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Abstract

Where the development, understanding, and assessmeritvedirgotesting and regression testing tech-
niques are concerned, controlled experimentation is aspedsable research methodology. Obtaining the
infrastructure necessary to support rigorous controligtbementation with testing techniques, however, is
difficult and expensive. As a result, progress in experimgon with testing techniques has been slow, and
empirical data on the costs and effectiveness of testinmtques remains relatively scarce. To help address
this problem, we have been designing and constructingstnfreture to support controlled experimentation
with software testing and regression testing techniquéds paper reports on the challenges faced by re-
searchers experimenting with testing techniques, inntyittiose that inform the design of our infrastructure.
The paper then describes the infrastructure that we arérggea response to these challenges, and that we
are now making available to other researchers, and disstiss@mpact that this infrastructure has and can

be expected to have on controlled experimentation witlngséchniques.
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1 Introduction

Testing is an important engineering activity responsiblesf significant portion of the costs of developing
and maintaining software [6, 54]. It is important for res#ears and practitioners to understand the trade-
offs and factors that influence testing techniques. Somenstehding can be obtained by using analytical
frameworks, subsumption relationships, or axioms [7191], In general, however, testing techniques are
heuristics and their performance varies with differennsems; thus, they must be studied empirically.

The initial, development testing of a software system isdntgnt; however, software that succeeds
evolves, and over time, far more effort is spent re-valitthfl software system'’s subsequent releases than is
spent performing initial, development testing. This rédation activity is known asegression testing, and
includes tasks such as re-executing existing tests [6k;theg cost-effective subsets of test suites [14, 78],
prioritizing test cases to facilitate earlier detectionfailts [25, 81, 96], augmenting test suites to cover
system enhancements [8, 76], and maintaining test sui&sH{B 57]. These activities, too, involve many
cost-benefits tradeoffs and depend on many factors, andbawsstdied empirically.

Many testing and regression testing techniques involveiies performed by engineers, and ultimately
we need to study the use of such techniques by those engindach can be learned about testing tech-
niques, however, through studies that focus directly osathtechniques themselves. For example, we can
measure and compare the fault-revealing capabilitiessbtétes created by various testing methodologies
[31, 41], the cost of executing the test suites created Hgrdiit methodologies [7], or the influence of
choices in test suite design on testing cost-effectivefi#sls Such studies provide important information
on tradeoffs among techniques, and they can also help usatade the hypotheses that should be tested,
and the controls that are needed, in subsequent studiesrafts) which are likely to be more expensive.

Empirical studies of testing techniques, like studies eféhgineers who perform testing, involve many
challenges and cost-benefits tradeoffs, and this has emstrprogress in this area. In general, two classes
of empirical studies can be considered: case studies aritbtted experiments. Controlled experiments
focus on rigorous control of variables in an attempt to presénternal validity and support conclusions
about causality, but the limitations that result from exgricontrol can limit the ability to generalize results
[88]. Case studies sacrifice control, and thus, internadlirgl but can include a richer context [99]. Each of
these classes of studies can provide valuable insightsaftevare testing techniques, and together they are

complementary; in this paper, however, our focus is coleticgdxperimentation.



Controlled experimentation with testing technigues degemm numerous software-related artifacts, in-
cluding software systems, test suites, and fault datagfimession testing experimentation, multiple versions
of software systems are also required. Obtaining suchaeartifand organizing them in a manner that sup-
ports controlled experimentation is a difficult task. Thd#ggculties are illustrated by the survey of recent
articles reporting experimental results on testing tegpies presented in Section 2 of this paper. Section
3 further discusses and highlights these difficulties im&eof the challenges faced by researchers wishing
to perform controlled experimentation, which include tleds to generalize results, ensure replicability,
aggregate findings, isolate factors, and amortize the cbstgperimentation.

To help address these challenges, we have been designingpastiucting infrastructure to support
controlled experimentation with software testing andesgion testing techniquésSection 4 of this paper
presents this infrastructure, describing its organiza#ind primary components, and our plans for making
it available and augmenting it. Section 5 concludes by fipon the impact this infrastructure has had,

and can be expected to have, on further controlled expetatien.

2 A Survey of Empirical Studies of Software Testing

To provide an initial view on the state of the art in empirisaldies of software testing, we surveyed recent
research articles following approaches used by Tichy €Bél. and Zelkowitz et al. [100]. We selected
two journals and two conferences recognized as pre-eminestftware engineering research and known
for including papers on testing: IEEE Transactions on SaféwEngineering (TSE), ACM Transactions on
Software Engineering and Methodology (TOSEM), the ACM SBES International Symposium on Soft-
ware Testing and Analysis (ISSTA), and the ACM/IEEE Int¢iorzal Conference on Software Engineering
(ICSE). We considered all issues and proceedings from trexsges, over the period 1994 to 2003.

Table 1 summarizes the results of our survey with respecuiobers of research articles appearing in
each venue per yearThe table contains three columns of data per venue: Totatgtal number of articles
published in that year), Testing (the number of articlesualsoftware testing published in that year), and
Empir. (the number of articles about software testing tlattained some type of empirical study). Note

that ISSTA proceedings appear bi-annually. As the tablevsh@2.3% (170) of the articles in the venues

! This work shares many similarities with the activities lejromoted by the International Software Engineering Resea
Network (ISERN). ISERN, too, seeks to promote experimématin part through the sharing of resources; however, ISERs
not to date focused on controlled experimentation withvearfe testing, or produced infrastructure appropriate abfihcus.

2For full details on the survey, see the Appendix.



Table 1: Research articles involving testing and empistadlies in four major venues, 1994-2003.

YEAR TSE TOSEM ISSTA ICSE
Total | Testing | Empir. || Total | Testing [ Empir. || Total | Testing | Empir. | Total | Testing | Empir.
2003 74 8 7 7 0 0 - - - 75 7 3
2002 74 8 4 14 2 0 23 11 4 57 4 4
2001 55 6 5 11 4 3 - - - 61 5 3
2000 62 5 2 14 0 0 21 10 2 67 5 2
1999 46 1 0 12 1 0 - - - 58 4 2
1998 73 4 3 12 1 1 16 9 1 39 2 2
1997 50 5 4 12 1 1 - - - 52 4 2
1996 59 8 2 13 5 2 29 13 1 53 5 3
1995 70 4 1 10 0 0 - - - 31 3 1
1994 68 7 1 12 3 1 17 10 1 30 5 2
| Total | 631 [ 56 | 29 J 117 ] 17 | 8 J 106 [ 53 [ 9 [ 523] 44 | 24 |

considered concern software testing, a relatively largegmeage attesting to the importance of the topic.
(This includes papers from ISSTA, which would be expectdthie a large testing focus, but even excluding
ISSTA, 9.3% of the articles in the other three venues, whosasis software engineering generally, concern
testing.) Of the testing-related articles, however, olly4(70) report empirical studies.

We next analyzed the 70 articles on testing that reportedirgralpstudies, considering each of the
following categories, which represent factors importanthte performance of controlled experiments on

software testing and regression testing:

e The type of empirical study performed.

Number of programs used as sources of data.

Number of program versions used as sources of data.

Whether test suites were utilized.

o Whether fault data was utilized.

e Whether the study involved artifacts provided by or madelavke to other researchers.

Determining the type of empirical study performed requietkgree of subjective judgement, due to vague
descriptions by authors and the absence of clear quaveitaitasures for differentiating study types. How-
ever, previous work [5, 48, 93, 100] has provided guidelioeslassifying types of empirical studies, and

we utilized these to determine whether studies should ssifled as controlled experiments or case stud-
ies (for details, see the Appendix). On close analysis, sobservational work described by authors as
“empirical studies” should not have been described as daghg essentially just descriptions relating the

application of a technigue on a single extended exampliewalg [100] we classified these as “examples”.
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Table 2: Further classification of published empirical s&ad

Publication Empirical | Example | Case | Controlled | Multiple | Multiple | Tests| Faults | Shared

Papers Study | Experiment| Programs| \ersions Artifacts
TSE (1999-2003) 18 0 9 9 15 6 16 7 5
TSE (1994-1998) 11 1 9 1 6 2 8 2 1
TSE (1994-2003) 29 1 18 10 21 8 24 9 6
TOSEM (1999-2003) 3 0 0 3 3 3 3 3 2
TOSEM (1994-1998) 5 1 1 3 4 2 5 3 1
TOSEM (1994-2003) 8 1 1 6 7 5 8 6 3
ISSTA (1999-2003) 6 0 4 2 5 2 6 1 1
ISSTA (1994-1998) 3 0 2 1 3 1 3 1 0
ISSTA (1994-2003) 9 0 6 3 8 3 9 2 1
ICSE (1999-2003) 14 1 6 7 9 6 14 8 6
ICSE (1994-1998) 10 0 7 3 6 7 10 5 2
ICSE (1994-2003) 24 1 13 10 15 13 24 13 8
Total (1999-2003) 42 1 19 21 32 17 39 19 14
Total (1994-1998) 28 2 19 8 19 12 26 11 4
Total (1994-2003) 70 3 38 29 51 29 65 30 18

Table 2 summarizes the results of our analysis. The tablerteethe data for each venue in terms of
three time periods: 1994-1998, 1999-2003, and 1994-2008r the ten year period, 41% of the empirical
studies presented were controlled experiments and 54%aaeeestudies. Separation of this data into time
periods suggests that trends are changing: 28% of the stimdike first five year period (1994-1998) were
controlled experiments, compared to 50% in the second fiee geriod (1999-2003). This trend occurs
across all venues other than ISSTA, and it is particularynsj for TSE (9% vs. 50%).

The table also shows that only 26% of the studies involveifhartsharing. This figure exhibits an
increasing trend from 14% in the early time period to 33% mldter period. Finally, the table shows that
of the 70 studies, 27% utilize data from only one progranhalgh this is not necessarily problematic for
case studies). Also, only 44% of the studies utilize mudti@rsions and only 43% utilize fault data.

Further investigation of this data is revealing. Of the 18qya in which artifacts were shared among
researchers, 17 utilize one or both of a set of programs krotire literature as the “Siemens programs”, or
a somewhat larger program known as the “space” programr @fdbese 17 papers also utilize, in addition
to these artifacts, one or two other large programs, buktpesgrams have not to date been made avail-
able to other researchers as shared artifacts.) The Sigonegiams, originally introduced to the research
community by Hutchins et al. [41], and subsequently augettrdrganized, and made available as sharable

infrastructure by one of the authors of this paper, condiseeen C programs of no more than 1000 lines



of code, 132 seeded faults for those programs, and sevésalfdest suites satisfying various test adequacy
criteria. The space program, appearing initially in pagsrether researchers [89, 95] and also processed
and made available as sharable infrastructure by one ofulitvis of this paper, is a single application of
nearly 10,000 lines of code, provided with various testesjiand 35 actual faults. In the cases in which mul-
tiple “versions” of software systems are utilized in stigdievolving these programs, these versions differ
only in terms of faults, rather than in terms of a set of changéwhich some have caused faults; ignoring

these cases, only four cases exist in which actual, realistitiple versions of programs are utilized.

3 Challenges for Experimentation on Testing and Regressiohesting

Researchers attempting to conduct controlled experime@siining the application of testing techniques
to artifacts face several challenges. The survey of theatitiee just summarized provides evidence of the
effects of these challenges. The survey also suggestsybowiat researchers are becoming increasingly
willing to conduct controlled experiments, and are incieguthe extent to which they utilize shared artifacts.

These tendencies are related: utilizing shared artifadikely to facilitate controlled experimentation.
The Siemens and space programs, in spite of their size anmb dirnitations, have clearly facilitated a
number of controlled experiments that might not otherwiaeehbeen possible. Their use argues for the
utility of making additional infrastructure available tther researchers, as is our goal.

Before proceeding further, however, it is worthwhile tont#y the challenges faced by researchers
performing experimentation on testing techniques in tlesg@nce of limited or inadequate infrastructure.
Identifying such challenges provides insights into theitiah progress in this area that goes beyond the
availability of artifacts. Furthermore, identifying treeshallenges helps us define the infrastructure require-

ments for such experiments, and to shape the design of animgoe infrastructure.

Challenge 1: Supporting replicability across experiments

A scientific finding is not trusted unless it can be indepetigenreplicated. Supporting replicability for
controlled experiments requires establishment of cordroexperimental factors and context; this is in-
creasingly difficult to achieve as the units of analysis amutext become more complex. When performing

controlled experimentation with software testing teclmeis; the following replicability challenges exist:

e Artifacts utilized by researchers are rarely homogenedem. example, programs may belong to

different domains and have different complexities andssizersions may exhibit different rates of



evolution, processes employed to create programs andwuersiay vary, and faults available for the
study of fault detection may vary in type and magnitude.

o Artifacts utilized by researchers are provided in widelyyuag levels of detail. For example, pro-
grams freely available through the open source initiatieeadten missing formal documentation or
rigorous test suites. On the other hand, confidentialitgaguents often constrain the industry data
that can be utilized in published experiments, especialta delated to faults and failures.

e Experiment design and process details are often not stdizddror reported in sufficient detail. For
example, different types of oracles may be used to evaleateng technique effectiveness, different
and non-comparable tools may be used to capture coverageadatwhen fault seeding is employed

it may not be clear who performed the activity and what predisy followed.

Challenge 2: Supporting effective aggregation of findings@oss experiments.
Individual experiments may produce interesting findings,dan claim only limited validity under different
contexts. In contrast, a family of experiments followingimitar operational framework can enable the
aggregation of findings, leading to generalization of rssaihd further theory development.

Opportunities for aggregation are highly correlated with teplicability of an experiment (Challenge
1); that is, a highly replicable experiment is likely to pide detail sufficient to determine whether results
across experiments can be aggregated. (This reveals jashstance in which the relationship between
challenges is not orthogonal, and in which providing supfmaddress one challenge may impact others.)

Still, even high levels of replicability cannot guaranteerect aggregation of findings unless there is
a systematic capture of experimental context [68]. Suctesyatic capture typically does not occur in the
domain of testing experimentation. For example, versidilzed in experiments to evaluate regression
testing techniques may represent minor internal versionsaor external releases; these two scenarios
clearly involve very distinct levels of validation. Althgh capturing complete context is often infeasible, the

challenge is to provide enough support so that the evidebtzéned across experiments can be leveraged.

Challenge 3: Reducing the cost of controlled experiments.
Controlled experimentation is expensive, and there arerakstrategies available for reducing this expense.
For example, experiment design and sampling processe&dane the number of participants required for

a study of engineer behavior, thereby reducing data caleciosts. Even with such reductions, however,



obtaining and preparing participants for experimentat®oostly, and the magnitude of that cost varies
with the domain of study, the hypotheses being evaluatedl tlze applicability of multiple and repeated
treatments on the same participants.

Controlled experimentation in which testing techniquesapplied to artifacts does not require human
participants, it requires objects such as programs, vwasstests, and faults. This is advantageous because
artifacts are more likely to be reusable across experimants multiple treatments can be validly applied

across all artifacts at no cost to validity. Still, artifaetise is often jeopardized due to the following factors:

e Artifact organization is not standardized. For examplfedint programs may be presented in differ-
ent directory structures, with different build procesdasit information, and naming conventions.

o Artifacts are incomplete. For example, open source syssefdsm provide comprehensive test suites,
and industrial systems are often “sanitized” to removerimfation on faults and their corrections.

e Artifacts require manual handling. For example, build psses may require software engineers to

configure various files, and test suites may require a testaritrol execution and audit results.

Challenge 4: Obtaining sample representativeness.

Sampling is the process of selecting a subset of a populadibrthe intent of making statements about the

entire population. The degree of representativeness dfdleeted sample is important because it directly
impacts the applicability of the conclusions to the resthef population. Observe, however, that represen-
tativeness needs to be balanced with considerations fdraimogeneity of the sampled artifacts in order to

facilitate replication as well. Within the software tegtidomain, we have found two common problems for

sample representativeness:

e Sample size is limited. Since preparing an experimentaattis expensive, experiments often utilize
small numbers of programs, versions, and faults. Furtbeearchers trying to reduce experimentation
costs (Challenge 3) do not prepare artifacts for repeatpdrarentation (e.g., test suite execution is
not automated). This lack of preparation for reuse limiesghowth of the sample size even when the
same researchers perform similar studies.

e Samples are biased. Even when a large number of programslieted they usually belong to a
set of similar programs. For example, as described in Se2tionany researchers have employed the
Siemens programs in controlled experiments with testirgs $et of objects includes seven programs

with faults, versions, processing scripts, and automagstdsuites. The Siemens programs, however,



each involve fewer than 1000 lines of code. Other sourcearpte bias include the types of faults

seeded or considered, processes used for test suite nreatobcode changes considered.

Challenge 5: Isolating the effects of individual factors.
Understanding causality relationships between factoas ike core of experimentation. Blocking and ma-
nipulating the effects of a factor increases the power ofk@eement to explain causality. Within the testing

domain, we have identified two major problems for contrglland isolating individual effects:

¢ Artifacts may not offer the same opportunities for manigiola For example, programs with multiple
faults offer opportunities for analyzing faults individlyaor in groups, which can affect the perfor-
mance of testing techniques as it introduces masking sffemother example involves whether or
not automated and partitionable test suites are availalilen available, these may offer opportunities
for isolating test case size as a factor.

o Artifacts may make it difficult to decouple factors. For exde) it is often not clear what program
changes in a given version occurred in response to a faudtinlaancement, or both. Furthermore, itis
not clear at what point the fault was introduced in the firatpl As a result, the assessment of testing

techniques designed to increase the detection of regrefssitis may be biased.

4 Infrastructure

We have described what we believe are the primary challefagesl by researchers wishing to perform
controlled experimentation with testing techniques, drad have limited the progress in this area. Some of
these challenges involve issues for experiment designgaidelines such as those provided by Kitchenham
et al. [47] address those concerns. Still, all of these ehglts can be traced, at least partly (and some
primarily) to issues involving infrastructure.

To address these challenges, we have been designing anducting infrastructure to support con-
trolled experimentation with software testing and regmesgesting techniques. Our infrastructure includes
a set of artifacts (programs, versions, tests, faults, arigts) that enable researchers to perform controlled
experimentation and replications. Also included is docotation on the processes used to select, organize,
and further set up artifacts, and supporting tools that élp these processes. Together with our plans
for sharing and extending the infrastructure, these ofjelcicuments, tools, and processes help address the

challenges described in the preceding section as sumrdaniZzable 3.
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Table 3: Challenges and Infrastructure.

Infrastructure attributes
Artifact Documentation| Sharing and

Challenges Selection | Organization| Setup and Tools Extending
Support Replicability X X X X X
Support Aggregation X X X X
Reduce Cost X X X X X
Obtaining Representativenegs X X
Isolating Effects X X

We now proceed to describe our infrastructure and the psesassed to assemble it. We then describe

supporting tools and documentation, and finally, we distussharing and extension of our infrastructure.

4.1 Object selection, organization, and setup

Our infrastructure provides guidelines for object setattiorganization, and setup processes. The selection
and setup guidelines assist in the construction of a sanfiplenoplete artifacts. The organization guidelines
provide a consistent context for all artifacts, facilitgtithe development of generic experiment tools, and

reducing the experimentation overhead for researchers.

4.1.1 Object selection

Object selection guidelines direct persons assemblimgstriicture in the task of selecting suitable objects,
and are provided through a set of on-line instructions thelude artifact selection requirements. In our
work thus far, we have specified two levels of required qigalifor objects: 1st-tier required-qualities
(minimum lines of code required, source freely availablee for more versions available) and 2nd-tier
required-qualities (runs on platforms we utilize, can bétlitom source, allows automation of test input
application and output validation). When assembling dbjewe first construct a list of objects that meet
first-tier requirements, which can be determined relatiealsily, and then we prioritize these, and for each,
investigate second-tier requirements for likely candidat

Part of the object selection task involves ensuring thaggms and their versions can be built and ex-
ecuted automatically. Because experimentation requieability to repeatedly execute and validate large
numbers of tests, automatic execution and validation meigidssible for candidate programs. Thus, our
infrastructure currently excludes programs that requiaghical input/output that cannot easily be automat-

ically executed or validated. We also require programsekatute, or through edits can be made to execute,
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deterministically; this too is a requirement for automatetidation, and implies that programs involving

concurrency and heavy thread use might not be directlytdaita

Our infrastructure now consists of 17 C and two Java prograsshown in Table 4. The first eight

programs listed are the Siemens and space programs, whiskitated our first set of experiment objects;

the remaining programs consist of nine larger C programstandlava programs (nhanoxml and siena),

selected via the foregoing process. The significance oftier @olumns is as follows:

The “Size” column presents the total number of lines of cadeuding comments, present in each
program, and illustrates our attempts to incorporate @sgively larger programs.

The “No. of Versions” column lists how many versions eachgoam has. The Siemens and space
programs are available only in single versions (with midtfaults), a serious limitation, although the
availability of multiple faults has been leveraged, in expents, to create various alternative versions
containing one or more faults. Our more recently collectei@cs, however, are available in multiple,
sequential releases (corresponding to actual field redazdbe systems.)

The “No. of Tests” column lists the number of tests availalolethe program (for multi-version
programs, the number available for the final version isdisté&ach program has one or more types
of tests and one or more types of test suites (describeditetieis section). In addition, the two Java
programs are provided with test drivers that invoke classeler test.

The “No. of Faults” column indicates the total number of fawdvailable for each of the programs;
for multi-version programs we list the sum of faults avaiéaacross all versions.

The “Release Status” column indicates the current reldasessof each object as one of “released”,
“ready”, or “near release”. The Siemens and space prograsndetailed above, have been provided
to and used by many other researchers, so we categorize thegteased. Bash, emp-server, pine,
vim, and siena are undergoing final formatting and testirdjthos are listed as “near release”. The

rest of the programs listed are now available in our inftatire repository.

Our object selection process helps provide consistendyeipteparation of artifacts, supporting repli-

cability. The same process also reduces costs by discagditigr the artifacts that are not likely to meet the

experimental requirements. Last, the selection mechal@sus adjust our sampling process to facilitate

the collection of a representative set of artifacts.
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Table 4: Objects in our Infrastructure

Subjects Size (LOC) | No. of Versions| No. of Tests| No. of Faults | Release Status
tcas 173 1 1608 41 released
schedule2 374 1 2710 10 released
schedule 412 1 2650 9 released
replace 564 1 5542 32 released
tot.info 565 1 1052 23 released
print_tokens2 570 1 4115 10 released
print_tokens 726 1 4130 7 released
space 9564 1 13585 35 released
gzip 6582 6 217 15 ready
sed 11148 5 1293 40 ready
flex 15297 6 567 81 ready
grep 15633 6 809 75 ready
make 27879 5 1043 17 ready
bash 48171 10 1168 69 near release
emp-server 64396 10 1985 90 near release
pine 156037 4 288 24 near release
vim 224751 9 975 7 near release
nanoxml 7646 6 217 33 ready
siena 6035 8 567 3 near release

4.1.2 Object organization

We organize objects and associated artifacts into a disestoucture that supports experimentation. Each

object we create has its own “object” directory, as shownigufe 1. An object directory is organized into

specific subdirectories (which in turn may contain subdaees), as follows:

e The scripts directory is the “staging platform” directorgrih which experiments are run. This direc-
tory may also contain saved scripts that perform objectieel tasks.

The source directory is a working directory in which, dur@geriments, the program version being
worked with is temporarily placed.

The versions.alt directory contains various variants efgburce for building program versions; these
include (among others) original source code for each versind fault-seeded variants of that code.
Each variant is itself organized as a subdirectory; thatisabtory contains subdirectories v0, v1,,

vk corresponding to different versions.

The inputs directory contains files containing inputs, eecliories of inputs used in various tests.
The testplans.alt directory contains subdirectories €0, v, vk, each of which contains testing infor-
mation for a version of the system; testing information ¢gtly includes a “universe” file containing

a pool of tests, and possibly also various test suites dreavn that pool.
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object

[ scriptsj [ source] E/ersions.a@ [ inputs j \ testplansw | outputs w | traces w info

ktestplans.a@ koutputs.altj k traces.aj

Figure 1: Object directory structure (top level)

e The traces.alt directory contains subdirectories v0,.v1,vk, each holding trace information for a
version of the system, in the form of individual test traceswommaries of coverage information.

e The outputs.alt directory permanently stores the outpitssd runs, especially useful when experi-
menting with regression testing where outputs are compagadhst previous outputs.

e Thetestplans, outputs, and traces directories serveagirigtplatforms” during specific experiments.
Data from a specific “testplans.alt” subdirectory is plag#d the testplans directory prior to exper-
imentation; data from the outputs and traces directorigdased into subdirectories in their corre-
sponding “.alt” directories following experimentation.

e The info directory contains additional information abolu torogram, especially information gath-
ered by analysis tools and requiring saving for experimesush as fault-matrix information (which

describe the faults that various test cases reveal).

Our object organization supports consistent experimemtaionditions and environments, allowing us
to write generic tools for experimentation that know whardind things, and that function across all of
our objects. This in turn helps reduce the costs of execwtimdjreplicating controlled experiments, and
aggregating results across experiments. The structuseaalsommodates objects with various types and
classes of artifacts, such as multiple versions, fault dyj@d test suites, enabling us to control for and

isolate individual effects in conducting experimentation

4.1.3 Obiject setup

Test suites
Systems we have selected for our repository have only autalyy arrived equipped with anything more

than rudimentary test suites. When suites are providedneaporate them into our infrastructure because
they are useful (at minimum) for case studies. For contlodieperiments, however, we typically prefer

(depending on the aim of the experiment) to have test suiegded by uniform processes. Such test suites
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can also be created in ways that render them partitionaddiitéiting studies that isolate factors such as test
size, as mentioned in Section 3 (Challenge 5).

To construct test suites in ways that represent those thgtttrbe constructed in practice for particular
programs, we have relied primarily on two general procedsiewing the approach used by Hutchins et
al. [41] in their initial construction of the Siemens progra

The first process involves specification-based testinggusia category-partition method, based on a
test specification language, TSL, described in [65]. A TSéc#jcation is written for an initial version of
an object, based on its documentation, by a person who hasieefamiliar with that documentation and
the functionality of the object. Subsequent versions ofothiect inherit this specification, or most of it, and
may need additional tests to exercise new functionalityckvban be encoded in an additional specification
added to that version, or in a refined TSL specification. TSdcHgations are processed by a tool, provided
with our infrastructure, into test frames, which describe tequirements for specific test cases. Each test
case is created and encoded in proper places within thetahjectory.

The second test process we have used involves coverageibatrg, in which we instrument the object
program, measure the code coverage achieved by specifidzged tests, and then create tests that exercise
code not covered by those tests.

Employing these processes using multiple testers helpEesitireats to validity involving specific tests
that are created. Creating larger pools of test cases irfakigson and sampling them to obtain various
test suites, such as test suites that achieve branch ceverdgst suites of specific sizes, provides further
assistance with generalization. We store such suites @lobjects along with their pools of tests.

At present, not all of our objects are equivalent in termshefdonstructed tests and test suites that they
possess, but one goal in extending our infrastructure isgoire that specific types of tests and test suites
are available, wherever possible, across all objectsdtwitih the aggregation of findings. A further goal, of
course, is to provide multiple instances and types of testssper object, a goal that has been achieved for
the Siemens and space programs allowing the completiowvefalecomparative studies, and that we are still
pursuing on other objects. Meeting this goal will be furtfaailitated through sharing of the infrastructure,

and collaboration with other researchers.
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Faults
For studies of fault detection, we provide processes for d¢ases: the case in which naturally occurring

faults can be identified, and the case in which faults musekdexd. Either possibility presents advantages
and disadvantages: naturally occurring faults are costlptate and typically cannot be found in large
numbers, but they represent actual events. Seeded faaltosily to place, but can be provided in larger
numbers, allowing more data to be gathered than would otkedye possible, but with less external validity.

To help with the fault seeding process, and increase thenpatexternal validity of results obtained
on seeded faults, we insert faults by following fault lozation guidelines, which provide direction on
places that are likely to contain faults, how to identifyrthacross versions and different fault seeders, and
classes of faults to consider. Faults are seeded indepiyntgrmultiple persons with at least 3 years of
programming experience, to reduce the potential for bias.

Another motivation for seeding faults occurs when expenitaton concerned with regression testing
is the goal. For regression testing, we wish to investigatar® caused by code change (regression faults).

With the assistance of a differencing tool, fault seedetati code changes, and place faults within those.

4.2 Documentation and supporting tools

Documentation and guidelines supplied with our infragtreesprovide detailed procedures for object selec-
tion and organization, test generation, fault localiaatiautomatic tool usage, and current object descrip-
tions (our descriptions in this paper have summarized thentare extensive information available on our
infrastructure site.) As suggested in Section 3, such d¢jneesupport sharing (and thus cost reduction), as
well as facilitating replication and aggregation acrogsesinents. Documentation and guidelines are thus
as important as objects and associated artifacts.

Depending on the research questions being investigatsithgeexperiment designs and processes can
be very complex and require multiple executions, so autmmadd important. Our infrastructure provides a
set of automated testing tools that build scripts executsts automatically, gather traces for tests, generate
test frames based on TSL specifications, and generate fatlices (tables relating faults to the tests that
expose them) for objects. These tools make experimentdeaingpexecute, and reduce the possibility of
human errors, such as typing errors, supporting replitalais well. The automated testing tools function
across all objects, given the uniform directory structumedbjects; thus, we can reuse these tools on new

objects as they are completed, reducing the costs of prepsuich objects.
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4.3 Sharing and extending the infrastructure

Our standard object organization and tool support help wfiiastructure be extensible; objects that meet
our object requirements can be assembled using the redoimaets and tools. This is still an expensive
process, but in the long run such extension will help us aehgample representativeness, and help with
problems in replicability and aggregation as discussecitiGn 3.

In our initial infrastructure construction, we have focdsm gathering objects and artifacts for regres-
sion testing study, and on facilitating this with faults, Itiple versions and tests. Such materials can also be
used, however, for experimentation with testing techréqgemnerally, and with other program analysis tech-
nigues. (Section 5 discusses cases in which this is alreaxlyring.) Still, we intend that our infrastructure
be extended through addition of objects with other typessebeaiated artifacts, such as may be useful for
different types of controlled experiments. For examples ohour Java objects, nanoxml, is provided with
UML state chart diagrams, and this would facilitate expermtation with UML-based testing techniques.

Extending our infrastructure can be accomplished in twoswdny our research group, and by collab-
oration with other research groups. To date we have prodepdmarily through the first approach, but
the second has many benefits. First, it is cost effectivepailytleveraging the efforts of others. Second,
through this approach we can achieve greater diversity grobjects and associated artifacts, which will
be important in helping to increase sample size and achepresentativeness. Third, sharing implies more
researchers inspecting the artifacts setup, tools, anghaestation reducing threats to internal validity. Ul-
timately, collaboration in constructing and sharing isfracture can help us contribute to the growth in the
ability of researchers to perform controlled experimaatabn testing in general.

As mentioned earlier, we have been making our Siemens amé dpisastructure available, on request,
for several years. We have recently created web pages thatlprthis infrastructure, together with all more
recently created infrastructure described in this artiated all of the programs listed in Table 4 with the
exception of those listed as “near release”. We have madenttd page available to researchers at three
other institutions for initial Beta testing, and we will m&ak available to any other researchers who request
the address from us by email, provided they are willing tarepo us any experiences that will help us to
improve the infrastructure. Following this Beta shakedpamd correction of problems found during this

period, we intend to make our web site openly available.
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5 Conclusion: Impact and Potential Impacts of Infrastructure

We have presented our infrastructure for supporting ciatt@xperimentation with testing techniques, and
we have described several of the ways in which it can potnkialp address many of the challenges faced
by researchers wishing to conduct controlled experimentgesting. We close this article by providing
additional discussion of the impact, both demonstratedpatential, of this infrastructure.

First, we remark on the impact of our infrastructure to datéany of the infrastructure objects de-
scribed in the previous section are only now being madeadailto other researchers. The Siemens and
space programs, however, in the format extended and orghbiz ourselves, have been available to other
researchers since 1999, and have seen widespread useitioraetidour own papers describing experimen-
tation using these artifacts (over twenty such papers hapeaed, see http://www.cs.orst.edudther) we
have identified seven other papers not involving creatotkisinitial infrastructure that describe controlled
experiments involving testing techniques using the Sienagw/or space programs [15, 36, 45, 58, 63, 98].
The artifacts have also been used in [27] for a study of dya@maariant detection (attesting to the feasibility
of using the infrastructure in areas beyond those limite@$ting).

In our review of the literature, we have found no similar wesad other artifactdor controlled exper-
imentation in software testing; the willingness of other researchers to use the Siemensemk artifacts
thus attests to the potential for infrastructure, once naadéable, to have an impact on research. This same
willingness, however, also illustrates the need for improents to infrastructure, given that the Siemens
and space artifacts present only a small sample of the piquiaf programs, versions, tests, and faults. It
seems reasonable, then, to expect our extended infraguotbe used for experimentation by others, and
to help extend the validity of experimental results thromgtiened scope. Indeed, we ourselves have been
able to use several of the newer infrastructure objectsatigedibout to be released in controlled experiments
described in recent publications [21, 22, 56, 75], as weilhdkree publications currently under review.

In terms of impact, it is also worthwhile to discuss the cost®lved in preparing infrastructure; it
is these costs that wave when we re-use infrastructure. For example, the emp-samnebash objects
required between 80 and 300 person-hours per version tarepwo faculty and five graduate research
assistants have been involved in this preparation. The dleep, make, sed and gzip programs involved
two faculty, three graduate students, and five undergraditatients; these students worked 10-20 hours per

week on these programs for between 20 and 30 weeks. Thesearestot costs typically affordable by
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researchers; it is only by amortizing the costs over themii@tiecontrolled experiments that can follow that
we render the costs acceptable.

Finally, there are several additional potential benefitsg¢oealized through sharing of infrastructure in
terms of challenges addressed; these translate into ati@muwf threats to validity that would exist were
the infrastructure not shared. By sharing our infrastmectuith others, we can expect to receive feedback
that will improve it. User feedback will allow us to improvieet robustness of our tools and the clarity and
completeness of our documentation, enhancing the opptesifor replication of experiments, aggregation
of findings, and manipulation of individual factors.

We are in the process of setting up the necessary mecharssmsdouraging researchers who use our
infrastructure to contribute additions to it in the form adw fault data, new test suites, and variants of
programs and versions that function on other operatiorsfgrms. Ultimately, we expect the community
of researchers to assemble additional artifacts usingamedts and tools prescribed, and contribute them
to the infrastructure, which will increase the range andesgntativeness of artifacts available to support
experimentation.

Through this effort we hope to aid the entire testing redeammmunity in pursuing controlled exper-
imentation with testing techniques, increasing our urtdeding of these techniques and the factors that

affect them in ways that can only be achieved through suchkrexpntation.
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6 Appendix: Classification of Published Empirical Studies

Of 1377 articles from all issues and proceedings of the 4igatidn venues we considered, we identified
170 articles on topics that focused on software testinggssuch as testing techniques, test generation, test
strategy, and test adequacy criteria. We examined theiséesstand determined that 70 reported results
of empirical studies. In this process, we included all &tichat described their results as “empirical” or
clearly evaluated their proposed techniques or methodsidir experimentation. We analyzed these 70
articles based on the categories that we described in &&ttio

Tables 5 and 6 summarize the results of our analysis. Tali&s5209 articles from TSE and eight from
TOSEM, and Table 6 lists nine articles from ISSTA and 24 fré&@SE. For some articles, we could not
obtain some data relevant to the tables, because the ardicleot provide sufficiently detailed descriptions.

In these cases, we entered “NA’ for that data. The descrigifeach column is as follows:

e The “Articles” column lists an article identifier, consisgi of four parts: publication-year-seriabumber
[citation]. For example, TSE-00-18[70] means that thechativas published by TSE in 2000, it is the
18th of 29 TSE articles considered, and its reference nuimslyY in the reference section.

e The “Number of Objects” column presents the number of objeeich study used. Most objects of
study used are computer programs, but some studies userbdiftypes of objects depending on their
goals. For these exceptions, we denoted their object typarentheses. In this survey, we found only
2 exceptions, which used specifications : TSE-03-3 and T&ED

e The “Number of Versions” column lists how many physicalliegsed versions each object has. Some
of the articles having multiple objects have different nemsbof versions per object. In these cases,
we listed the different numbers, separating them by commas.

e The “Multiple Experimental Versions” column indicates wvtier each object has multiple experimen-
tal versions for study purposes. For example, the Siemedspace programs are available only
in single released versions, but with multiple faults. Itygeanultiple versions of programs should
be provided to support experimentation on regressionngséichniques, but researchers can simu-
late this situation with multiple faulty versions of a siagkeleased version when multiple released
versions of programs are not available.

e The “Object Size” column lists the total number of lines oflepincluding comments. If an article

describes two objects, then we listed their sizes sepaltedcomma. If an article has more than
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two objects, then we listed the range of total number of lirB&sme articles provide different types of
size measures, such as the number of methods and clasdest dage, we denoted the measure they
described in parentheses.

e The “Tests” column indicates whether test suites werezeti

e The “Faults” column indicates whether fault data were zgidi.

e The “Empirical Category” column lists the type of empiricalidy performed: controlled experiment
(listed as “experiment” in the table), case study, and exengs described below.

e The “Shared Artifacts” column indicates whether the studyolved artifacts provided by or made

available to other researchers.

For classifying types of empirical studies, we researchgdedines used in previous literature [5, 48,
93, 100]. These sources use slightly different criteria eatégories to classify empirical studies, but their
common categories are case study and experiment. In glagsiémpirical studies, we adopted Wohlin
et al.’s criteria [93] and focused primarily on whether thedy involved manipulating factors to answer
research questions.

Many studies were relatively easy to classify: If a studjizés a single program or version, and it has
no control factor, then it is clearly a case study or an examipla study utilizes multiple programs and
versions, and it has multiple control factors, then it is atoaled experiment. However, some studies were
difficult to classify due to a lack of description of experime&esign and objects. The artifacts listed in the
table are essential elements to consider in the procesagsifitation of the type of an empirical study, but
further consideration of the experiment design was alsoired. For example, if a study used all types of
artifacts listed in the table, but its experiment design il manipulate any factors, then we classified it
as a case study or an example. On the other hand, if a studyduava single program, but its experiment
design manipulated and controlled factors such as versiotests, we classified it as an experiment.

For example, in Table 5, TSE-03-2 utilizes multiple progsamultiple versions, tests, and faults, but
we classified this study as a case study because its experidasign intended only to demonstrate the
effectiveness of the authors’ method, and it did not userobdata. Another example is ISSTA-02-1 in
Table 6, which uses a single version of a program and no fdultswve classified this study as a controlled
experiment because its experiment design controlled fag¢tmg. different levels of instrumentation) in

order to compare the authors’ various methods.
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Table 5: Classification of published empirical studies: TEBESEM

Articles Number of | Number of | Multiple Object size Tests | Faults | Empirical | Shared
Objects Versions Experimental Category | Artifacts
Versions

TSE-03-1[58] 7 1 yes 173-726 yes | yes experiment| yes
TSE-03-2[4] 4 NA yes NA yes | yes case study | no
TSE-03-3[13] 4 (spec) 1 no NA yes no case study | no
TSE-03-4[10] 5 1 no 1198-6710 no no experiment| no
TSE-03-5[1] 4 1 no 61-369 yes no experiment| no
TSE-03-6[55] 20 1 no NA yes no case study [ no
TSE-03-7[43] 2 1 yes 173, 9564 yes yes experiment| yes
TSE-02-8[49] 3 1 no NA yes no experiment| no
TSE-02-9[97] 2 1 no NA yes no case study | no
TSE-02-10[26] 11 15,6 yes 173-300K yes | yes experiment| yes
TSE-02-11[101] | 8 1 no NA yes no case study | no
TSE-01-12[61] 11 1 no 30-2046 yes no experiment| no
TSE-01-13[81] 8 1 yes 173-9564 yes | yes experiment| yes
TSE-01-14[17] 1 1 no 541 yes | yes case study [ no
TSE-01-15[37] 7 1 yes 173-726 yes yes experiment| yes
TSE-01-16[60] 1 1 no NA yes no case study | no
TSE-00-17[83] 18 1 no 89-12303 (methods) no no case study | no
TSE-00-18[69] 1 1 no NA yes no case study | no
TSE-98-19[79] 9 15,9 yes 173-49316 yes | yes experiment| yes
TSE-98-20[11] 1 1 no NA yes no case study | no
TSE-98-21[67] 1 1 no 350 yes | yes case study [ no
TSE-97-22[33] NA NA no NA NA NA case study | NA
TSE-97-23[8] 5 1 no NA yes no case study | no
TSE-97-24[16] 2 1 no 1K-2K yes no case study [ no
TSE-97-25[73] 2 31 yes NA yes no case study | no
TSE-96-26[70] 1 1 no NA no no case study | no
TSE-96-27[85] NA NA no NA NA NA example NA
TSE-95-28[3] 5 1 no 50K-1M yes no case study | no
TSE-94-29[92] 13 (spec) | 1 no NA yes no case study [ no
TOSEM-01-1[7] 9 15 yes 173-49316 yes | yes experiment| yes
TOSEM-01-2[34] || 9 15 yes 173-49316 yes yes experiment| yes
TOSEM-01-3[74] || 8 1 yes 16-61 (expressions)| yes | yes experiment| no
TOSEM-98-4[12] || 1 2 yes 48 yes yes example no
TOSEM-97-5[78] || 8 15 yes 173-49316 yes | yes experiment| yes
TOSEM-96-6[62] || 10 1 no 10-48 yes no experiment| no
TOSEM-96-7[28] || 11 1 no 26-483 yes no experiment| no
TOSEM-94-8[19] || 2 1 no 1K yes | yes case study | no

Having decided which papers presented controlled expeatsnae next considered the remaining pa-

pers again, to classify them as case studies or exampldweitfdtudies utilize only trivial programs, then

we classified them as examples. However, there was one excépthis criterion: ISSTA-02-2 used small

programs, but 5 programs were involved, and the study wasutlyrdesigned; thus we considered it a case

study. We identified 3 studies as examples: TSE-96-27, TOSBM, and ICSE-01-8.
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Table 6: Classification of published empirical studies:TSSCSE
Articles Number of | Number of | Multiple Object size Tests | Faults | Empirical | Shared
Objects Versions Experimental Category | Artifacts
Versions

ISSTA-02-1[87] || 15 1 no NA yes no experiment| no
ISSTA-02-2[84] || 1 2 yes 1.8M yes no case study | no
ISSTA-02-3[9] 5 1 no 10-20 yes | no case study | no
ISSTA-02-4[32] |[ 2 1 no 373248 (states) yes no case study | no
ISSTA-00-5[24] || 8 1 yes 173-9564 yes | yes experiment| yes
ISSTA-00-6[39] |[ 7 1 no NA yes no case study | no
ISSTA-98-7[52] || 5 1,3,5,6 yes 50-300 yes | yes case study | no
ISSTA-96-8[50] || 3 1 no 100-400 yes no case study | no
ISSTA-94-9[2] 5 1 no 50K-1M yes no experiment| no
ICSE-03-1[36] || 8 1 yes 173-9564 yes | yes experiment| yes
ICSE-03-2[23] 1 1 no NA yes yes case study | no
ICSE-03-3[82] || 4 1 no 8-24 (classes) yes no case study | no
ICSE-02-4[45] 7 1 yes 173-726 yes yes experiment| yes
ICSE-02-5[75] |[ 2 59 yes 59K-67K yes | yes experiment| yes
ICSE-02-6[29] || 8 1 no 16-61 (expressions) yes no experiment| no
ICSE-02-7[44] 1 1 yes 9564 yes yes experiment| yes
ICSE-01-8[72] |[ 2 1 no NA yes no example no
ICSE-01-9[25] |[ 1 1 yes 9564 yes | yes case study | yes
ICSE-01-10[18]|| 5 1 no NA yes | yes experiment| no
ICSE-00-11[53]|| 1 1 no NA yes no case study | no
ICSE-00-12[46]|[ 8 1 yes 173-9564 yes | yes experiment| yes
ICSE-99-13[59]|| 1 1 no NA yes no case study | no
ICSE-99-14[66] || 4 1 no 55-4K yes no case study | no
ICSE-98-15[35](f 7 1 yes 173-726 yes | yes experiment| yes
ICSE-98-16[80] ([ 8 1 yes 16-61 (expressions) yes | yes case study | no
ICSE-97-17[20]|| 1 1 no NA yes no case study | no
ICSE-97-18[42]|[ 1 30 yes 300-500 yes no case study | no
ICSE-96-19[51] || 9 1,2,356 | yes NA yes | yes case study | no
ICSE-96-20[90] ([ 1 2 yes 387,1495 (states) | yes no case study | no
ICSE-96-21[30]|f 1 1 no NA yes no case study | no
ICSE-95-22[94]|[ 10 1 no 90-842 yes yes experiment| no
ICSE-94-23[41]| 7 1 yes 173-726 yes | yes experiment| yes
ICSE-94-24[14]|f 2 1,2 yes 1700, 11K yes no case study | no
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