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We report on efficient frequency upconversion in Er31-doped fluoroindate glasses. The process is
observed under 1.48mm laser diode excitation and results in the generation of strong blue~;407
nm!, green~;550 nm!, and red~;670 nm! radiation. The main mechanism that allows for
upconversion appears to be the energy transfer among Er31 ions in excited states. The results
illustrate the large potential of this new class of glasses for photonic applications.
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Presently there is a great interest in luminescent mate
als for efficient frequency conversion of infrared radiatio
into visible light. Among the mechanism5 that have been
exploited for upconversion, stepwise excited state absorpt
~ESA! and energy transfer~ET! involving rare earth~RE!
ions in a solid may present very large efficiencies.1–6 These
phenomena are useful for detection of infrared radiation
changing this light to the visible range where detectors a
more efficient. Also, the operation of upconversion lase
that emit in the blue-green region is another attractive app
cation to obtain short-wavelength sources that can
pumped with diode lasers.

The Er31 ion is perhaps the most studied RE ion due t
its laser transition, which is also exploited for optical ampl
fication at 1.55mm.7 For this application, ESA and ET are
deleterious effects that may affect the performance of t
amplifier. On the other hand, the studies of upconversi
processes in Er31-doped materials are of large interest be
cause Er31 exhibits strong fluorescence in the visible an
infrared regions, and these transitions can be enhanced b
proper choice of the host material.8

Among the new materials available to date, the fluoroin
date glasses are emerging as a promising group of hal
glasses for photonic applications.9–13 These glasses presen
high transparency from;200 nm to 8mm, are resistant to
atmospheric moisture, and are capable of incorporating la
concentrations of RE ions to the matrix. Recent studies11–13

have shown their large potential to be used as optical co
verters, laser hosts, or optical amplifiers, because of t
lower multiphonon emission rates and higher fluorescen
efficiencies for the doping RE ions than is observed whe
they are doping other glasses.

In this letter, we report, for the first time to our knowl-
edge, an efficient CW pumped infrared-to-visible upconve
sion in Er31-doped fluoroindate glass. The present study al
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offers useful information for the development of visible la-
sers pumped by infrared laser diodes.

The samples used have the following compositions:
(mol %) 39-x InF3; 20 ZnF2; 16 BaF2; 20 SrF2; 2 GdF3;
2 NaF; 1 GaF3; x ErF3 (x51,2,3). They were prepared
following the procedure given in Ref. 10. Briefly, InF3 was
obtained by fluoration in In2O3 at 400 °C with NH4F and HF
in a platinum crucible. Then, all fluoride components were
mixed and heated in a dry box under argon atmosphere a
700 °C for melting and 800 °C for finning. After this process,
the melt was poured and cooled into a preheated brass mol
The samples obtained have good optical quality and volume
of a few cubic centimeters.

The absorption spectra show broad features that can b
identified with transitions from the ground state to the ex-
cited states of the Er31 ion. The positions of the bands and
their relative intensities agree with previous reports in other
materials.1–6,8~a!The spectra obtained for the three samples
studied are similar except for the bands intensities and thei
linewidths, which are dependent on the Er31 concentration.
The bandwidths of several Angstroms observed are due t
the inhomogeneous broadening caused by the crystallin
field.

Continuous-wave upconversion fluorescence measure
ments were performed using a diode laser emitting at 1.48
mm as the excitation source. The sample fluorescence wa
dispersed by a 0.25 m grating spectrometer and detected by
photomultiplier using either a lock-in or a digital oscillo-
scope. All measurements were performed at room tempera
ture.

Figure 1 shows the upconversion fluorescence spectrum
of one sample under 5.6 mW excitation (;170 W/cm2).
The observed emissions correspond to transitions in th
Er31 ions from the excited states to the ground state. The
emissions in the visible range correspond to the following
transitions: 2H9/2→4I 15/2(;407 nm); 2H11/2→4I 15/2
(;530 nm); 4S3/2→4I 15/2(;550 nm); and 4F9/2→4I 15/2
(;670 nm). The lines at;550 and;670 nm are readily
visible to the naked eye. Broad spectral features in the regio
;780 to;900 nm corresponding to4I 9/2→4I 15/2 ~;808 nm;
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;827 nm!and4S3/2→4I 13/2 ~;854 nm!were also observed,
but their intensities are smaller than the visible transitions

The spectra were analyzed with respect to their pum
power dependence and temporal behavior. To analyze
results, we first note that for any unsaturated upconvers
mechanism, the fluorescence signal,I s , will be proportional
to some power,n, of the excitation intensity such thatI s
}I n, wheren52,3,4,... is thenumber of photons absorbed
per unconverted photon emitted. In our experiments, the
pendence of the fluorescence signal on the excitation int
sity was such that 3.6,n,3.9 for the emission at 407 nm
2.4,n,2.7 for the 550 and 670 nm bands; 1.7,n,2.0 for
the 808 and 872 nm bands, and 2.4,n,3.3 for the 854 nm
emission. The data for one of the samples are shown in F
2. From the intensity dependence observed and the wa
length of the emitted radiations, we conclude that four las
photons are involved in the 1.48mm to 407 nm conversion,
three laser photons participate in the 1.48mm to 550 nm,
1.48 mm to 670 nm, and 1.48mm to 854 nm conversions,
and two incident photons produce the 1.48mm-to-808 nm
and 1.48mm to 827 nm upconversions. The deviations fro
the exactn values are due to the strong absorption at 1.
mm and the absorption of the unconverted fluorescence,

FIG. 1. Upconverted fluorescence in the visible spectrum. The excitat
wavelength was 1.48mm in resonance with the transition4I 15/2→4I 13/2
~sample withx53!. The intensities of~b! and ~c! have been multiplied by
50 and 40, respectively.
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because the non-radiative decay from higher lying states t
the fluorescent states may also contribute to the intensities o
the observed spectral lines.

Figure 3 shows the relevant Er31 energy levels together
with two possible upconversion processes and the observe
fluorescence lines.

Different processes may lead to the population of highly
excited Er31 states after excitation in the near infrared.1–6

These processes rely either on multistep ESA or ET betwee
Er31 neighbors. The ET process in which an excited ion
nonradiatively transfers its energy to an already excited
neighbor is one of the most efficient mechanisms, and ha

n

FIG. 2. Fluorescence output intensity as a function of the input laser inten
sity ~sample withx52!. Straight lines with different slopesn are obtained
for each wavelength:~a! n53.6 ~407 nm!;n52.7 ~547 nm!;n52.4 ~662
nm!; ~b! n51.8 ~808 nm!,n51.8 ~827 nm!, andn53.3 ~854 nm!.
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been observed in a larger number of systems including fl
oroindate glasses.12,13 This mechanism can arise from elec
tric multipole or exchange interactions, and its rate consta
depends on the ion–ion separation. Here, we expect that
is the dominant process because of the large Er31 concentra-
tion in our samples, and because the intermediate ESA s
(4I 13/2→2H11/2) is a two-photon transition with small prob-
ability to occur due to the weak laser intensity used. Ther
fore, the most relevant pathway for upconversion initiate
with the transition4I 15/2→4I 13/2. Afterwards, ET between
two excited Er31 ions at the4I 13/2 level will take one ion to
the 4I 9/2 level. This step is followed by two other successiv
transfer processes from ions at the4I 13/2 state, which result in
the excitation to the higher levels4G9/2,

4G11/2, and
3H9/2. After nonradiative decay to the states
2H11/2,

4S3/2,
4F9/2, and

4I 9/2, radiative transitions to the
ground state give rise to the observed upconverted visib
fluorescence. The infrared emissions are due to transitio
4I 9/2→4I 15/2 and

4S3/2→4I 13/2.
To characterize the temporal evolution of the signal

another series of experiments was performed. The laser be
was chopped at 8 Hz and the fluorescence was observed w
a time resolution better than 1 ms. The signal correspondi
to the various upconverted emissions grew to their maximu
value in t r,15 ms and decay intd,6 ms. In general, the
rise and decay times decrease for increasing concentratio
and for the range of Er31 concentrations studied,td and t r
change up to;50%.

FIG. 3. Simplified energy levels scheme for Er31 in the fluoroindate glass.
The downward arrows indicate the observed upconverted fluorescence
the curved arrows on the right side represent energy transfer. The let
beside the straight arrows correspond to the following spectral lines:A
(;530 nm); B(;550 nm); C(;670 nm); D1(;808 and;827 nm!;
D2(;854 nm); andE(;407 nm).
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In order to understand the observed behavior, we firs
recall that the efficiency of upconversion depends on th
probability of ESA or ET between adjacent excited ions, as
well as the quantum efficiency of the emitting level. By ei-
ther process, the dynamics of the upconversion signals d
pends on the lifetime of the intermediate excited states in
volved. For the samples used, the lifetime of the state
2H9/2,

4S3/2,
4F9/2, and

4I 11/2 were reported in Ref. 12.
The values obtained for the same range of Er31 concentra-
tions were t(2H9/2);15–20 ms, t(4S3/2)586–573 ms,
t(4F9/2)5302–645ms, and t(4I 11/2)510.6–9.4 ms. The
lifetimes of the states4I 9/2 and

4I 13/2 were not measured, but
on the basis of the results for other host materials,1–6,8~a!we
expect that they are of the same order of magnitude a
t(4I 11/2). Such long lifetimes are determined by the mul-
tiphonon relaxation rates, which are small because of th
small phonon energies associated with the fluoroindate ma
trix. Thus, considering that the states4I 9/2 and

4I 13/2 are
likely to participate in the upconversion processes, we con
clude that the long values observed fort r andtd , provide a
favorable evidence for the relevance of the ET mechanism

Although ESA may also contribute for the generation of
the upconverted radiation, its contribution is expected to b
very small in the present case. For samples with smalle
Er31 concentration, both processes may become equally re
evant, and the selection of the proper Er31 concentration is
an important step for each kind of application.
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also thank Blenio J. P. da Silva for polishing the samples an
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