
Infrastructure for Design and Management of Relocatable Tasks
 in a Heterogeneous Reconfigurable System-on-Chip

J-Y. Mignolet, V. Nollet, P. Coene, D.Verkest
‡
*, S. Vernalde, R. Lauwereins

‡

IMEC vzw, Kapeldreef 75, 3001 Leuven, BELGIUM

{mignolet, nollet, coene}@imec.be

Abstract
The ability to (re)schedule a task either in hardware or
software will be an important asset in a reconfigurable
systems-on-chip. To support this feature we have devel-
oped an infrastructure that, combined with a suitable
design environment permits the implementation and man-
agement of hardware/software relocatable tasks. This
paper presents the general scope of our research, and
details the communication scheme, the design environ-
ment and the hardware/software context switching issues.
The infrastructure proved its feasibility by allowing us to
design a relocatable video decoder. When implemented
on an embedded platform, the decoder performs at 23
frames/s (320x240 pixels, 16 bits per pixel) in reconfigur-
able hardware and 6 frames/s in software.

1. Introduction

Today, emerging run-time reconfigurable hardware so-

lutions are offering new perspectives on the use of hard-

ware accelerators. Indeed, a piece of reconfigurable hard-

ware can now be used to run different tasks in a sequential

way. By using an adequate operating system, software-like

tasks can be created, deleted and pre-empted in hardware

as it is done in software.

A platform composed of a set of these reconfigurable

hardware blocks and of instruction-set processors (ISP)

can be used to combine two important assets: flexibility (of

software) and performance (of hardware). An operating

system can manage the different tasks of an application

and spawn them in hardware or in software, depending on

their computational requirements and on the quality of

service that the user expects from these applications.

Design methodology for applications that can be relo-

cated from hardware to software and vice-versa is a chal-

lenging research topic related to these platforms. The ap-

plication should be developed in a way that ensures an

equivalent behavior for its hardware and software imple-

mentations to allow run-time relocation. Furthermore,

equivalence of states between hardware and software

should be studied to efficiently enable heterogeneous con-

text switches.

In the scope of our research on a general-purpose pro-

grammable platform based on reconfigurable hardware [1],

we have developed an infrastructure for the design and

management of relocatable tasks. The combination of a

uniform communication scheme and OCAPI-xl [8, 9], a

C++ library for unified hardware/software system design,

allowed us to develop a relocatable video decoder. This

was demonstrated on a platform composed of a commer-

cial FPGA and a general purpose ISP. It is the first time to

our knowledge that full hardware/software multitasking is

addressed, in such a way that the operating system is able

to spawn and relocate a task either in hardware or soft-

ware.

The remainder of this paper is organized as follows.

Section 2 puts the problem into perspective by positioning

it in our general research activity. Section 3 describes the

communication scheme we developed on the platform and

its impact on the task management. Section 4 presents the

object oriented design environment we used to design the

application. Section 5 discusses the heterogeneous context

switching issues. Section 6 gives an overview of imple-

mentation results on a specific case study. Finally some

conclusions are drawn in Section 7. Related work [3, 5, 6,

7, 10, 12] will be discussed throughout the paper.

2. Hardware/software multitasking on a re-
configurable computing platform

The problem of designing and managing relocatable

tasks fits into the more general research topic of hard-

* also Professor at Vrije Universiteit Brussel
‡ also Professor at Katholieke Universiteit Leuven

Part of this research has been funded by the European Commission
through the IST-AMDREL project (Contract No IST-2001-34379).

1530-1591/03 $17.00  2003 IEEE

ware/software multitasking on a reconfigurable computing

platform for networked portable multimedia appliances.

The aim is to increase the computation power of current

multimedia portable devices (such as personal digital assis-

tants or mobile phones) while keeping their flexibility.

Performance should be coupled with low power consump-

tion, since portable devices are battery-operated. Flexibil-

ity is required because different applications will run on

the device, with different architecture requirements. More-

over, it enables upgrading and downloading of new appli-

cations. Reconfigurable hardware meets these two re-

quirements and is therefore a valid solution to this prob-

lem.

Our research activity addresses different parts of the

problem, as shown in Figure1. A complete description is

presented in [1].

Figure 1. Our research activity

The bottom part represents the platform activity, which

consists in defining suitable architectures for reconfigur-

able computing platforms. The selection of the correct

granularity for the reconfigurable hardware blocks and the

development of the interconnection network that will han-

dle the communication between the different parts of the

system are two of the challenges for this activity.

The interconnection network plays an important role in

our infrastructure, since it supports the communication of

the system. Networks-on-chip provide a solution for han-

dling communication in complex systems-on-chip (SoC).

We are studying packet-switched interconnection networks

for reconfigurable platforms [2]. To assist this research,

we develop “soft” interconnection networks on commer-

cial reconfigurable hardware. They are qualified soft be-

cause they are implemented using the reconfigurable fab-

ric, while future platforms will use fixed networks imple-

mented using standard ASIC technology. This soft inter-

connection network divides the reconfigurable hardware in

tiles of equal size. Every tile can run one task at a given

moment.

The middle part of Figure 1 represents the operating

system for reconfigurable systems (OS4RS) we have de-

veloped to manage the tasks over the different resources.

In order to handle hardware tasks, we have developed ex-

tensions as a complement to the traditional operating sys-

tem.

The OS4RS provides multiple functions. First of all, it

implements a hardware abstraction layer (HAL), which

provides a clean interface to the reconfigurable logic. Sec-

ondly, the OS4RS is responsible for scheduling tasks, both

on the ISP and on the reconfigurable logic. This implies

that the OS4RS abstracts the total computational pool,

containing the ISP and the reconfigurable tiles, in such a

way that the application designer should not be aware on

which computing resource the application will run. A criti-

cal part of the functionality is the uniform communication

framework, which allows tasks to send/receive messages,

regardless of their execution location.

The upper part of Figure 1 represents the middleware

layer. This layer takes the application as input and decides

on the partitioning of the tasks. This decision is driven by

quality-of-service considerations.

The application should be designed in such a way that it

can be executed on the platform. In a first approach, we

use a uniform HW/SW design environment to design the

application. Although it ensures a common behavior for

both HW and SW version of the task, it still requires both

versions of the task to be present in memory. In future

work, we will look at unified code that can be interpreted

by the middleware layer and spawned either in HW or SW.

This approach will not only be platform independent simi-

lar to JAVA, it will also reduce the memory footprint,

since the software and the hardware code will be inte-

grated.

3. Uniform communication scheme

Relocating a task from hardware to software should not

affect the way other tasks are communicating with the re-

located task. By providing a uniform communication

scheme for hardware and software tasks, the OS4RS we

developed hides this complexity.

In our approach, inter-task communication is based on

message passing. Messages are transferred from one task

to another in a common format for both hardware and

software tasks. Both the operating system and the hard-

ware architecture should therefore support this kind of

communication.

Every task is assigned a logical address. Whenever the

OS4RS schedules a task in hardware, an address transla-

tion table is updated. This address translation table allows

the operating system to translate a logical address into a

physical address and vice versa. The assigned physical

address is based on the location of the task in the intercon-

nection network (ICN).

The OS4RS provides a message passing API, which

uses these logical/physical addresses to route the mes-

sages. In our communication scheme, three subtypes of

message passing between tasks can be distinguished

(Figure 2).

Messages between two tasks, both scheduled on the ISP

(P1 and P2), are routed solely based on their logical ad-

dress and do not pass the HAL.

Communication between an ISP task and a FPGA task

(P3 and Pc) does pass through the hardware abstraction

layer. In this case, a translation between the logical address

and the physical address is performed by the communica-

tion API. The task’s physical address allows the HAL to

determine on which tile of the ICN the sending or receiv-

ing task is executing.

Figure 2: Message passing between tasks.

On the hardware side, the packet-switched interconnec-

tion network is providing the necessary support for mes-

sage passing. Messages between tasks, both scheduled in

hardware, are routed inside the interconnection network

without passing through the HAL. Nevertheless, since the

operating system controls the task placement, it also con-

trols the way the messages are routed inside the ICN, by

adjusting the hardware task routing tables.

The packet-switched interconnection network, which

supports the hardware communication in our infrastruc-

ture, solves some operating system issues related to hard-

ware management such as task placement, location inde-

pendence, routing, and inter-task communication. Diessel

and Wigley previously listed these issues in [3].

Task placement is the problem of positioning a task

somewhere in the reconfigurable hardware fabric. At de-

sign time, task placement is realized by using place and

route tools from the reconfigurable hardware vendor. This

usually generates an irregular task footprint. At run-time,

the management software is responsible for arranging all

the tasks inside the reconfigurable fabric. When using ir-

regular task shapes, the management software needs to run

a complex fitting algorithm (e.g. [6, 7]). Executing this

placement algorithm considerably increases run-time over-

head. In our infrastructure, the designer constrains the

place and route tool to fit the task in the shape of a tile.

Run-time task placement is therefore greatly facilitated,

since every tile has the same size and same shape. The

OS4RS is aware of the tile usage at any moment. As a con-

sequence, it can spawn a new task without placement over-

head by replacing the tile content through partial recon-

figuration of the FPGA.

Location independence consists of being able to place

any task in any free location. This is an FPGA-dependent

problem, which requires a relocatable bitstream for every

task. Currently, our approach is to have a partial bitstream

for every tile. A better alternative is to manipulate a single

bitstream at run-time (Jbits [4] could be used in the case of

Xilinx devices).

The run-time routing problem can be described as

providing connectivity between the newly placed task and

the rest of the system. In our case, a communication

infrastructure is implemented at design-time inside the

interconnection network. This infrastructure provides the

new task with a fixed communication interface, based on

routing tables. Once again, the OS4RS should not run any

complex algorithm. Its only action is updating the routing

tables every time a new task is inserted/removed from the

reconfigurable hardware.

The issue of inter-task communication is handled by the

OS4RS, as described earlier this section.

Our architecture makes a trade-off between area and

run-time overhead. As every tile is identical in size and

shape, the area fragmentation (as defined by Wigley and

Kearney in [5]) is indeed higher than in a system where the

logic blocks can have different sizes and shapes. However,

the OS4RS will only need a very small execution time to

spawn a task on the reconfigurable hardware, since the

allocation algorithm is limited to the check of tile availabil-

ity.

4. Unified design of hardware and software
with OCAPI-xl

A challenging step in the design of relocatable tasks is

to provide a common behavior for the HW and the SW

implementation of a task. One possibility to achieve this is

to use a unified representation that can be refined to both

hardware and software.

OCAPI-xl [8, 9] provides this ability. OCAPI-xl is a

C++ library that allows unified hardware/software system

design. Through the use of the set of objects from OCAPI-

xl, a designer can represent the application as communicat-

ing threads. The objects contain timing information, allow-

ing cycle-true simulation of the system. Once the system is

designed, automatic code generation for both hardware

and software is available. This ensures a uniform behavior

for both implementations in our heterogeneous reconfigur-

able system.

Through the use of the FLI (Foreign Language Inter-

face) feature of OCAPI-xl, an interface can be designed

that represents the communication with the other tasks.

This interface provides functions like send_message and

receive_message that will afterwards be expanded to the

corresponding hardware or software implementation code.

This ensures a communication scheme that is common to

both implementations.

5. Heterogeneous context switch issues

It is possible for the programmer to know at design time

on which of the heterogeneous processors the tasks pref-

erably should run (as described by Lilja in [11]). However,

our architecture does not guarantee run-time availability of

hardware tiles. Furthermore, the switch latency of hard-

ware tasks (in the range of 20ms on a FPGA) severely lim-

its the number of time-based context switches. We there-

fore prefer spatial multitasking in hardware, in contrast to

the time-based multitasking presented in [10, 12]. Since

the number of tiles is limited, the OS4RS is forced to de-

cide at run-time on the allocation of resources, in order to

achieve maximum performance. Consequently, it should

be possible for the OS4RS to pre-empt and relocate tasks

from the reconfigurable logic to the ISP and vice versa.

The ISP registers and the task memory completely de-

scribe the state of any task running on the ISP. Conse-

quently, the state of a preempted task can be fully saved by

pushing all the ISP registers on the task stack. Whenever

the task gets rescheduled at the ISP, simply popping the

register values from its stack and initializing the registers

with these values restores its state.

This approach is not usable for a hardware task, since it

depicts its state in a completely different way: state infor-

mation is held in several registers, latches and internal

memory, in a way that is very specific for a given task im-

plementation. There is no simple, universal state represen-

tation, as for tasks executing on the ISP. Nevertheless, the

operating system will need a way to extract and restore the

state of a task executing in hardware, since this is a key

issue when enabling heterogeneous context switches.

A way to extract and restore state when dealing with

tasks executing on the reconfigurable logic, is described in

[10, 12]. State extraction is achieved by getting all status

information bits out of the read back bitstream. This way,

manipulation of the configuration bitstream allows re-

initializing the hardware task. Adopting this methodology

to enable heterogeneous context switches would require a

translation layer in the operating system, allowing it to

translate an ISP type state into FPGA state bits and vice

versa. Furthermore, with this technique, the exact position

of all the configuration bits in the bitstream must be

known. It is clear that this kind of approach does not pro-

duce a universally applicable solution for storing/restoring

task state.

We propose to use a high level abstraction of the task

state information. This way the OS4RS is able to dynami-

cally reschedule a task from the ISP to the reconfigurable

logic and vice versa. This technique a based on an idea

presented in [12]. Figure 3a represents a relocatable task,

containing several states. This task contains 2 switch-point

states, at which the operating system can relocate the task.

The entire switch process is described in detail by Figure

4. In order to relocate a task, the operating system can sig-

nal that task at any time
(1)

. Whenever the signaled task

reaches a switch-point, it goes into the interrupted state
(2)

(Figure 3b). In this interrupted state all the relevant state

information of the switch-point is transferred to the

OS4RS
(3)

. Consequently, the OS4RS will re-initiate the

task on the second heterogeneous processor using the re-

ceived state information
(4)

. The task resumes on the sec-

ond processor, by continuing to execute in the correspond-

ing switch-point
(5)

. Note that the task described in Figure

3 contains multiple switch-points, which makes it possible

that the state information that needs to be transferred to the

OS4RS can be different for each switch-point. Further-

more, the unified design of both the ISP and FPGA ver-

sion of a task, as described in section 4, ensures that the

position of the switch-points and the state information are

identical.

Figure 3: Relocatable task

Figure 4: Task switching: from software to hardware.

The relocatable video decoder, described in section 6,

illustrates that the developed operating system is able to

dynamically reschedule a task from the ISP to the recon-

figurable logic and vice versa. At this point in time, this

simplified application contains only one switchable state,

which contains no state information.

The insertion of these “low overhead” switch-points

will also be strongly architecture dependent: in case of a

shared memory between the ISP and the reconfigurable

logic, transferring state can be as simple as passing a

pointer, while in case of distributed memory, data will

have to be copied.

On a long term, the design tool should be able to create

these switch-points automatically. One of the inputs of the

design tool will be the target architecture. The OS4RS will

then use these switch-points to perform the context

switches in a way hidden from the designer.

6. Relocatable video decoder

As an illustration of our infrastructure a relocatable

video decoder is presented. First the platform on which the

decoder was implemented is described. Then the decoder

implementation is detailed. Finally performance and im-

plementation results are presented.

6.1 The T-ReCS Gecko demonstrator

Based on the concepts presented in Section 2, we have

developed a first reconfigurable computing platform for

HW/SW multitasking. The Gecko demonstrator (Figure 5)

is a platform composed of a Compaq iPAQ 3760 and a

Xilinx Virtex 2 FPGA. The iPAQ is a personal digital as-

sistant (PDA) that features a StrongARM SA-1110 ISP

and an expansion bus that allows connection of an external

device. The FPGA is a XC2V6000 containing 6000k sys-

tem gates.

Figure 5. The T-ReCS Gecko demonstrator

The FPGA is mounted on a generic prototyping board

connected to the iPAQ via the expansion bus. On the

FPGA, we developed a soft packet-switched interconnec-

tion network composed of two application tiles and one

interface tile.

6.2 The video decoder

Our Gecko platform is showcasing a video decoder that

can be executed in hardware or in software and that can be

rescheduled at run-time.

The video decoder is a motion JPEG frame decoder. A

send thread passes the coded frames one by one to the

decoder thread. This thread decodes the frames and sends

them, one macroblock at a time, to a receive thread that

reconstructs the images and displays them. The send

thread and the receive thread run in software on the iPAQ,

while the decoder thread can be scheduled in HW or in

SW (Figure 6).

The switch point has been inserted at the end of the

frame because, at this point, no state information has to be

transferred from HW to SW or vice-versa.

Figure 6. Relocatable decoder

6.3 Results

Two implementations of the JPEG decoder have been

designed. The first one is quality factor and run-length

encoding specific (referred as specific hereafter), meaning

that the quantization tables and the Huffman tables are

fixed, while the second one can accept any of these tables

(referred as general hereafter). Both implementations tar-

get the 4:2:0 sampling ratio. The results of the implementa-

tion of the decoders in hardware are 9570 LUTs for the

specific implementation and 15901 LUTs for the general

one. (These results are given by the report file from the

Synplicity® Synplify Pro™ advanced FPGA synthesis

tool, targeting the Virtex2 XC2V6000 device, speed grade

-4, and for a required clock frequency of 40 MHz).

The frame rate of the decoder is 6 frames per second

(fps) for the software implementation and 23 fps for the

hardware. These results are the same for both general and

specific implementation. The clock runs at 40 MHz, which

is the maximum frequency that can be used for this appli-

cation on the FPGA. When achieving 6 fps in software, the

CPU load is about 95%. Moving the task to hardware re-

duces the computational load of the CPU, but increases the

load generated by the communication. Indeed, the com-

munication between the send thread and the decoder on

the one side, and between the decoder and the receive

thread on the other side, is heavily loading the processor.

The communication between the iPAQ and the FPGA is

performed using BlockRAM internal DPRAMs of the Xil-

inx Virtex FPGA. While the DPRAM can be accessed at

about 20 MHz, the CPU memory access clock runs at 103

MHz. Since the CPU is using a synchronous RAM scheme

to access these DPRAMs, wait-states have to be inserted.

During these wait-states, the CPU is prevented from doing

anything else, which increases the CPU load. Therefore,

the hardware performance is mainly limited by the speed

of the CPU-FPGA interface. This results in the fact that for

a performance of 23 fps in hardware, the CPU is also at

95% load.

Although the OS4RS overhead for relocating the de-

coder from software to hardware is only about 100 � s, the

total latency is about 108 ms. The low OS4RS overhead

can be explained by the absence of a complex task place-

ment algorithm. Most of the relocation latency is caused

by the actual partial reconfiguration through the slow

CPU-FPGA interface. In theory, the total software to

hardware relocation latency can be reduced to about 11ms,

when performing the partial reconfiguration at full speed.

When relocating a task from hardware to software, the

total relocation latency is equal to the OS4RS overhead,

since in this case no partial reconfiguration is required.

Regarding power dissipation, the demo setup cannot

show relevant results. Indeed, the present platform uses an

FPGA as reconfigurable hardware. Traditionally, FPGAs

are used for prototyping and are not meant to be power

efficient. The final platform we are targeting will be com-

posed of new, low-power fine- and coarse-grain recon-

figurable hardware that will improve the total power dissi-

pation of the platform. Power efficiency will be provided

by the ability of spawning highly parallel, computation

intensive tasks on this kind of hardware.

7. Conclusions

This paper describes a novel infrastructure for the de-

sign and management of relocatable tasks in a reconfigur-

able SoC. The infrastructure consists of a unified HW/SW

communication scheme and a common HW/SW behavior.

The uniform communication is ensured by a common mes-

sage-passing scheme inside the operating system and a

packet switched interconnection network. The common

behavior is guaranteed by use of a design environment for

unified HW/SW system design. The design methodology

has been applied to a video decoder implemented on an

embedded platform composed of an instruction-set proces-

sor and a network-on-FPGA. The video decoder is relocat-

able and can perform 6 fps in software and 23 fps in hard-

ware. Future work includes automated switch-point place-

ment and implementation in order to have a low context

switch overhead when heterogeneously rescheduling tasks.

Acknowledgements

We would like to thank Kamesh Rao of Xilinx for care-

fully reviewing and commenting this paper.

References

[1] J-Y. Mignolet, S. Vernalde, D. Verkest, R. Lauwereins,

“Enabling hardware-software multitasking on a reconfigur-

able computing platform for networked portable multime-

dia appliances”, Proceedings of the International Confer-

ence on Engineering Reconfigurable Systems and Architec-

ture 2002, pages 116-122, Las Vegas, June 2002.

[2] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde and R.

Lauwereins, “Interconnection Networks Enable Fine-Grain

Dynamic Multi-Tasking on FPGAs”, FPL’2002, pages 795-

805, Montpellier France.

[3] O. Diessel, G. Wigley, “Opportunities for Operating Sys-

tems Research in Reconfigurable Computing”, Technical

report ACRC-99-018, Advanced Computing Research Cen-

tre, School of Computer and Information Science, Univer-

sity of South Australia, August, 1999

[4] S. Guccione, D. Levi, P. Sundararajan, “ JBits: A Java-

based Interface for Reconfigurable Computing”, 2nd An-

nual Military and Aerospace Applications of Programmable

Devices and Technologies Conference (MAPLD).

[5] G. Wigley, D. Kearney, “The Management of Applications

for Reconfigurable Computing using an Operating System”,

In Proc. Seventh Asia-Pacific Computer Systems Architec-

ture Conference, January 2002, ACS Press.

[6] J. Burns, A. Donlin, J. Hogg, S. Singh, M. de Wit, “A Dy-

namic Reconfiguration Run-Time System”, Proceedings of

the 5th IEEE Symposium on FPGA-Based Custom Com-

puting Machines (FCCM '97), Napa Valley, CA, April

1997.

[7] H. Walder, M. Platzner, “Non-preemptive Multitasking on

FPGAs: Task Placement and Footprint Transform”,

Proceedings of the International Conference on

Engineering Reconfigurable Systems and Architecture

2002, pages 24-30, Las Vegas, June 2002

[8] www.imec.be/ocapi

[9] G. Vanmeerbeeck, P. Schaumont, S. Vernalde, M. Engels,

I. Bolsens, “Hardware/Software Partitioning of embedded

system in OCAPI-xl”, CODES’01, Copenhagen, Denmark,

April 2001.

[10] H. Simmler, L. Levinson, R. Männer, “Multitasking on

FPGA Coprocessors”, Proc. 10th Int´l Conf. Field Pro-

grammable Logic and Applications, pages 121-130, Vil-

lach, Austria, August 2000.

[11] D. Lilja, “Partitioning Tasks Between a Pair of Intercon-

nected Heterogeneous Processors: A Case Study”, Concur-

rency: Practice and Experience, Vol. 7, No. 3, May 1995,

pp. 209-223

[12] L. Levinson, R. Männer, M.Sesler, H. Simmler, “Preemp-

tive Multitasking on FPGAs”, Proceedings of the 2000

IEEE Symposium on Field Programmable Custom Comput-

ing Machines.

[13] F.Vermeulen, L. Nachtergaele, F Catthoor, D. Verkest, H.

De Man,”Flexible Hardware Acceleration for Multimedia

Oriented Microprocessors”, (accepted) IEEE Transactions

on Very Large Scale Integration Systems.

