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ABSTRACT: Experimental and computational methods of infrared microspectroscopy
(IRI-MSP) and infrared spectral mapping (ISM) are presented. These methods are
subsequently applied to the analysis of cirrhotic liver tissue. The sensitivity of infrared
spectral mapping toward spectral changes caused by disease will be demonstrated. In
addition, the excellent agreement between ISM data and histopathological information
will be discussed. © 2000 John Wiley & Sons, Inc. Biopolymers (Biospectroscopy) 57: 282–290,
2000
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INTRODUCTION

IR microspectroscopy (IR-MSP), also referred to
as IR microscopy, offers the opportunity to collect
spectral data from entities the size of single cells
or from pixels of tissue of similar size. This capa-
bility, coupled with the ability of IR spectroscopy
to distinguish between different tissue types and
between the states of health, maturation, and
differentiation of cells, has opened the doors for
applications of IR spectroscopy in pathology and
cytology.1,2 For example, we demonstrated in two

recent articles that IR-MSP distinguishes be-
tween normal, cirrhotic, and cancerous liver tis-
sue specimens. A detailed correlation between
histopathological, immunohistochemical, and
spectral analyses of these samples provided in-
sight into the changes in chemical and biological
compositions that occur when normal tissue
transforms into diseased tissue.3,4 In those two
articles we dealt with spectral information col-
lected from individual spots with distinct patho-
logical information, but here we present data col-
lected as IR spectral maps from large sections (ca.
7 3 2 mm2) of tissue and discuss the pathological
information that is contained in such maps.

IR spectral maps can be collected using an IR
microspectrometer with a single detector element
and an adjustable microscope aperture to select
an area from which spectral data are to be ob-
tained. Subsequently, the sample is moved in a
raster pattern in increments of about the same
size as the optical aperture.5,6 In this way a map
of IR spectral data may be acquired. This method
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is commonly referred to as IR spectral mapping.
Alternatively, the optical aperture may be omit-
ted, and the single detector element can be re-
placed by an array detector. In this case, the
spatial resolution is determined by the size of
each individual detector element; spatial resolu-
tions of about 4–10 mm have been achieved.7,8

Following previous literature, we refer to this
methodology as IR spectral imaging. We contrast,
in this context, the terminology IR spectral imag-
ing against IR imaging as described by Freeman.9

“Thermal” pictures of tissue or organs were re-
ported in the IR images without the use of a
spectrometer or any other wavelength discrimi-
nating element.

In this article we concentrate on three distinct
areas. The first is a summary of our data acqui-
sition strategy, and the second is a discussion of
the data analysis method to create the IR spectral
maps. This method differs significantly from the
mathematical approaches used by others5,6 to ob-
tain spectral maps in that our approach empha-
sizes compositional (chemical) changes that occur
between microscopic areas of tissue. Therefore,
our approach is ideally suited for correlation with
histochemical data. In the third area we demon-
strate the power of this approach by analyzing
sections of cirrhotic liver tissue in which spectral
changes on the microscopic level agree extremely
well with known histopathology.

MATERIALS AND METHODS

Sample Preparation

Samples are prepared as follows for spectral tis-
sue mapping. A 4-mm tissue section was cut from
paraffin-embedded tissue blocks, mounted on a
glass slide, and stained with hematoxylin and
eosin (H&E). Next a 6-mm tissue section was cut
and mounted onto a barium fluoride disk (19-mm
diameter) or a rectangular (19 3 38 mm2) barium
fluoride window. Sections were subsequently
deparaffinized, rehydrated, and allowed to air
dry. Other groups used tissue sections produced
from frozen blocks, and they obtained spectra
that are essentially identical to the spectra re-
ported here.6

Regions of interest were identified using the
H&E stained section and a high quality (visible
range) microscope. Corresponding features were
identified by anatomical landmarks on the un-
stained tissue sections; subsequently, the tissue

section was transferred to the IR microscope and
aligned using the anatomical landmarks.

Data Acquisition

Data presented here were collected via a Bruker
IRScope II IR microscope (Bruker Optics, Inc.,
Billerica, MA) equipped with a liquid nitrogen
cooled HgCdTe detector, 153 and 363 IR objec-
tives, and a CCD camera for capture of visual
images. The IRScope II was coupled to a Bruker
Vector 22 Fourier transform IR (FTIR) spectrom-
eter. The combination of these instruments,
henceforth referred to as the IR microspectrom-
eter, was controlled by a personal computer
(Gateway 2000) incorporating a 200-MHz Pen-
tium processor running under OS/2 Warp. Data
collection was carried out using Bruker’s propri-
etary OPUS (version 3.0) software.10

The IRScope II and the FTIR spectrometer
were continually purged with dry air from self-
contained air purifiers (Whatman, Inc.) The work-
ing area of the IRScope II, including the focal
plane, was enclosed in a plastic skirt to provide
easy access and the possibility of good purging.

The IR microscope permitted the selection of
rectangular apertures of between 5 and about 200
mm on edge. However, because of light through-
put limitations, apertures smaller than 20 3 20
mm2 were found to be impractical. The data re-
ported here were collected for a square aperture
that was 75, 50, or 33 mm on edge. The selected
aperture was calibrated against a standard, rect-
angular aperture image calibrated in 10-mm in-
crements. The aperture sizes reported are
thought to be accurate to about 63 mm.

The IR mapping data were collected by scan-
ning the computer controlled microscope stage in
a raster pattern in increments corresponding to
the aperture size. At each data point a preset
number of interferograms was coadded, depend-
ing on the aperture selected: ;100 interferograms
for 33 3 33 mm2, 32 interferograms for 50 3 50
mm2, and 6 interferograms for 75 3 75 mm2 were
found to produce the signal-to-noise (S/N) ratio
required for subsequent analysis. Interferograms
were collected double sided at a resolution of 4
cm21 with a zero-filling factor of 4, which are
spectral data points spaced at about 0.9645 cm21.
The quality of data is of the utmost important for
the subsequent analysis. The spectrum shown in
Figure 1 is typical of the quality of data required
for subsequent analyses; furthermore, it exhibits
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the typical shape of tissue spectra of between
about 700 and 4000 cm21.

Spectral Data Manipulation: Preprocessing

For mapping experiments, the Bruker OPUS soft-
ware10 creates and stores one large file that con-
tains all spectra for a given mapping area. Indi-
vidual spectra for each pixel point are extracted
from this map by a procedure called “postrun
extraction”. The extracted spectra were converted
to a more compact data format developed in our
laboratory and stored for further processing that
is referred to as “data preprocessing”. This pre-
processing includes expansion, water vapor sub-
traction, background correction, smoothing,
straight-line generation, and storage in a compact
format suitable for subsequent calculations.
These operations are now discussed in more de-
tail.

Figure 1 shows a typical raw spectrum for a 50
3 50 mm2 section of 6 mm thick liver tissue. The
overall spectral shapes (i.e., the strong scattering
background above 2000 cm21, the broad NH and
OH stretching vibrations, and the strong amide I
and II peaks at 1550 and 1650 cm21, respectively)
are typical of spectra of most cells and tissues.

Although the microspectrometer is enclosed
and purged continuously, the water vapor vibro-
tational spectrum may interfere with the amide I
band of the cells and tissues. Because the sample
spectrum is ratioed against a water vapor back-
ground spectrum stored as the I0 trace for the

computation of transmission or absorption spec-
tra, the resulting water vapor interference is gen-
erally smaller than the amide I peak. However,
mapping experiments that take more than 10 h
often exhibit positive or negative water vapor
spectral features because it is virtually impossi-
ble to maintain a constant humidity level in the
sample area of the microspectrometer over that
length of time. This problem is particularly sig-
nificant if data are collected at a resolution equal
to or better than 2 cm21.

Therefore, we developed an algorithm to auto-
matically correct the water vapor background.
The discussion of this part of this program is
outside the intended scope of this article and will
be reported in the future.11

After water vapor subtraction, data are back-
ground corrected by an algorithm modeled after
the “rubber band” method contained in the
Bruker OPUS package.10 Conceptually, this algo-
rithm can be described as stretching a rubber
band from below a spectrum and drawing a base-
line between all points where the rubber band
touches the spectrum. For the spectral region be-
tween 800 and 1800 cm21, the background
changes uniformly as shown in Figure 1; there-
fore, the rubber band algorithm fits a straight line
between the two lowest points of the spectrum at
800 and 1800 cm21. It is clear that any back-
ground correction may introduce errors in band
shapes and intensities; however, we found that
the straight-line background correction does not
introduce sigificant artifacts, particularly because
most of the subsequent data analysis is performed
in second derivative space, in which broad back-
ground features are eliminated.

The spectral data may be smoothed by a 5-, 9-,
15-, or 25-point Savitzky–Golay smoothing func-
tion.12 Given the width of the peaks in typical
tissue data, the loss of resolution is negligible.
Finally, a straight-line generator is available to
remove any remaining substrate peaks, for exam-
ple, if polyethylene is used as a sample substrate.
For barium fluoride or zinc selenide windows, the
straight-line generator is not utilized.

The preprocessing program requires about
0.2 s of data processing time for each spectrum on
a 450-MHz Pentium II processor. The iterative
water vapor subtraction, which may require 100
or more fitting cycles, increases this processing
time to about 1 s/spectrum. The program operates
completely unsupervised and has been used to
process well over 250,000 individual spectra.

Figure 1. A raw IR-MSP spectrum of a 50 3 50 mm2

section of 6 mm thick liver tissue at 4 cm21 spectral
resolution for six coadded interferograms.
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Spectral Data Manipulation: Spectral Correlation
and Clustering

Spectral mapping or spectral imaging data are
obtained in the format of a “spectral hypercube” of
N spectral vectors, each consisting of M wave-
numbers versus the intensity values. Here N is
the product of Nx columns and Ny rows of pixels.
This is shown schematically in Figure 2.

Several methods exist to convert this hyper-
cube into a 2-dimensional visualization. The eas-
iest way to visualize the spectral data from the
hypercube is to present “horizontal” slices
through the hypercube, which displays intensity
values at a given wavenumber for all spectral

vectors as a false color representation. The inten-
sity value of each spectrum is assigned a color
code and displayed against the X and Y coordi-
nates of the spectral element. By examining dif-
ferent “color slices” (i.e., the intensities at differ-
ent spectral elements), variations in the chemical
composition can be detected for various pixels in
the hypercube.

Such color slice displays can be coupled to soft-
ware that permits comparison of intensity ratios
or ratios of integrated band intensities. In this
manner, confounding factors such as variations in
thickness of the sample can be accounted for,
because data can be normalized to a given spec-
tral region. In tissue spectroscopy the integrated
amide I intensity may be used advantageously as
an internal standard of intensities.

More sophisticated ways to analyze spectral
hypercube data have been reported as well.5,6,13

Among them are principle component (PC) anal-
ysis based methods utilized by Lewis13 and Lasch
and Naumann.5 In this approach the magnitude
of scores corresponding to the different loading
vectors are color coded and plotted against the X
and Y pixel coordinates. This method has the
advantage of emphasizing the change in spectra,
because PC analysis is designed to emphasize
spectral variations; however, the resulting load-
ing vectors are physically meaningless. This may
be alleviated by a computational method of “suc-
cessive transformation factor analysis” that
transforms the spectral vectors of maximal
change to physically significant basis vectors of
chemical components by relaxing the constraints
of orthogonality on the loading vectors.14

We present a data analysis method that con-
sists of establishing the similarity, or relatedness,
of spectra and establish for each class of related
spectra the “most characteristic” spectrum. The
goal of the data processing effort is to produce an
easily interpretable, false color map from the
spectral data that may be correlated to the results
obtained from standard pathology and histopathol-
ogy. As such, the data manipulation program re-
duces the data from a 4-dimensional spectral dis-
play into a more manageable, 2-dimensional map.
This process is shown schematically in Figure 2.

The spectral data set is analyzed for the simi-
larity between all spectra. This similarity is ex-
pressed by a similarity index via one of two meth-
ods: one of them is simply the Euclidean15

distance between spectra, defined as [eqs. (1) and
(3) are given in Ref. 15 with several square and
square root symbols misplaced]

Figure 2. A schematic representation of the data
reduction algorithm. Top: A 4-dimensional representa-
tion of raw data in which the dimensions for each pixel
point are pixel coordinates X and Y, the wavenumber
axis, and the intensity axis. Bottom: A false color rep-
resentation of the same spectral data.
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CSR 5
SiSiRi

ÎSi~Si!
2ÎSi~Ri!

2 @i 5 1· · ·M# (1)

where Si is a 1-dimensional vector of spectral
intensities of the sample spectrum for M equidis-
tant data points and Ri is a corresponding “refer-
ence” spectral vector. In this approach every spec-
tral vector serves as a reference to all other
spectra (i.e., the matrix CSR contains N2 entries,
where N is the total number of spectra in a data
set) with

N 5 Nx z Ny (2)

The Si and Ri need to be normalized; therefore,
the “overlap” CSR between a spectrum and a ref-
erence ranges from 1.0 for a perfect fit to 0.0 for no
fit.

Alternatively, unnormalized but mean-cen-
tered vectors Si and Ri may be used. The resulting
overlap in this case is referred to as the “vector
correlation” and is given by15

CSR 5
Si~Si 2 S# !~Ri 2 R# !

ÎSi~Si 2 S# !2ÎSi~Ri 2 R# !2
(3)

Here S# and R# are the average values of each
vector. We use the vector correlation algorithm
mostly with second derivative data, which are
approximately zero centered. The second deriva-
tives were used by many research groups (e.g.,
Helm et al.)16 to correlate spectra, because second
derivatives are very sensitive to the number and
positions of component bands in broad spectral
envelopes.

Because the matrix element CSR is calculated
for all pairs of spectra, the computations involved
are quite time consuming. To speed up the com-
putations, all sums in the denominator of eqs. (1)
or (3) are calculated once for each spectrum and
stored with each spectral vector. Consequently,
only the inner product [the numerators of eq. (1)
or (3)] of the vectors needs to be recomputed for
each element. Furthermore, because CSR is sym-
metric, only the upper half of it needs to be com-
puted. On a moderately fast personal computer,
the inner product calculation can be accomplished
in about 0.5 ms for two 1000-point vectors; thus,
computation of the CSR matrix for a 2000 spectra
data set may take about 20 min.

Subsequently, the CSR matrix is analyzed as
follows to identify related spectra and to deter-

mine the “characteristic spectra.” The CSR matrix
is scanned for the one column with the highest
average value of C. The spectrum A correspond-
ing to this column is referred to as the first char-
acteristic spectrum. The elements (scores) in col-
umn A of the CSR matrix [i.e., the elements CSA (S
5 1 z z z N)] are sorted by decreasing magnitudes.
These scores exhibit distinct “steps” when a spec-
trum S correlates less well with spectrum R than
previous spectra. The position of the first step,
determined computationally via differentiation of
the score versus the spectral number, is used as a
cutoff point to select spectra that fall into the
family of spectra related to the characteristic
spectrum A. Subsequently, all rows and columns
of spectra related to spectrum A are zeroed in the
CSR matrix. This process is repeated until the
entire CSR matrix is zero.

The advantage of this computational approach
is that it operates unsupervised: no prior knowl-
edge of reference spectra of any tissue type is
required, and characteristic spectra and member-
ship of the families of spectra identified by the
characteristic spectra are established, regardless
of the number of different spectral families and
the differences between spectral families. The
method described here uses a large portion of the
spectrum, rather than a few selected points, re-
gions, or integrated regions, to determine
whether spectra are related or not. Because the
differences between spectra of normal and dis-
eased tissue are generally small, this method of-
fers the advantage of emphasizing differences in
the overall shape, rather than selected intensi-
ties, for the discrimination of spectra.

In the final step all spectra in the same family
are assigned a color code, and small, colored
squares are drawn at the pixel coordinates of all
spectra belonging to the same family to produce
our false color maps.

RESULTS AND DISCUSSION

We used the data acquisition and manipulation
methods described here to analyze a number of
different tissues and a number of different areas
of each tissue. Samples were derived from healthy
and diseased prostate, liver, lung, and cervix
biopsies. We demonstrated the sensitivity and
specificity of the spectroscopic and computational
methods to distinguish tissue types and states of
disease.

The spectra of the different tissue types (con-
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nective tissue, smooth muscle, glands, ducts,
blood vessels, etc.) encountered in tissue mapping
experiments differ in the total intensity, the
amide I/amide II intensity ratio (indicative of
variations in structural vs. metabolic proteins),
the protein/nucleic acid ratio (indicative of cell
proliferation), and other factors. In addition, large
spectral variations due to the presence or absence
of glycogen may be observed in certain tissues.
However, the differences are generally quite
small, particularly if the spectra are collected
from relatively large areas such as 75 3 75 mm2.
Because cells in the tissues reported below may
cover an area as small as 75–300 mm2, the se-
lected aperture nearly always samples more than
one cell and frequently more than one cell type.
This averaging causes homogenization of ob-
served spectra.

Nevertheless, even at a pixel area of 75 3 75
mm2, an enormous amount of tissue architectural
detail can be discerned from the IR false color
maps. Figure 3 shows data of a large section (7.5
3 2.3 mm2) of cirrhotic liver tissue mapped at a
spatial resolution of 75 3 75 mm2. Thus, 3000 (100

3 30) pixels were collected at a total data acqui-
sition time of about 5 h.

Liver cirrhosis is a condition that arises from
chronic metabolic, toxic, microbial, viral, circula-
tory, and neoplastic hepatic injury. The result is a
destruction of the normal hepatic architecture
that is replaced by regenerating hepatocyte nod-
ules that are encompassed by fibrous septa. The
fibrosis develops in response to inflammation (in-
flammatory cells) or direct toxic insult. Because
the hepatic architecture is distorted, there is nec-
essarily a reorganization of vascular and biliary
connections. As a result, a common feature of
cirrhosis is the presence of inflammatory cells and
proliferating bile ductules.

Figure 3(A) is a composite of 10 individual pho-
tomicrographs of a section of cirrhotic liver tissue
measuring about 7.5 3 2.3 mm2. This panel dis-
tinctly shows the fibroconnective tissue bands
that encapsulate the liver nodules. Figure 3(B)
shows the same tissue area analyzed by IR spec-
tral mapping using the method defined by eq. (3),
which is the most sensitive to relatively subtle
spectra changes. The correspondence of the tissue

Figure 3. (A) A photomicrograph of a 7.5 3 2.3 mm2 section of H&E stained cirrhotic
liver tissue. (B) A false color IR-MSP map of cirrhotic liver tissue imaged at 75 3 75
mm2 spatial resolution with the vector correlation method. (C) A false color IR-MSP
map of cirrhotic liver tissue imaged at 75 3 75 mm2 spatial resolution with the
Euclidean distance method. (D) Characteristic spectra from (B).
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architectural features observed visually [Fig.
3(A)] and in the IR spectral map [Fig. 3(B)] is
immediately obvious.

Because the image analysis method utilized
here yields characteristic spectra of physical sig-
nificance, it is interesting to compare these spec-
tra for the anatomical regions shown. The vast
majority of the 3000 pixels can be characterized
by one of four spectra [Fig. 3(D)]. These spectra
are characteristic for high glycogen hepatocytes,
low/medium glycogen, connective tissue, and cel-
lular components. The assignment of these spec-
tra was accomplished by studies of model com-
pounds and spectra of individual, well-defined
cells.

This analysis indicates that the regions around
the fibrous septa show relatively homogeneous
spectral patterns, which are shown in purple in
Figure 3(B); however, the spectra observed in the
fibrous tissue areas are not those usually associ-
ated with connective tissue [collagen, cf. trace c,
Fig. 3(D)] but rather with cellular material [trace
d, Fig. 3(D)] such as bile ductules and inflamma-

tory cells. At this spatial resolution (75 3 75 mm2)
the cellular components, rather than the fibrocon-
nective tissue, dominate the averaged spectral
pattern observed. However, at better spatial res-
olution more detailed spectral information is
available (see below).

Figure 3(C) shows the same data set analyzed
via the Euclidean method [eq. (1)] in the original
spectral, rather than second derivative, space.
This analysis method is more sensitive to the
relative intensity variation of the spectra; there-
fore, it is particularly sensitive to glycogen vari-
ations. A number of nodules have extremely high
glycogen content (dark blue), medium glycogen
content (light blue), and low or no glycogen (gray).
The glycogen content was not detectable in the
H&E stained section, but it was demonstrated via
a periodic acid/Schiff base stain specific for glyco-
gen.3 This method of analysis is less sensitive to
band shapes than to overall intensity variations
between the amide I and low frequency regions;
thus, it does not distinguish low glycogen hepato-

Figure 4. (A) A photomicrograph of a 2.5 3 2.3 mm2 section of H&E stained cirrhotic
liver tissue. The rectangular area is the section imaged in Figure 5. (B) A false color
IR-MSP map of cirrhotic liver tissue imaged at 50 3 50 mm2 spatial resolution with the
vector correlation method. (C) A false color IR-MSP map of cirrhotic liver tissue imaged
at 50 3 50 mm2 spatial resolution with the Euclidean distance method. FC, fibrocon-
nective tissue; IB, inflammatory and bile duct proliferative tissue.
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cytes from the spectral pattern found in the fi-
brous materials.

Figure 4 shows the left quarter of Figure 3
imaged at 50 3 50 mm2 pixel size. Figure 4(A) is
again the H&E stained visual image, which is
about 2.5 3 2.3 mm2 in size. Figure 4(B) shows
the IR spectral map obtained using the vector
correlation method. At this spatial resolution one
can observe the connective tissue spectrum in the
fibroconnective areas (FC, gray) and the inflam-
matory cell and bile duct components in the large
area between liver nodules (ICB, purple). We an-
alyzed this data set using the Euclidean distance
method and found, as in Figure 3, that low glyco-
gen and connective tissue cannot be distinguished
reliably; however, this method yields a distribu-
tion of the glycogen-rich hepatocytes in a given
lobule.

Figure 5 shows a lower left liver nodule (rect-
angle in Fig. 4) imaged at 33 3 33 mm2 spatial
resolution. At this resolution, a number of novel
features are observed. For example, in the fibro-
connective septa, there is more heterogeneity of
the spectra patterns, which is in agreement with
various staining results that demonstrate the
presence of inflammatory cells and bile duct pro-
liferation. Furthermore, in the liver nodule shown
in the lower half of Figure 5, the spectral features
of the collageneous matrix in which the hepato-
cytes are embedded become visible. This aspect is
discussed below.

Because the increased spatial resolution re-
duces the averaging in the observed characteris-

tic spectra, a larger number of these was ob-
tained. The characteristic spectra corresponding
to Figure 5 are shown in Figure 6. The top four
traces shown in Figure 6 depict the spectra of
liver sections of various glycogen content. The
spectral region between 900 and 1150 cm21 is
dominated by the COO stretching and COOOH
deformation vibrations of glycogen. Spectral trace
D exhibits a distinctive collagen shoulder at 1202
cm21 (also observed in trace G). Thus, we con-
cluded that this spectrum is that of hepatocytes
averaged with the connective tissue matrix into
which the hepatocytes are embedded. This trace
is observed for the light blue areas in the lower
liver lobule in Figure 5.

Traces E and F in Figure 6 present the spectra
observed in the fibroconnective tissue areas. How-
ever, these spectra were previously associated
with cellular material such as inflammatory cells;
thus, we believe that these spectral traces are due
to the bile duct proliferation and inflammatory
response that were demonstrated via special his-
tochemical staining procedures.3,4 Traces G–K in

Figure 5. (A) A photomicrograph of a 0.5 3 0.3 mm2

section of H&E stained cirrhotic liver tissue. (B) A false
color IR-MSP map of cirrhotic liver tissue imaged at 33
3 33 mm2 spatial resolution with the vector correlation
method.

Figure 6. Characteristic spectra of Figure 5. for
glycogen-containing hepatocytes (traces A–C), a hepa-
tocyte/collagen mixture (trace D), cellular materials
(inflammatory and bile duct cells, traces E, F), collagen
(traces G, H), and collagen with minute amounts of
glycogen-containing hepatocytes (traces I, K).
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Figure 6 show the spectra of the edges of the
fibroconnective septa with various amount of he-
patocyte spectra added. Thus, these spectra are
those of collagen (traces G and H) with small
amounts of glycogen added (traces I–K).

CONCLUSIONS

We demonstrated that IR spectral maps contain
an enormous amount of information on the nature
of the cells that make up a given pixel in tissue.
The method of analysis introduced here is partic-
ularly suited for correlating the observed spectra
with the pathological features of the tissue, be-
cause real, characteristic spectra are derived, not
abstract combinations of spectral features (such
as principal components).
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