
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2006-042 May 27, 2006

Infrastructure for Engineered Emergence
on Sensor/Actuator Networks
Jacob Beal and Jonathan Bachrach

10 1541-1672/06/$20.00 © 2006 IEEE IEEE INTELLIGENT SYSTEMS

Published by the IEEE Computer Society

S e l f - M a n a g i n g S y s t e m s

Infrastructure for
Engineered Emergence
on Sensor/Actuator
Networks

Jacob Beal and Jonathan Bachrach, Massachusetts Institute of Technology Computer

Science and Artificial Intelligence Laboratory

The study of self-organizing systems has now reached the tool-building phase, in

which a new discipline of self-managing systems engineering can begin to emerge.

The next step is to refine the principles of self-organization into a system of composable

parts suitable for engineering—much as components such as capacitors, transistors, and

resistors capture electromagnetism principles for

electronic engineering.

To transform a science into an engineering disci-

pline, we must

• decouple aspects of the problem from one another,

• identify an operating range,

• create standard interfaces for composition,

• identify primitive components that conform to the

standards, and

• create abstraction rules that hide the complexity

of systems of components.

We’ve begun this process in the domain of sen-

sor/actuator network applications, observing that in

many applications the deployed network approximates

a physical space and that the space, rather than the net-

work, is being programmed. This observation lets us

use the amorphous medium abstraction to decouple

self-management problems. So, global behavior de-

scriptions in our Proto language can be compiled auto-

matically into locally executed code that produces

emergent phenomena matching the global description.

We’ve experimentally verified our code both in simu-

lation and (for small programs) on a network of sen-

sor/actuator nodes called Mica2 motes.

Decoupling: Amorphous medium
Consider deploying a network of devices to man-

age a large farm. The tasks that the devices will carry

out—irrigation, pest management, and fertilization,

for example—are naturally specified in terms of

regions of the farm: “water a potato field every so-

many hours during hot weather” or “treat minor

alfalfa weevil infestations with an early harvest, but

treat major infestations with pesticides.” An appli-

cations programmer for farms should be able to write

code at this abstraction layer, rather than specifying

how the devices in the fields will coordinate to carry

out the programs.

The amorphous-medium abstraction captures the

divide between specification and implementation;

it’s a continuous computational material filling the

space of interest. Every point in the medium is a

computational device that independently executes

the same code as every other device in the medium.

(Executions diverge owing to differences in sensor

values, randomness, and each device’s interactions

with nearby devices.) Each device has a neighbor-

hood of devices less than d units of distance away to

which it exposes its internal state. Conversely, a

device can read the internal state of devices in its

neighborhood, obtaining values lagged proportion-

ally to the distance separating them.

We can’t, of course, build a continuous medium

containing uncountably many infinitely small com-

puters. We can, however, approximate it by scatter-

ing a discrete set of devices throughout the medium.

We then compute using as our basis the relatively

few systems whose discrete behavior is a good

approximation of their continuous behavior, just as

electronic engineering uses components that capture

only a few electromagnetism phenomena. In both

cases, restricting the behavior range supports engi-

The ability to control

emergent phenomena

depends on

decomposing

them into aspects

susceptible to

independent

engineering. For

spatial self-managing

systems, the

amorphous-medium

abstraction lets you

separate the system’s

specification from its

implementation.

neering abstractions that ignore much of the underlying system’s

complexity.

The amorphous-medium abstraction separates the space being

programmed from the devices carrying out the program, letting us

decompose self-managing systems engineering into three layers of

abstraction—global, local, and discrete (see figure 1). Each layer is

supported by its own infrastructure component; this decouples

aspects of self-managing systems design into largely independent

subproblems:

• The discrete layer consists of devices embedded in space

exchanging messages with nearby neighbors. Infrastructure for

this level is a discrete kernel that approximately emulates an

amorphous medium.

• The local layer executes on the amorphous medium, using our

Proto language to specify a uniform behavior for each point.

• The global layer executes on the amorphous medium, using a

library of amorphous-computing algorithms translated into Proto

to control the regions’ behavior.

Table 1 illustrates some design problems that this approach separates:

• Our approach’s implementation has three infrastructure compo-

nents: a kernel providing the neighborhood abstraction, a com-

piler for the Proto language, and libraries of long-range coordi-

nation and control primitives coded in Proto.

• Global-layer coordination primitives operate on regions and are

implemented with local-layer interactions between points and

their neighborhoods. The neighborhood is, in turn, implemented

by messages passed between discrete devices.

• This approach describes global control as homeostatic processes

continually moving regions toward a desired behavior. It implements

these processes as networks of streams in the local layer, which com-

pile to update code executed periodically in the discrete layer.

• Different layers handle different failure modes: the neighborhood

abstraction masks individual device crashes, the homeostatic prim-

itives handle outside events that destroy regions of the network, and

a clean global-layer interface minimizes bugs in the user’s code.

• Assuming that the cost of communication dominates energy con-

sumption, the amount of communication depends on how many

long-range coordination operations occur in the global layer, how

many reductions over neighbor state are used to implement coordi-

nation at the local layer, and how many packets are transmitted and

received to implement shared neighbor state at the discrete layer.

For information on amorphous-medium research and other

related research, see the sidebar “Related Work on Engineering

Self-Managing Systems.”

Operating range: Amorphous computers
We can consider a sensor/actuator network in which devices com-

municate only with nearby neighbors to be an amorphous computer.1

Amorphous computing takes inspiration from biological systems

engaged in morphogenesis and regeneration, in which extremely

large numbers of unreliable devices (cells) coordinate to achieve pre-

dictable results with high precision.

We’ve chosen the amorphous-computer model for two reasons. First,

its biologically inspired specifications imply the self-management issues

MARCH/APRIL 2006 www.computer.org/intelligent 11

Table 1. Decomposing self-managing systems engineering into global, local, and discrete abstraction layers separates many design

problems into largely independent subproblems.

Layer Infrastructure Coordination Control flow Failures Energy efficiency

Global Proto libraries Region Homeostasis User Coordinations

Local Proto compiler Neighborhood Stream network Region Reductions

Discrete Kernel Device Rounds Device Packets

Amorphous medium

Proto libraries

D
is

cr
e

te
L

o
ca

l
G

lo
b

a
l

P

Region

Figure 1. Our approach decouples self-management problems

by decomposing self-managing systems into three abstraction

layers: global, local, and discrete. Interactions between

individual devices in the discrete layer emulate an amorphous

medium. The local layer describes the behavior of points in the

medium, from which we build library code to allow description

of the behavior of regions of the medium at the global layer.

P indicates a particular, arbitrary point.

S e l f - M a n a g i n g S y s t e m s

12 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

of robustness, distribution, and scalability. Second, real-world sen-

sor/actuator networks are growing rapidly in scale and capability, bring-

ing them into closer alignment with the amorphous-computer model.

In particular, we designed Proto and its infrastructure to operate on

sensor/actuator networks with these properties:

• The number of devices n might range from dozens to billions.

• Devices are distributed arbitrarily through space and collaborate via

unreliable broadcast to neighbors no farther than r distance away.

• Devices move much more slowly than communication, if at all.

• Memory and processing aren’t limiting resources. (Profligate

expenditure of either is still bad, and memory is an important con-

straint for our mote implementation.)

• Execution is partially synchronous—each device has a clock that

ticks regularly, but frequency might vary by up to �, and clocks

have an arbitrary initial time and phase.

• The networks don’t provide naming, routing, and coordinate ser-

vices. (These services might be made available as sensor values,

with appropriate characterization of reliability and error.)

• Arbitrary point and region stopping failures and joins might occur,

including changes in the network’s connectedness.

Our operating-range specification doesn’t directly address energy

consumption, although it has been a concern in implementation. Each

abstraction layer can independently address energy issues, however,

and we expect that optimizing the discrete-kernel implementation

Our research on self-managing systems engineering draws
on previous work in many fields: our contribution lies in inte-
grating the pieces that others have developed. Previous research
on amorphous-medium languages proposed the amorphous-
medium abstraction and general strategies for controlling an
amorphous medium;1,2 this article describes a practical imple-
mentation. Other research on amorphous-computing languages
has shared the same general goals but has been directed more
toward problems of morphogenesis and pattern formation than
general computation. Examples include Daniel Coore’s research
on topological patterns3 and research on geometric-shape for-
mation by Radhika Nagpal;4 Attila Kondacs;5 and Justin Werfel,
Yaneer Bar-Yam, and Radhika Hagpal.6 A notable exception is
William Butera’s work on paintable computing, which allows
general computation but lacks an abstraction barrier separat-
ing an applications programmer from low-level details of net-
work operation.7

An alternate approach to engineering self-organizing
systems is rooted in gossip communication,8–10 a technique
we also use. However, gossip communication deploys less-
powerful abstractions than our approach does, because it’s
solving more-general networking problems. More distant are
approaches based on alternate computational paradigms such
as chemical computation11,12 and membrane computation.13

Sensor network researchers have proposed several other high-
level programming abstractions to enable the programming of
large networks. For example, GHT (Geographic Hash Table)
provides a hash table abstraction for storing data in the net-
work,14 and TinyDB focuses on gathering information through
query processing.15 Both of these approaches, however, are
data-centric rather than computation-centric and don’t provide
guidance on how to do distributed manipulation of gathered
data. TinyOS16 and the Hood abstraction17 provide useful gen-
eral programming tools—indeed, our implementation of Proto
on motes uses TinyOS—but the abstractions are less powerful
and lead to bulkier, less reusable code. More similar is the Regi-
ment language, which uses a stream-processing abstraction to
distribute computation across the network.18 Regiment, how-
ever, is distributed only when the compiler finds optimization
opportunities, and significant challenges remain in adapting
its programming model to the sensor network environment.

Finally, Proto’s structure as a dynamic network of streams is
strongly influenced by Jonathan Bachrach’s previous work on
Gooze,19 as are many compilation strategies used to compact

Proto code for execution on motes. There’s a long tradition of
stream processing in programming languages. The closest and
most recent work is Functional Reactive Programming,20 which
is based on Haskell,21 a statically typed programming language
with lazy evaluation semantics. FRP has been demonstrated on
robotics,22 graphics,20 and user interface design.23 These systems
focus less on runtime space and time efficiency than our ap-
proach does, and the type system is firmly wedded to Haskell,
with all its strengths and weaknesses.

References

1. J. Beal, “Programming an Amorphous Computational Medium,”

Unconventional Programming Paradigms, LNCS 3566, Springer, 2005.

2. J. Beal and G. Sussman, Biologically Inspired Robust Spatial Pro-

gramming, AI Memo 2005-001, Computer Science and Artificial

Intelligence Laboratory, Massachusetts Inst. of Technology, 2005.

3. D. Coore, “Botanical Computing: A Developmental Approach to

Generating Interconnect Topologies on an Amorphous Computer,”

PhD thesis, Dept. of Electrical Eng. and Computer Science, Massa-

chusetts Inst. of Technology, 1999.

4. R. Nagpal, “Programmable Self-Assembly: Constructing Global

Shape Using Biologically Inspired Local Interactions and Origami

Mathematics,” PhD thesis, Dept. of Electrical Eng. and Computer

Science, Massachusetts Inst. of Technology, 2001.

5. A. Kondacs, “Biologically Inspired Self-Assembly of Two-Dimensional

Shapes, Using Global-to-Local Compilation,” Proc. 2003 Int’l Joint

Conf. Artificial Intelligence (IJCAI 03), Morgan Kaufmann, 2003, pp.

633–638.

6. J. Werfel, Y. Bar-Yam, and R. Nagpal, “Building Patterned Structures

with Robot Swarms,” Proc. 2005 Int’l Joint Conf. Artificial Intelligence

(IJCAI 05), Int’l Joint Conf. Artificial Intelligence, 2005, pp. 1495–1502.

7. W. Butera, “Programming a Paintable Computer,” PhD thesis, Me-

dia Laboratory, Massachusetts Inst. of Technology, 2002.

8. O. Babaoglu, M. Jelasity, and A. Montressor, “Grassroots Approach

to Self-Management in Large-Scale Distributed Systems,” Uncon-

ventional Programming Paradigms, LNCS 3566, Springer, 2005, pp.

286–296.

9. K. Birman, S. Guha, and R. Murty, “Scalable, Self-Organizing Tech-

nology for Sensor Networks,” Advances in Pervasive Computing

and Networking, 2004, Springer, pp. 1–15.

10. A. Demers et al., “Epidemic Algorithms for Replicated Database

Related Work on Engineering Self-Managing Systems

will extract a large savings. Although some excess energy expendi-

ture will likely remain, we consider the gain in engineering capabil-

ity to be worth moderately inefficient energy expenditure.

Abstraction and composition: Proto
Proto’s semantics capture interface standards, primitive compo-

nents, and abstraction rules. It combines the dynamic stream networks

of Gooze2 with previous work on amorphous-medium languages.3,4

Primitives and composition
Proto programs produce a stream of output values. Proto uses Scheme

syntax but has its own set of types and primitive functions. For exam-

ple, the expression 2 evaluates to a stream of twos. To compose pro-

grams, we use functional operators. So, the expression (+ 2 5) yields a

program that emits a stream of sevens. The compiler evaluates the oper-

ator and operand expressions using the same rules as in Scheme. The

operands are streams, and the operator constructs a stream of output val-

ues from sets of values that are input from its operands. A program is

a directed acyclic graph with a single root, with nodes that are instan-

tiated operators and edges that connect from streams to the operator

inputs that consume them (see figure 2). The root’s output stream serves

as a reference to the program ascending from it.

Types
Proto is strongly typed like ML5 (Meta-Language) and Haskell,6

and, unlike statically typed languages such as C, types are inferred

automatically from literals and function calls. So, users rarely need

to deal with types, but they’re useful for describing the various kinds

of available data and the built-in operators’ signatures.

Proto permits Boolean, character, number, and symbol data types.

We can combine these base types to form richer types using para-

meterized types, such as vectors, tuples, and functions. Vector and

tuple types can be nested to create a rich set of derived types.

Proto supports overloaded operators and chooses the most appli-

cable operator at compile time during type inference. This encourages

reuse without sacrificing runtime efficiency.

I/O
The sense operator accesses input from the outside world or other

programs running on a device. For example,

(sense :light)

returns the value of the light sensor. Similarly, a Proto program affects

the outside world through the actuate operator. So, for example,

(actuate :sound (sense :light))

sends the light value to the sound actuator. (The mechanism for bind-

ing sensors to names is implementation dependent, as are the value

when sense is applied to an unbound name and the result of multiple

streams being sent to the same actuator.)

State
To establish persistent state, Proto uses delay loops specifying an

initial value and an expression for calculating the next value from

MARCH/APRIL 2006 www.computer.org/intelligent 13

Management,” Proc. 6th Ann. ACM Symp. Principles of Distrib-

uted Computing, ACM Press, 1987, pp. 1–12.

11. J.P. Banatre and D. Le Metayer, “The Gamma Model and Its Dis-

cipline of Programming,” Science of Computer Programming,

vol. 15, no. 1, 1990, pp. 55–77.

12. G. Berry and G. Boudol, “The Chemical Abstract Machine,”

Theoretical Computer Science, vol. 96, no. 1, 1992, pp. 217–248.

13. G. Paun, “Computing with Membranes,” J. Computer and Sys-

tem Sciences, vol. 61, no. 1, 2000, pp. 108–143.

14. S. Ratnasamy et al., “GHT: A Geographic Hash Table for Data-

Centric Storage,” Proc. 1st ACM Int’l Workshop Wireless Sensor

Networks and Applications, ACM Press, 2002, pp. 78–87.

15. S.R. Madden et al., “Supporting Aggregate Queries over Ad

Hoc Wireless Sensor Networks,” Proc. Workshop Mobile Com-

puting and Systems Applications, IEEE CS Press, 2002, pp. 49–58.

16. D. Gay et al., “The nesC Language: A Holistic Approach to Net-

worked Embedded Systems,” Proc. ACM SIGPLAN 2003 Conf. Pro-

gramming Language Design and Implementation (PLDI 03),

ACM Press, 2003, pp. 1–11.

17. K. Whitehouse et al., “Hood: A Neighborhood Abstraction for

Sensor Networks,” Proc. 2nd Int’l Conf. Mobile Systems, Appli-

cations, and Services, ACM Press, 2004, pp. 99–110.

18. R. Newton and M. Welsh, “Region Streams: Functional Macro-

programming for Sensor Networks,” Proc. 1st Int’l Workshop

Data Management for Sensor Networks (DMSN), Morgan

Kaufmann, 2004.

19. J. Bachrach, “Gooze: A Stream Processing Language,” Proc.

Lightweight Languages 2004, 2004; recorded presentation at

http://web.mit.edu/webcast/csail/mit-csail-lwl-04dec2004-

afternoon2-80k.ram.

20. C. Elliott and P. Hudak, “Functional Reactive Animation,” SIG-

PLAN Notices, vol. 32, no. 8, 1997, pp. 263–273.

21. S.P. Jones and J. Hughes, Report on the Programming Language

Haskell 98, 1999; http://haskell.org/haskellwiki/Definition.

22. J. Peterson, P. Hudak, and C. Elliott, “Lambda in Motion: Control-

ling Robots with Haskell,” Proc. 1st Int’l Workshop Practical Aspects

of` Declarative Languages (PADL), Springer, 1999, pp. 91–105.

23. A. Courtney, H. Nilsson, and J. Peterson, “The Yampa Arcade,”

Proc. 2003 ACM Sigplan Haskell Workshop (Haskell 03), ACM

Press, 2003, pp. 7–18.

2 5

+

Figure 2. A Proto program is a network of operator instances

ascending from a single root. The root's output stream serves as

a reference to the program.

S e l f - M a n a g i n g S y s t e m s

14 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

current values. For example, the expression

(letfed ((i 0 (1 + i)))
i)

creates one state variable, i, which starts at zero and increases by one

each round.

Communication
Unlike discrete networks, each point in an amorphous medium has

an infinite number of neighbors. So, communication by message pass-

ing is impractical. Proto instead provides communication in the form

of summaries of all the values in the neighborhood, using the reduce-
nbrs operator to fold an expression across each point’s neighborhood.

For example, assuming a Boolean light sensor, we can dilate the

lit region by one neighborhood radius with the expression

(reduce-nbrs (sense :light) or nil)

The first argument is the value to reduce, the second is the reduction

function, and the third is the reduction’s initial value. When evaluated,

reduce-nbrs begins with the initial value, then incorporates the values from

its neighbors one at a time, using the reduction function, to produce the

final result. Indeed, we can perhaps better understand reduce-nbrs as a

transform that operates on nearby space rather than as communication.

In general, we don’t want to tie our program’s behavior to neigh-

borhood sizes, so Proto provides special operators for measuring a

neighbor’s space distance, time distance, and volume: nbr-dist, nbr-lag,

and infinitesimal, respectively. (These might be implemented coarsely

or finely, depending on the hardware available. For example, our

mote implementation estimates the distance to all neighbors as its

radio range, and the time lag as one round.)

Thus, for example, we can measure the distance to a light with a

gradient flowing from the source:

(letfed ((n infinity (+ 1 (if (sense :light) 0
(reduce-nbrs (+ n nbr-dist) min infinity)))))

(� n 1))

(Biological systems often use chemical diffusion from a source as

a distance measure, and various distributed-computing fields have

co-opted “gradient” by analogy to mean a distance-to-source mea-

surement created by gossip.)

The addition of the 1 drives the distance upward at those points

that aren’t connected to the source, allowing the gradient to adapt to

changing sources in the same way as Lauren Clement and Radhika

Nagpal’s active gradients.7 Here, the reduce-nbrs expression starts with

a value of infinity and combines it with each neighbor’s value for n to

find the minimum. So, n is pegged to zero at light sources and floats

up by one for each distance unit. Each point converges to the esti-

mated distance to the nearest light source.

When compiling Proto expressions into executable code, the com-

piler identifies the values that reduce-nbrs expressions need so that the

discrete kernel can export them to its neighbors whenever they

change. Any reduction that can be approximated using a sampling

of neighbor state can be implemented on a real network by the dis-

crete kernel. This covers a wide range of functions, particularly with

the inclusion of the distance and infinitesimal operators to allow inte

gration. For example,

(/ (reduce-nbrs (* (sense :light) infinitesimal) + 0)
(reduce-nbrs (* 1 infinitesimal) + 0))

finds the average light value in each point’s neighborhood (the sec-

ond reduce-nbrs expression normalizes the integral). However, we must

subtly redefine some operators such as random to have a compatible

amorphous-medium semantics and discrete-kernel implementation.

Abstraction
We can abstract Proto expressions to create new operators, just as

you can abstract ordinary Scheme expressions to create new func-

tions. For example, we can make a generic gradient operator

(def gradient (src)
(letfed ((n infinity (+ 1 (if src 0 (reduce-nbrs (+ n nbr-dist) min infinity)))))

(� n 1)))

and a generic averaging operator

(def local-average (x)
(/(reduce-nbrs (* x infinitesimal) + 0)

(reduce-nbrs (* 1 infinitesimal) + 0)))

We can then use these operators in expressions, including definitions

of operators at a higher abstraction level. So, for example, we can

write the expression

(<= (gradient (sense :light)) 2)

that outputs true anywhere within two units’ distance of a light.

Execution
Pulling a value from a program’s output stream initiates a round of

execution. (The discrete kernel generally discards these values, so a

program’s ultimate goal must be achieved through actuation.) The

discrete kernel then distributes execution up the network as operators

pull values from their inputs. If an operator doesn’t pull a value from

one of its inputs, the upstream operator doesn’t execute and hiber-

nates, discarding any internal state until it begins executing again and

reboots. For example, assuming a Boolean sound sensor, the program

(when (sense :sound)
(<= (gradient (sense :light)) 2))

runs the gradient only where there’s sound. Consequently, points within

two units’distance but separated by a quiet area will output false, because

the gradient isn’t running in the intervening area (see figure 3).

The discrete kernel instantiates the expression associated with an

interpreted operator into an encapsulated network once for each active

instance of the operator. When an instance hibernates, the discrete ker-

nel discards this network, along with any state in its loops, and restarts

the network from scratch when it next becomes active. Among other

things, this allows recursion because the discrete kernel constructs a

potentially infinite network structure only for the levels in use.

A process module’s output might serve as input to more than one

other module. For example,

(let ((d (gradient (sense :light))))
(if (sense :sound) (* d d) d))

always runs the gradient but squares the output when there’s sound (see

figure 4). Execution carries a time stamp identifying the round so that the

subprogram can return the same result every time a downstream process

module pulls a value during a single execution round. Conversely, as

long as at least one process module pulls a value, the subprogram will

execute.

Miscellany
Proto lets a programmer define new primitive operators. Although

primitive operators aren’t strictly necessary, they’re generally faster

and more memory efficient because Proto can perform the calcula-

tions without instantiating and walking a network of streams, as hap-

pens in an interpreted operator.

Proto code is quite compact, which is unsurprising, given its Lisp

roots. For example, Adam Eames’s algorithm for distributed dis-

covery of minimum threat paths8 requires 2,000 lines of nesC9 code,

while an equivalent Proto implementation is a mere 25 lines long.

Raising the abstraction level
Using Proto, we can implement composable abstractions for con-

trolling a sensor/actuator network.

Gradients, for example, are a common amorphous-computing

primitive. Clipping a gradient against a maximum distance produces

a dilation operator

(def dilate (n source)
(<= (gradient source) n))

which adapts to changing sources equivalently to Clement and Nag-

pal’s active gradients.7

We can then gradually raise the abstraction level by building on

our growing library of primitives, as in the bounding program

(def bound (source max boundary)
(when (not boundary) (dilate max source)))

which returns true only within the boundaries containing the source.

We can use bound to reexpress the program in figure 4 as

(bound (sense :light) 2 (not (sense :sound)))

Coordinates
Another useful example is the coordinate system mechanism from

William Butera’s paintable computing.10

We derive the coordinate system from a provided source and des-

tination. We need to measure the distance between these places, which

we do with a distance operator that uses our previously defined gradient
operator:

(def distance (p1 p2)
(letfed ((d 0 (reduce-nbrs d max (* (gradient p1) (if p2 1 0)))))

d))

The paintable-computing channel mechanism, which finds a wide path

connecting two points, uses a trail-following operator to trace a gradi-

ent back to the source. This is fairly fragile, so we instead find the trail

geometrically by triangulation against distance, then widen it using dilate:

(def channel (src dst width)
(let* ((d (distance src dst))

(trail (<= (+ (gradient src) (gradient dst)) d)))
(dilate width trail)))

Implementing the coordinates mechanism requires one more opera-

tor: we use choose-leader to break symmetry by selecting a single loca-

tion in the channel:

(def choose-leader (selector)
(letfed ((v (if selector (random 1.0) infinity))

(minv v (reduce-nbrs minv min minv)))
(and (< v infinity) (= v minv) v)))

We can then define the complicated coordinates mechanism (see figure

5) as an operator that, despite comprising many complex operators, is

relatively straightforward for a programmer to create and understand:

(def coordinates (src dst width)
(let* ((field (channel src dst width))

(axis (channel src dst 1))
(d1 (gradient src))
(d2 (gradient dst))
(dp (distance src dst))
(buoy (choose-leader (and field (< d1 dp) (< d2 dp))))
(y (/ (+ (* d2 d2) (� (* d1 d1)) (* dp dp)) (* 2 dp)))
(x (sqrt (� (* d2 d2) (* y y))))
(neg (bound buoy (+ width dp) (or (< y 0) (> y dp) axis))))

(tuple (if neg (� x) x) y)))

MARCH/APRIL 2006 www.computer.org/intelligent 15

Figure 3. All communication proceeds through neighborhoods,

so a gradient (gray) spreading from regions with light (black)

that runs only when there’s sound (white boxes) can’t cross a

gap where there is no sound.

sense

*

sound

gradientsenselight

if

Figure 4. Subprograms might feed multiple inputs. The

subprogram caches its output so that it executes only the

first time its output stream is pulled in a given round.

Homeostasis
To accomplish long-range coordination, we use homeostatic oper-

ators that are always relaxing toward a correct solution.

For example, we can combine a heartbeat and an estimate of lag

to define a simple time synchronization operator that converges

toward a shared time. If the heartbeat arrives from a shorter route

and advances time too quickly, the lag drops as the gradient records

the shorter distance. If communication disruptions interfere with the

heartbeat, the lag gradient floats upward, driving the time locally:

(def time-gradient (src)
(letfed ((n infinity (+ 1 (if src 0 (reduce-nbrs (+ n nbr-lag) min infinity)))))

(� n 1)))
(def sync-time (src)

(let ((lag (time-gradient src)))
(letfed ((time 0 (if src (1+ time) (reduce-nbrs time max 0))))

(+ time lag))))

Using this abstraction, we can establish long-range coordinated

behavior such as sinusoidal oscillations—useful for locomotion in

distributed robotics or moving objects around an active surface.

We could do this with an externally supplied phase coordinate

(established, for example, using Butera’s algorithm) and a heartbeat

for synchronization,

(def oscillate (heart phase period)
(sin (/ (+ (sync-time heart) phase) period)))

or by calculating the oscillation vector internally. We can specify a

vector in terms of a source and destination and find a wave front per-

pendicular to that by calculating their bisector,

(def bisector (a b)
(let ((dif (abs (� (gradient a) (gradient b)))))

(<= dif (reduce-nbrs nbr-dist max 0))))

which might need to be swollen to make it a boundary impermeable

to communication:

(def impermeable (set)
(reduce-nbrs set or nil))

To break symmetry and allow the oscillation to propagate in one

direction rather than flowing outward from the bisector, we define

(def abs->signed (val is-plus)
(if (bound is-plus (maxdist) (impermeable (= val 0)) val (� val)))

and use it to negate the phase on a plane wave’s src side:

(def plane-wave (src dst period)
(let ((phase (abs->signed (gradient (bisector src dst)) dst)))

(sin (/ (+ (sync-time src) (local-average phase)) period))))

All that remains, then, is to set the wave’s period to the vector’s

length:

(def oscillate (src dst)
(plane-wave src dst (distance src dst)))

Implementation and verification
We conducted experimental verification using a simulator and an

implementation of Proto for Mica2 motes.

The discrete-kernel implementation
Motes present significant challenges for any language implemen-

tation, but especially for high-level languages such as Proto. Mica2

motes are 8-bit microcontrollers running at 16 MHz, have only a

scant 4 Kbytes of RAM, run on two AA batteries, and contain a rel-

atively slow radio that can send a maximum of approximately thirty

32-byte packets per second.

The biggest challenge of getting Proto to run on the motes is fit-

ting the operator trees in the 4 Kbytes of RAM on the ATmega128

memory card. This tiny memory forces a very simple memory man-

agement scheme. Fortunately, stream processing permits data struc-

tures to be mostly preallocated when trees are opened and then reused

across rounds.

Each mote has a C machine structure that provides the Proto dis-

crete-level operating system data structures for the running scripts.

Specifically, it holds the machine ID, script, version, operator tree,

time stamp, export tuple, neighborhood table, and sensor and actua-

tor data. The neighborhood data is a limited-size table of associa-

tions between the machine ID and import tuples.

The neighborhood table is populated dynamically, and stale entries

are replaced. In addition to an ID and import values, each entry con-

tains both a time-out counter tracking the time elapsed since the last

update and an area estimate used for integration. At the end of each

evaluation round, exposed state is calculated and added to an export

buffer for later transmission.

On the motes, we use a maximum table size of eight neighbors

and a single-packet export mechanism. Each export packet can sup-

port up to six number values in our current implementation. Sup-

porting multipacket exports is straightforward, and we plan to do so

in the near future.

Each primitive operator has a class structure representing static

properties and a corresponding C structure representing its runtime

values. An operator class contains the operator protocol in the form

of function pointers for constructing, opening, and closing operator

instances and for executing operator code. Additionally, the operator

S e l f - M a n a g i n g S y s t e m s

16 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

neg

field

width

dp

buoy

src

d2d1
p

dstaxis

Figure 5. Finding coordinates with a mechanism adapted from

paintable computing:10 The coordinate system’s two anchor

points send out gradients, producing d1, d2, and dp, which determine

the location of p except for the sign of its vertical coordinate. We

find the sign by using leader election to break symmetry. Note

that x values range vertically and y values range horizontally.

class contains the number of exported values, operator children, local-

state data, and construction arguments and the corresponding byte-

code. Operator instances contain a pointer to the operator class, its

time stamp, output data, and operator-specific data (for example, the

reduce-nbrs operator instances hold an offset into the export/neighbor-

hood tuple), and pointers to operator children.

Proto scripts are written on a PC, translated by the Proto compiler

to bytecodes, and injected packet by packet over the air into the sen-

sor network through a base station connected by serial cable to the

PC. The implementation virally forwards received scripts to neigh-

boring motes, using a mechanism similar to those that James

McLurkin,11 Jonathan Hui and David Culler,12 and Andrew Suther-

land13 have described. The programmer then needs only to program

a single device, and the code will spread through the network to

upgrade the other devices. To prevent conflicts during an upgrade,

each state broadcast also contains a version number, letting devices

ignore state from different versions. The current implementation sup-

ports only single-packet scripts, but implementing multipacket scripts

would be straightforward.

Once the complete set of script packets are loaded onto a mote, a

virtual stack machine interprets the script, producing a new operator

tree. Once the kernel has constructed and installed the operator tree,

the tree executes top-down, each operator executing and producing

a value once for each round.

The Proto compiler performs type inference and method selection

while translating scripts to bytecodes. Type inferencing allows the

resolution of overloaded operators into efficient type-specific oper-

ators and eventual bytecodes. To support full type inference and the

generation of type-specific bytecodes, all script operators are inlined

and specialized.

To ease porting, we’ve implemented Proto to minimize platform-

specific code. The platform-independent code consists of the neigh-

borhood management, script dissemination and interpretation, and

primitive operators. Primitive operators are written in stylized C that

permits maximal code sharing. Currently, we have 1,505 lines of plat-

form-independent code.

The platform-specific code consists of low-level timing, low-level

network code, and sensor/actuator code, and currently amounts to

270 lines on the Mica2 motes. The timing code phases the execution

and export stages. On the mote, we’ve implemented it using a TinyOS

timer event firing every 128 milliseconds. We can easily speed this

up in the future. The low-level networking code sends and receives

script and neighborhood packets. Packets arrive as events, but the

implementation processes them in tasks to ensure synchronization

of global data. Finally, the kernel implements the sensors and actu-

ators API for each mote input and output. The compiled code, includ-

ing Proto and TinyOS, constitutes 31,252 bytes.

The simulator permits the running of much larger networks (over

10,000 nodes), larger applications, flexible visualization, and friend-

lier code development and debugging. As in the mote port, we need

to implement only a small amount of platform-specific code. The

bulk of the simulator code facilitates visualization, code develop-

ment, and debugging.

Verification example
Verification begins in the simulator. For example, figure 6 shows

the plane-wave-based oscillator running in simulation on 10,000

nodes, using hop count for distance and lag.

Once a program runs in simulation, we can transfer it to the motes;

this provides ground truth as to whether our building blocks com-

pose correctly, respecting their prescribed interface. For example,

figure 7 shows a small group of motes running an oscillator with

phase and leadership supplied. This is specified completely by the

implementation Proto code:

(def gradient (src)
(letfed ((n (infinity) (if src 0 (+ 1 (fold-hood min (infinity) n)))))

n))
(def sync-time (src)

(let ((lag (gradient src)))
(letfed ((t 0 (if src (+ 1 t) (fold-hood max 0 t))))

(+ t lag))))
(def osc (src pos period)

(sin (/ (+ (sync-time src) pos) period)))
(leds (/ (+ (osc (sense 1) (elt (coord) 0) 5) 1) 2))

where fold-hood is equivalent to reduce-nbrs, leds is an actuator for the mote

LEDs, coord senses the supplied phase, and (sense 1) senses leadership. This

evaluates to a script of 98 bytecodes and an operator tree of 658 bytes.

MARCH/APRIL 2006 www.computer.org/intelligent 17

Figure 6. A plane-wave oscillator running on 10,000 simulated

devices. The placement of source (yellow) and destination

(magenta) markers in the devices’ sensor field determines the

wave’s period and direction.

Figure 7. A group of motes running the oscillator program,

displaying the output on their LEDs. The motes are given a

synthetic coordinate for their phase.

The motes synchronize and begin oscillating shortly after the leader,

Mote 0, is turned on, displaying the oscillation’s output on their LEDs.

Plotting the values and subtracting the supplied phase difference (see

figure 8), we find that the composition works. The oscillator, as we

expected, diverges owing to communication difficulties and the vari-

able rate of execution on individual motes, but the time synchroniza-

tion operator continually draws it back toward synchrony.

Our work on Proto and the amorphous-medium abstraction has

laid the groundwork on which the discipline of self-managing

systems engineering can continue to develop. As you would expect

in a young field, many problems of varying difficulty remain.

Much research is necessary on the practical matters of imple-

mentation. Although these problems are less novel, solving them and

integrating the solutions into the overall infrastructure is necessary

to provide a solid foundation for ongoing research. Here are a few par-

ticularly noteworthy implementation needs:

• Energy management in the discrete kernel, such as adjusting trans-

mission frequency and contents to lower expenditure when data

is changing slowly.

• Improved bandwidth utilization in the discrete kernel via TDMA

(time-division multiple access), CSMA/CD (carrier sense multi-

ple access with collision detection), or other wireless-communi-

cation algorithms.

• More closely aligning the Proto implementation with Proto’s

semantics.

• Optimizing code by the Proto compiler for time and space. Much

more space- and time-efficient representations of operator trees

are possible. In particular, we’ll investigate both placing static

operator data in program memory and on-the-fly code generation

in the near future.

• Verification of larger programs, by either adding multipacket sup-

port for motes or moving to less-constrained hardware.

Moving beyond implementation, it’s an open question what types

of abstractions are most intuitive for global control of spaces. Can-

didates in the form of distributed algorithms from amorphous com-

puting and elsewhere need to be imported to Proto and analyzed

within its context.

Although we’ve presented a means of composition, a tighter char-

acterization of composed systems is likely possible. In particular,

some amorphous-computing algorithms generally run faster and more

resiliently than the loose bounds established for them, and might

effectively pipeline when composed.

Finally, as the discipline of self-managing systems engineering

develops, it could be extended into domains beyond sensor/actuator

networks. In particular, the amorphous-medium abstraction should

hold for any problem in which the network of computational devices

approximates the topology of the problem being solved. This suggests

that these techniques might be able to solve problems in nonspatial

domains such as semantic networks. Our preliminary investigations

suggest that Proto should be usable in any domain approximated by a

network with a high diameter and small neighborhood.

References

1. H. Abelson et al., Amorphous Computing, tech. report AIM-1665, Arti-
ficial Intelligence Laboratory, Massachusetts Inst. of Technology, 1999.

2. J. Bachrach, “Gooze:A Stream Processing Language,” Proc. Lightweight

Languages 2004, 2004; recorded presentation at http://web.mit.edu/
webcast/csail/mit-csail-lwl-04dec2004-afternoon2-80k.ram.

3. J. Beal, “Programming an Amorphous Computational Medium,” Uncon-

ventional Programming Paradigms, LNCS 3566, Springer, 2005, pp.
121–136.

4. J. Beal and G. Sussman, Biologically Inspired Robust Spatial Program-

ming, AI Memo 2005-001, Computer Science and Artificial Intelligence
Laboratory, Massachusetts Inst. of Technology, 2005.

5. R. Milner et al., The Definition of Standard ML—Revised, MIT Press,
1997.

S e l f - M a n a g i n g S y s t e m s

18 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

0 50 100 150 200 250 300 350
1.0

0.5

0

0.5

1.0

Time

O
u

tp
u

t
(p

h
as

e
co

rr
ec

te
d

)

Mote 0
Mote 1
Mote 2

Mote 3
Mote 4
Mote 5

Figure 8. Output of a group of six motes in a line running the oscillator program, subtracting phase. The motes synchronize and

begin oscillating shortly after the leader, Mote 0, is turned on. Dropped packets and variable execution rates cause the executions

on the various motes to diverge rapidly, while the time synchronization operator continually draws them back toward synchrony.

6. S.P. Jones and J. Hughes, Report on the Pro-

gramming Language Haskell 98, 1999; http://
haskell.org/haskellwiki/Definition.

7. L. Clement and R. Nagpal, “Self-Assembly
and Self-Repairing Topologies,” Proc. Work-

shop Adaptability in Multi-Agent Systems,

RoboCup Australian Open, 2003; www.ict.
csiro.au/staff/Mikhail.Prokopenko/aorc2003_
program.htm.

8. A. Eames, “Enabling Path Planning and
Threat Avoidance with Wireless Sensor Net-
works,” master’s thesis, Dept. Electrical Eng.
and Computer Science, Massachusetts Inst.
of Technology, 2005.

9. D. Gay et al., “The nesC Language:A Holistic
Approach to Networked Embedded Systems,”
Proc. ACM SIGPLAN 2003 Conf. Programming

Language Design and Implementation (PLDI
03), ACM Press, 2003, pp. 1–11.

10. W. Butera, “Programming a Paintable Com-
puter,” PhD thesis, Media Laboratory, Mass-
achusetts Inst. of Technology, 2002.

11. J. McLurkin, “Stupid Robot Tricks: A Behav-

ior-Based Distributed Algorithm Library for
Programming Swarms of Robots,” master’s the-
sis, Dept. Electrical Eng. and Computer Science,
Massachusetts Inst. of Technology, 2004.

12. J.W. Hui and D. Culler, “The Dynamic
Behavior of a Data Dissemination Protocol
for Network Programming at Scale,” Proc.

2nd Int’l Conf. Embedded Networked Sensor

Systems, ACM Press, 2004, pp. 81–94.

13. A. Sutherland, “Towards RSEAM: Resilient
Serial Execution on Amorphous Machines,”
master’s thesis, Dept. Electrical Eng. and
Computer Science, Massachusetts Inst. of
Technology, 2003.

T h e A u t h o r s

Jacob Beal is a PhD
student at the Massa-
chusetts Institute of
Technology Computer
Science and Artificial
Intelligence Labora-
tory. His research inter-
ests include amorphous
computing and human-

like AI. He received his master’s in computer
science from MIT. Contact him at the MIT
Computer Science and Artificial Intelligence
Laboratory, Rm. 32-392, 32 Vassar St., Cam-
bridge, MA 02139; jakebeal@mit.edu.

EXECUTIVE COMMITTEE
President:
DEBORAH M. COOPER*
PO Box 8822
Reston, VA 20195
Phone: +1 703 716 1164
Fax: +1 703 716 1159
d.cooper@computer.org
President-Elect: MICHAEL R. WILLIAMS*
Past President: GERALD L. ENGEL*
VP, Conferences and Tutorials:
RANGACHAR KASTURI (1ST VP)*
VP, Standards Activities: SUSAN K. (KATHY) LAND
(2ND VP)*
VP, Chapters Activities:
CHRISTINA M. SCHOBER*
VP, Educational Activities: MURALI VARANASI†
VP, Electronic Products and Services:
SOREL REISMAN†
VP, Publications: JON G. ROKNE†
VP, Technical Activities: STEPHANIE M. WHITE*
Secretary: ANN Q. GATES*
Treasurer: STEPHEN B. SEIDMAN†
2006–2007 IEEE Division V Director:
OSCAR N. GARCIA†
2005–2006 IEEE Division VIII Director:
STEPHEN L. DIAMOND†
2006 IEEE Division VIII Director-Elect:
THOMAS W. WILLIAMS†
Computer Editor in Chief: DORIS L. CARVER†
Executive Director: DAVID W. HENNAGE†
* voting member of the Board of Governors
† nonvoting member of the Board of Governors

E X E C U T I V E S T A F F
Executive Director: DAVID W.HENNAGE
Assoc. Executive Director: ANNE MARIE KELLY
Publisher: ANGELA BURGESS
Associate Publisher: DICK PRICE
Director, Administration: VIOLET S. DOAN
Director, Information Technology & Services:
ROBERT CARE
Director, Business & Product Development:
PETER TURNER

rev. 6 March 06

PURPOSE The IEEE Computer Society is the
world’s largest association of computing profes-
sionals, and is the leading provider of technical
information in the field.

MEMBERSHIP Members receive the month-
ly magazine Computer, discounts, and opportu-
nities to serve (all activities are led by volunteer
members). Membership is open to all IEEE
members, affiliate society members, and others
interested in the computer field.

COMPUTER SOCIETY WEB SITE
The IEEE Computer Society’s Web site, at
www.computer.org, offers information and
samples from the society’s publications and con-
ferences, as well as a broad range of information
about technical committees, standards, student
activities, and more.

BOARD OF GOVERNORS
Term Expiring 2006: Mark Christensen,
Alan Clements, Robert Colwell, Annie Combelles, Ann
Q. Gates, Rohit Kapur, Bill N. Schilit
Term Expiring 2007: Jean M. Bacon, George V.
Cybenko, Antonio Doria, Richard A. Kemmerer, Itaru
Mimura,Brian M. O’Connell, Christina M. Schober
Term Expiring 2008: Richard H. Eckhouse,
James D. Isaak, James W. Moore, Gary McGraw,
Robert H. Sloan, Makoto Takizawa, Stephanie M.
White

Next Board Meeting: 16 June 06, San Juan, PR

IEEE OFFICERS
President : MICHAEL R. LIGHTNER
President-Elect: LEAH H. JAMIESON
Past President: W. CLEON ANDERSON
Executive Director: JEFFRY W. RAYNES
Secretary: J. ROBERTO DE MARCA
Treasurer: JOSEPH V. LILLIE
VP, Educational Activities: MOSHE KAM
VP, Pub. Services & Products: SAIFUR RAHMAN
VP, Regional Activities: PEDRO RAY
President, Standards Assoc: DONALD N. HEIRMAN
VP, Technical Activities: CELIA DESMOND
IEEE Division V Director: OSCAR N. GARCIA
IEEE Division VIII Director: STEPHEN L. DIAMOND
President, IEEE-USA: RALPH W. WYNDRUM, JR.

COMPUTER SOCIETY OFFICES

Washington Office

1730 Massachusetts Ave. NW

Washington, DC 20036-1992

Phone: +1 202 371 0101

Fax: +1 202 728 9614

E-mail: hq.ofc@computer.org

Los Alamitos Office

10662 Los Vaqueros Cir., PO Box 3014

Los Alamitos, CA 90720-1314

Phone:+1 714 8218380

E-mail: help@computer.org

Membership and Publication Orders:

Phone: +1 800 272 6657

Fax: +1 714 821 4641

E-mail: help@computer.org

Asia/Pacific Office

Watanabe Building

1-4-2 Minami-Aoyama,Minato-ku

Tokyo107-0062, Japan

Phone: +81 3 3408 3118

Fax: +81 3 3408 3553

E-mail: tokyo.ofc@computer.org

Jonathan Bachrach

is a research scientist at
the MIT Computer Sci-
ence and Artificial In-
telligence Laboratory.
His research interests
include robotics, sensor
networks, and program-
ming languages. He re-

ceived his PhD in computer science from the Uni-
versity of Massachusetts at Amherst. Contact him
at the MIT Computer Science and Artificial Intel-
ligence Laboratory, Rm. 32-392, 32 Vassar St.,
Cambridge, MA 02139; jrb@csail.mit.edu.

