monitoring the CV error for each model. In the 

case of the PLS-DA, the minimum cross validation 

error using a maximum of 10 latent variables was 

monitored for each model.

 (iii) Models were sorted according to their cross-vali-

dation error and from the 10 models with the low-

est cross validation error selected as the optimum 

model. This final selection was performed accord-

ing to both complexity (a reasonable number of 

latent variables (LVs) in the case of tie PLS-DA) 

and interpretability of the regions selected. Posi-

tivity cut-offs were selected considering the lowest 

number of misclassified samples in the CV.

 (iv) The classification performance of the final model 

was tested using the independent test set.

Results
Development of “Cloud”‑based diagnostic system 

for non‑expert users

Two portable Agilent Technologies 4500 ATR-FTIR 

spectrometers (Santa Clara, USA) were employed. 

These devices can be operated from a laptop computer 

or a mobile telephone with in-built software that guides 

the user through the simple measurement steps. For 

the creation of the database, ATR-FTIR spectra were 

uploaded to the Internet and processed on a remote 

server located at Monash University (Melbourne, Aus-

tralia). Information pertaining to the patients includ-

ing location based on the Global Positioning System 

(GPS) were uploaded simultaneously with the spectral 

data from the sample. The latter were passed through 

a series of quality tests that rejected spectra based on 

(i) possible contamination by sample fixation, (ii) water 

vapour absorbance, or (iii) spectral dissimilarity from 

the database (Additional file 5: Fig. S2). Data rejection 

was relayed back to the user interface, identifying the 

cause of the problem and requesting another spectrum 

to be acquired. 2% of measured samples were rejected. 

The database was used to create multivariate data ana-

lytic models based on partial least squares-discrimi-

nant analysis (PLS-DA) and support vector machine 

(SVM) classifiers, which predict if a sample is malaria 

positive, or negative according to the spectrum. The 

database was split into calibration and test datasets. 

Calibration samples (70%) were used to develop sev-

eral models using different pre-processing and spectral 

regions. Venetian blind (10 splits) cross-validation was 

used to select the best models, which were then tested 

using the independent test set (30%). Data treatment 

was performed in Matlab from MathWorks (Natick, 

USA) using in-house written routines based on func-

tions from the PLS toolbox from eigenvector Research 

(Manson, USA). Routines are available on request.

Once the classifiers are created, an unknown sample 

can be measured on site. The acquired spectra can be 

then encrypted and processed using the classifier located 

in the “Cloud”. After passing the quality test, the data 

are then: (i) pre-processed to minimize spectral baseline 

distortions, (ii) normalized to account for differences 

in pressure on the sample, and (iii) classified as either 

malaria-positive or -negative by the classification model. 

The result is then transferred back to the user’s mobile 

interface. The whole process from depositing the blood 

sample onto the spectrometer measurement window to 

receiving the diagnosis takes less than 5 min (see Fig. 1). 

Although, in the case of the study the cloud system was 

used by the researchers of the central laboratory in Aus-

tralia, it can be applied on-site given an available internet 

connection.
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Summary of diagnostic results using RDT and light 

microscopy against gold standard qPCR

qPCR was able to detect between 10 to  107 parasites per 

µL of blood, with average imprecision for P. falciparum 

and P. vivax at 9.85 and 10.08% coefficient of variation 

[CV; = (standard deviation/mean) × 100)], respectively. 

The between run precision calculated from the average 

CV across low  (103 copies), medium  (104 copies) and 

high  (108 copies) concentration for P. falciparum and P. 

vivax were 13.33 and 12.90%, respectively (Additional 

file 8: Fig. S5).

qPCR was used as a gold standard against which the 

performance of all diagnostic tests (rapid diagnostic test 

(RDT); light microscope; and, infrared spectroscopy) 

were compared. The comparison results of diagnostic 

using RDT and light microscopy against qPCR are sum-

marized in Additional file 4: Table S3.

For the 318 samples tested, 197 were also analysed by 

standard serological RDT at point of care. Compared 

to PCR, there were 2 false positives and 1 false negative 

(1% and 0.5%, respectively). The two false positive sam-

ples displayed and RDT result as PAN (another species 

other than P. falciparum or P. vivax), whereas PCR was 

negative for both P. falciparum and P. vivax. It is possible 

that another Plasmodium species such Plasmodium ovale 

or Plasmodium malariae, that are found in the region, 

may have been present in these samples. The false RDT-

negative sample was identified as P. vivax by PCR. For 

the 129 samples testing positive by both RDT and PCR, 

87 identified the same species as PCR (14 P. falciparum; 

67 P. vivax; 6 P. falciparum/P. vivax). Forty-two (32.6%) 

RDT-positive samples were misclassified with respect 

to species identification, compared to PCR: 36 samples 

were identified as PAN/P. falciparum whereas PCR iden-

tified all these as P. falciparum; 6 samples were identi-

fied as PAN by RDT and PCR identified 5 of these as P. 

falciparum/P. vivax and one as P. falciparum. The sen-

sitivity and specificity of RDT test were 99.2% and 97%, 

respectively, when using PCR as a gold standard.

Light microscopy was used to examine thin films, using 

a “two out of three” consensus result from three trained 

microscopists. Compared with PCR, microscopy misi-

dentified 5 samples out of 319; they were all false positive 

samples; 3 of 5 were identified as P. falciparum and other 

2 samples for P. vivax, while PCR gave a negative result. 

For 162 negative and 131 positive samples (as tested by 

both light microscopy and PCR), 131 samples identified 

the same species as PCR (51 P. falciparum; 77 P. vivax; 

3 P. falciparum/P. vivax). 20 samples identified as posi-

tive by light microscopy were misclassified with respect 

to species, as compared to PCR. 13 samples were identi-

fied as single infections, whereas PCR identified a mixed 

infection (both P. falciparum and P. vivax). 4 samples 

were identified as mixed infection, while PCR identified 

only P. falciparum, and 3 samples were misclassified (P. 

vivax by light microscopy, but P. falciparum by PCR). The 

Fig. 1 Portable “Cloud”-based diagnostic for malaria consisting of a portable ATR-FTIR spectrometer with an attached mobile telephone. The blood 

sample is placed onto the top of the ATR crystal and the IR evanescent wave penetrates a few microns and interacts with the sample, resulting in 

an infrared absorbance spectrum. This is conveyed (along with other data such as patient information and GPS position) to a secure remote server, 

where the spectrum is quality-checked and processed. A diagnostic algorithm finally determines a diagnostic result, which is sent back to a mobile 

telephone. See text for details
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sensitivity and specificity for light microscopy were 100% 

and 97%, respectively.

Diagnostic results by infrared spectroscopy

All diagnostic modelling and validation testing was per-

formed against the gold standard qPCR. Sample spec-

tra from 318 patients were used for building calibration 

models (112 positive and 110 negative samples accord-

ing to PCR testing) and independent validation testing 

(39 positive and 57 negatives samples by PCR). Various 

preprocessing methods and spectral regions were tested 

for the creation of the model and the parameters that 

minimized the cross-validation classification error were 

finally selected. Once the best model was selected, it 

was validated with an independent test set, which had 

not been used in the model development and optimiza-

tion process. Panels 2a and 2b show the probability of 

the samples to be negative, being the samples coloured 

according to the PCA results. PLS-DA achieved 90% 

sensitivity (4 false negatives) and 91% specificity (5 false 

positives). SVM classification performed slightly better 

with 92% sensitivity (3 false negatives) and 97% specific-

ity (2 false positives). The area under the receiver opera-

tion curve (AUROC) for the PLS-DA classification was 

0.93 and for the SVM classification it was 0.98. A per-

mutation test was performed to assess whether cross 

validation errors obtained in the modelling process were 

significant [19] (Fig. 2d). This test compares the classifi-

cation accuracy figures obtained from the real classes 

compared to randomly permuted classes (null model). By 

doing so, one can assess if the errors obtained are differ-

ent from classifications obtained by chance. In this study, 

the AUROCs obtained with the real classes were signifi-

cantly higher than the ones obtained for the permuted 

classes (p < 0.05). The PLS-DA regression vector, which 

is indicative of the correlation (negative or positive) of 

the different IR variables to the presence of the infection, 

has been superimposed as a false-colour scale upon the 

mean raw spectrum from the study over the optimized 

spectral model ranges (Fig.  2e n = 319). These included 

infrared spectral ranges dominated by bands from: pro-

teins and lipids (3140–2770 cm−1; 1470–1355 cm−1) and 

nucleic acids (1185–950 cm−1). The colour code is used 

to evidence the contribution of the different bands to the 

classification, being the “cold” or “warm” colors corre-

lated to the absence or presence of the parasite, respec-

tively. For example, the strong red coloration of the band 

at 1450  cm−1 indicates that this band is correlated to 

the presence of the parasite. This band is assigned to the 

deformation of the  CH2 modes, present in lipids. Thus, 

this suggest that the model is using, among other molec-

ular information, the presence of the lipids to identify 

the infection. Although the technique is label-free and 

the discrimination power is based on the changes on the 

metabolic profiles, the coloration of the bands evidences 

that the model uses changes on the general phenotype to 

predict the presence or absence of the parasite.

Discussion
The paper by Khosmanesh et  al. [15] demonstrated the 

potential of IR spectroscopy for ultra-sensitive detec-

tion of malaria parasites in spiked red blood cell sam-

ples, down to levels equivalent to PCR detection limits. 

The present study was aimed at establishing whether 

the methodologies developed under laboratory condi-

tions can be translated to work with clinical samples in 

a remote regional setting. Part of the demands of this 

translation was the need to process spectral acquisition, 

quality control and diagnostics via “Cloud-based” data 

system.

The ATR-FTIR spectroscopy-based diagnostic dem-

onstrated excellent sensitivity and specificity against the 

PCR gold standard. The support vector machine learning 

algorithm performed better than the PLS-DA modelling 

approaches (AUROC = 0.98 vs 0.93). Empirical testing of 

modelling performance based on sample numbers (Addi-

tional file 9: Fig. S6) indicated that sensitivity and speci-

ficity are likely to improve further with calibration set 

numbers up to n = 500. When applying the SVM classifi-

cation there were three false negatives and two false posi-

tives. One case of misclassification could be accounted 

for; a false-positives classified positive by both micros-

copy and RDT (Pan). It appears this patient was infected 

by a Plasmodium species other than P. falciparum or 

P. vivax, not detected by RDT or by the PCR primers 

employed.

An examination of the regression vectors for the PLS-

DA classification models generated in this study and 

those obtained from laboratory spiking experiments 

by Khosmanesh et  al. showed that the same wavenum-

ber  regions were important for the positive classifica-

tion of malaria in both the field and laboratory studies. 

In the laboratory study, the C-H stretching region (2990–

2770  cm−1) was found to be crucial to discern infected 

from uninfected cells [15], which is explained by the fact 

that this region corresponds to neutral lipids specific to 

the malaria parasites. In the present study lower wave-

number spectral windows (1469–1355; 1185–1006 cm−1) 

were also included in the optimized PLS-DA regres-

sion vector, consistent with molecular changes known 

to occur as a consequence of infection. For example, the 

spectral region 1354–1186 cm−1 contains bands assigned 

to proteins. Protein levels in blood cells decrease in sam-

ples due to the consumption of haemoglobin by malaria 

parasites, and this is detected by spectroscopy [20]. The 

lower wavenumber  region (1185–1006  cm−1) includes 
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bands from nucleic acids shown in the laboratory studies 

[15, 20] to be strongly loaded in models used to discrimi-

nate malaria infected samples.

This study demonstrated the successful operation of a 

Cloud-based diagnostic system based on spectroscopy. 

The importance of this cannot be overestimated because 

it allows operation of the system by workers who are not 

Fig. 2 a Partial least squares discriminant analysis (PLS-DA) prediction plot showing the classification either malaria positive (< 0.5) or negative 

(> 0.5); spectra colour-coded malaria positive (red) or negative (green) by PCR. b Same as in a) except support vector machine (SVM) learning is used 

for the classification. c Receiver operating characteristic (ROC) curves showing the diagnostic of the PLS-DA and SVM classification. d ROC curve 

for data where samples were assigned positive- and negative, based on PCR versus randomized models. e Average spectra over the three spectral 

ranges used for PLS-DA classification. Superimposed is a colour code showing the regression loadings for malaria positive (“warm colours”) or 

negative (“cool colours”) classification for each absorbance value
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trained spectroscopists. Including a quality control step 

in the workflow ensured that only good-quality spectra 

were added to the database to further refine the diagnos-

tic model. Given that positional information is provided 

through GPS data, the system has potential for epide-

miological analysis, and could be used to monitor disease 

distribution and outbreaks. It will also be possible to ret-

rospectively mine the database for other diagnostic infor-

mation that may exist in the spectral information [21]. A 

limitation of the system is that it relies on connectivity to 

a mobile telephone network or the Internet. This disad-

vantage is balanced by the greater commercial security 

for the diagnostic algorithms provided by an encrypted 

cloud-based system, and by the privacy of patient-related 

data it stores. The system can conceivably incorporate a 

“hold mode”, such that the system would save input data 

until connectivity to a telephone network or the Internet 

was established, and then upload the data for processing 

and diagnoses.

Other potential drawbacks have been identified. For 

example, it has been shown that anticoagulants used in 

blood collection tubes can affect ATR-FTIR spectros-

copy-based malaria diagnosis [20], depending on the vol-

ume of blood that is drawn into the collection tube and 

the type of anticoagulant employed. Only one type of 

anticoagulant (EDTA) was employed in this study, which 

did not yield spectral bands that could confound malaria 

diagnosis. It is proposed that the volume of blood was 

sufficient to dilute the anticoagulants. The use of metha-

nol to fix red blood cells followed the methodology estab-

lished in the laboratory [15]. Fixing the samples provided 

a convenient method for ensuring consistent samples 

could be transported to the central processing station in 

Khon Kaen. However, this is not suitable for POC malaria 

diagnostics using ATR-FTIR spectroscopy. Ideally, a POC 

test should employ finger-prick blood volumes that can 

be measured directly at POC, rather than venous samples 

processed in a central laboratory as reported here. It has 

also been demonstrated [20] that malaria parasites can 

be detected with parasitaemia levels < 0.1% directly from 

unfixed aqueous blood samples. This approach, requir-

ing less than 200  mL of blood, could easily be used in 

POC clinical settings, and would be particularly suited to 

diagnosing malaria in infants. Another relevant develop-

ment is the ability to use spectroscopy to measure blood 

chemistry parameters such as haemoglobin and urea 

simultaneously with the malaria diagnostic measurement 

[21]. As patients infected with malaria often present with 

anaemia, an accurate, rapid and inexpensive POC deter-

mination of blood haemoglobin (Hb) levels would greatly 

facilitate patient care and management.

The laboratory study [15] in which the experimental 

procedure for this trial was developed achieved detection 

sensitivities similar to PCR-based approaches. This trial 

was not designed as a test of sensitivity per se, as this 

will be tested in future trials. An appropriate approach 

for specifically assessing the performance of the spec-

troscopic approach in detecting asymptomatic carri-

ers would be to conduct tests in regions where malaria 

is endemic but the majority of people are asymptomatic. 

This possibility is being investigated in other malaria 

endemic regions, which fulfils the above criteria. The 

notion would be to test every member of a community 

(e.g. a village) with ATR-FTIR spectroscopy and PCR 

in parallel. Spectra of samples from asymptomatic (and 

symptomatic) carriers could then be used to develop cali-

bration models and subsequent validation testing.

Conclusions
Overall, it was demonstrated: (i) that ATR-FTIR spec-

troscopy has the potential to be developed as an efficient 

and reliable malaria diagnostic tool at POC under tropi-

cal field conditions; and (ii) that spectra could  be ana-

lysed via a Cloud-based system, and the data fed back 

to the user; both aspects carry significant potential. The 

fact that the entire procedure requires only a portable 

spectrometer and a mobile phone makes mass screen-

ing a definite possibility. Indeed, the cloud-based analy-

sis implies that the health care personnel do not need to 

be skilled in anything else other  than collecting blood. 

Once the procedure has been optimized with blood 

drawn from a fingerprick rather than blood collected in 

tubes, the approach will be even easier to implement. 

The machine can be easily transported in a backpack, 

and power can be supplied from a portable/foldable solar 

panel, making the penetrance of the system into remote 

areas feasible. Connection to the cloud can be postponed 

after data acquisition. Centralized data analysis will allow 

investigators to shed light on the epidemiology of malaria 

and any other disease agents for which an IR signature is 

available.

The combination of accessibility to mass screening, 

high sensitivity and selectivity, low logistical  require-

ments and portability, makes this approach a potentially 

outstanding tool in the context of malaria elimination 

programmes.
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Thresholds are defined taking into account the average value and 

standard deviation of the distribution. If the relative concentration of the 

component in the spectra is outside of the threshold, the spectrum does 

not pas the QC. 
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in-house to process spectra received by the “Cloud” diagnostic system. 
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Additional file 8: Fig. S5. Analytical performance of qPCR for P. falciparum 

and P. vivax. (a) calibration data for qPCR with P. falciparum; (b) calibration 

data for qPCR with P. vivax; (c) Real time PCR precision data. Each measure-

ment in the standard curves are the mean of 9 measurements resulting 
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Additional file 9: Fig. S6. Using field data from the pilot trial the effect of 

sample size on classification accuracy was studied. Cross validation clas-
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PLS-DA models with increasing number of samples in the calibration data 
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