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Abstract

Where the development, understanding, and assessment of software testing and regression testing tech-

niques are concerned, controlled experimentation is an indispensable research methodology. Obtaining the

infrastructure necessary to support rigorous controlled experimentation with testing techniques, however, is

difficult and expensive. As a result, progress in experimentation with testing techniques has been slow, and

empirical data on the costs and effectiveness of testing techniques remains relatively scarce. To help address

this problem, we have been designing and constructing infrastructure to support controlled experimentation

with software testing and regression testing techniques. This paper reports on the challenges faced by re-

searchers experimenting with testing techniques, including those that inform the design of our infrastructure.

The paper then describes the infrastructure that we are creating in response to these challenges, and that we

are now making available to other researchers, and discusses the impact that this infrastructure has and can

be expected to have on controlled experimentation with testing techniques.
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1 Introduction

Testing is an important engineering activity responsible for a significant portion of the costs of developing

and maintaining software [6, 54]. It is important for researchers and practitioners to understand the trade-

offs and factors that influence testing techniques. Some understanding can be obtained by using analytical

frameworks, subsumption relationships, or axioms [71, 77,91]. In general, however, testing techniques are

heuristics and their performance varies with different scenarios; thus, they must be studied empirically.

The initial, development testing of a software system is important; however, software that succeeds

evolves, and over time, far more effort is spent re-validating a software system’s subsequent releases than is

spent performing initial, development testing. This re-validation activity is known asregression testing, and

includes tasks such as re-executing existing tests [64], selecting cost-effective subsets of test suites [14, 78],

prioritizing test cases to facilitate earlier detection offaults [25, 81, 96], augmenting test suites to cover

system enhancements [8, 76], and maintaining test suites [38, 40, 57]. These activities, too, involve many

cost-benefits tradeoffs and depend on many factors, and mustbe studied empirically.

Many testing and regression testing techniques involve activities performed by engineers, and ultimately

we need to study the use of such techniques by those engineers. Much can be learned about testing tech-

niques, however, through studies that focus directly on those techniques themselves. For example, we can

measure and compare the fault-revealing capabilities of test suites created by various testing methodologies

[31, 41], the cost of executing the test suites created by different methodologies [7], or the influence of

choices in test suite design on testing cost-effectiveness[75]. Such studies provide important information

on tradeoffs among techniques, and they can also help us understand the hypotheses that should be tested,

and the controls that are needed, in subsequent studies of humans, which are likely to be more expensive.

Empirical studies of testing techniques, like studies of the engineers who perform testing, involve many

challenges and cost-benefits tradeoffs, and this has constrained progress in this area. In general, two classes

of empirical studies can be considered: case studies and controlled experiments. Controlled experiments

focus on rigorous control of variables in an attempt to preserve internal validity and support conclusions

about causality, but the limitations that result from exerting control can limit the ability to generalize results

[88]. Case studies sacrifice control, and thus, internal validity, but can include a richer context [99]. Each of

these classes of studies can provide valuable insights intosoftware testing techniques, and together they are

complementary; in this paper, however, our focus is controlled experimentation.
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Controlled experimentation with testing techniques depends on numerous software-related artifacts, in-

cluding software systems, test suites, and fault data; for regression testing experimentation, multiple versions

of software systems are also required. Obtaining such artifacts and organizing them in a manner that sup-

ports controlled experimentation is a difficult task. Thesedifficulties are illustrated by the survey of recent

articles reporting experimental results on testing techniques presented in Section 2 of this paper. Section

3 further discusses and highlights these difficulties in terms of the challenges faced by researchers wishing

to perform controlled experimentation, which include the needs to generalize results, ensure replicability,

aggregate findings, isolate factors, and amortize the costsof experimentation.

To help address these challenges, we have been designing andconstructing infrastructure to support

controlled experimentation with software testing and regression testing techniques.1 Section 4 of this paper

presents this infrastructure, describing its organization and primary components, and our plans for making

it available and augmenting it. Section 5 concludes by reporting on the impact this infrastructure has had,

and can be expected to have, on further controlled experimentation.

2 A Survey of Empirical Studies of Software Testing

To provide an initial view on the state of the art in empiricalstudies of software testing, we surveyed recent

research articles following approaches used by Tichy et al.[86] and Zelkowitz et al. [100]. We selected

two journals and two conferences recognized as pre-eminentin software engineering research and known

for including papers on testing: IEEE Transactions on Software Engineering (TSE), ACM Transactions on

Software Engineering and Methodology (TOSEM), the ACM SIGSOFT International Symposium on Soft-

ware Testing and Analysis (ISSTA), and the ACM/IEEE International Conference on Software Engineering

(ICSE). We considered all issues and proceedings from thesevenues, over the period 1994 to 2003.

Table 1 summarizes the results of our survey with respect to numbers of research articles appearing in

each venue per year.2 The table contains three columns of data per venue: Total (the total number of articles

published in that year), Testing (the number of articles about software testing published in that year), and

Empir. (the number of articles about software testing that contained some type of empirical study). Note

that ISSTA proceedings appear bi-annually. As the table shows, 12.3% (170) of the articles in the venues

1This work shares many similarities with the activities being promoted by the International Software Engineering Research
Network (ISERN). ISERN, too, seeks to promote experimentation, in part through the sharing of resources; however, ISERN has
not to date focused on controlled experimentation with software testing, or produced infrastructure appropriate to that focus.

2For full details on the survey, see the Appendix.
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Table 1: Research articles involving testing and empiricalstudies in four major venues, 1994-2003.

YEAR TSE TOSEM ISSTA ICSE
Total Testing Empir. Total Testing Empir. Total Testing Empir. Total Testing Empir.

2003 74 8 7 7 0 0 - - - 75 7 3
2002 74 8 4 14 2 0 23 11 4 57 4 4
2001 55 6 5 11 4 3 - - - 61 5 3
2000 62 5 2 14 0 0 21 10 2 67 5 2
1999 46 1 0 12 1 0 - - - 58 4 2
1998 73 4 3 12 1 1 16 9 1 39 2 2
1997 50 5 4 12 1 1 - - - 52 4 2
1996 59 8 2 13 5 2 29 13 1 53 5 3
1995 70 4 1 10 0 0 - - - 31 3 1
1994 68 7 1 12 3 1 17 10 1 30 5 2

Total 631 56 29 117 17 8 106 53 9 523 44 24

considered concern software testing, a relatively large percentage attesting to the importance of the topic.

(This includes papers from ISSTA, which would be expected tohave a large testing focus, but even excluding

ISSTA, 9.3% of the articles in the other three venues, whose focus is software engineering generally, concern

testing.) Of the testing-related articles, however, only 41% (70) report empirical studies.

We next analyzed the 70 articles on testing that reported empirical studies, considering each of the

following categories, which represent factors important to the performance of controlled experiments on

software testing and regression testing:

• The type of empirical study performed.

• Number of programs used as sources of data.

• Number of program versions used as sources of data.

• Whether test suites were utilized.

• Whether fault data was utilized.

• Whether the study involved artifacts provided by or made available to other researchers.

Determining the type of empirical study performed requireda degree of subjective judgement, due to vague

descriptions by authors and the absence of clear quantitative measures for differentiating study types. How-

ever, previous work [5, 48, 93, 100] has provided guidelinesfor classifying types of empirical studies, and

we utilized these to determine whether studies should be classified as controlled experiments or case stud-

ies (for details, see the Appendix). On close analysis, someobservational work described by authors as

“empirical studies” should not have been described as such,being essentially just descriptions relating the

application of a technique on a single extended example; following [100] we classified these as “examples”.
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Table 2: Further classification of published empirical studies

Publication Empirical Example Case Controlled Multiple Multiple Tests Faults Shared
Papers Study Experiment Programs Versions Artifacts

TSE (1999-2003) 18 0 9 9 15 6 16 7 5
TSE (1994-1998) 11 1 9 1 6 2 8 2 1
TSE (1994-2003) 29 1 18 10 21 8 24 9 6

TOSEM (1999-2003) 3 0 0 3 3 3 3 3 2
TOSEM (1994-1998) 5 1 1 3 4 2 5 3 1
TOSEM (1994-2003) 8 1 1 6 7 5 8 6 3
ISSTA (1999-2003) 6 0 4 2 5 2 6 1 1
ISSTA (1994-1998) 3 0 2 1 3 1 3 1 0
ISSTA (1994-2003) 9 0 6 3 8 3 9 2 1
ICSE (1999-2003) 14 1 6 7 9 6 14 8 6
ICSE (1994-1998) 10 0 7 3 6 7 10 5 2
ICSE (1994-2003) 24 1 13 10 15 13 24 13 8

Total (1999-2003) 42 1 19 21 32 17 39 19 14
Total (1994-1998) 28 2 19 8 19 12 26 11 4
Total (1994-2003) 70 3 38 29 51 29 65 30 18

Table 2 summarizes the results of our analysis. The table reports the data for each venue in terms of

three time periods: 1994-1998, 1999-2003, and 1994-2003. Over the ten year period, 41% of the empirical

studies presented were controlled experiments and 54% werecase studies. Separation of this data into time

periods suggests that trends are changing: 28% of the studies in the first five year period (1994-1998) were

controlled experiments, compared to 50% in the second five year period (1999-2003). This trend occurs

across all venues other than ISSTA, and it is particularly strong for TSE (9% vs. 50%).

The table also shows that only 26% of the studies involved artifact sharing. This figure exhibits an

increasing trend from 14% in the early time period to 33% in the later period. Finally, the table shows that

of the 70 studies, 27% utilize data from only one program (although this is not necessarily problematic for

case studies). Also, only 44% of the studies utilize multiple versions and only 43% utilize fault data.

Further investigation of this data is revealing. Of the 18 papers in which artifacts were shared among

researchers, 17 utilize one or both of a set of programs knownin the literature as the “Siemens programs”, or

a somewhat larger program known as the “space” program. (Four of these 17 papers also utilize, in addition

to these artifacts, one or two other large programs, but these programs have not to date been made avail-

able to other researchers as shared artifacts.) The Siemensprograms, originally introduced to the research

community by Hutchins et al. [41], and subsequently augmented, organized, and made available as sharable

infrastructure by one of the authors of this paper, consist of seven C programs of no more than 1000 lines
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of code, 132 seeded faults for those programs, and several sets of test suites satisfying various test adequacy

criteria. The space program, appearing initially in papersby other researchers [89, 95] and also processed

and made available as sharable infrastructure by one of the authors of this paper, is a single application of

nearly 10,000 lines of code, provided with various test suites, and 35 actual faults. In the cases in which mul-

tiple “versions” of software systems are utilized in studies involving these programs, these versions differ

only in terms of faults, rather than in terms of a set of changes, of which some have caused faults; ignoring

these cases, only four cases exist in which actual, realistic multiple versions of programs are utilized.

3 Challenges for Experimentation on Testing and RegressionTesting

Researchers attempting to conduct controlled experimentsexamining the application of testing techniques

to artifacts face several challenges. The survey of the literature just summarized provides evidence of the

effects of these challenges. The survey also suggests, however, that researchers are becoming increasingly

willing to conduct controlled experiments, and are increasing the extent to which they utilize shared artifacts.

These tendencies are related: utilizing shared artifacts is likely to facilitate controlled experimentation.

The Siemens and space programs, in spite of their size and scope limitations, have clearly facilitated a

number of controlled experiments that might not otherwise have been possible. Their use argues for the

utility of making additional infrastructure available to other researchers, as is our goal.

Before proceeding further, however, it is worthwhile to identify the challenges faced by researchers

performing experimentation on testing techniques in the presence of limited or inadequate infrastructure.

Identifying such challenges provides insights into the limited progress in this area that goes beyond the

availability of artifacts. Furthermore, identifying these challenges helps us define the infrastructure require-

ments for such experiments, and to shape the design of an experiment infrastructure.

Challenge 1: Supporting replicability across experiments.

A scientific finding is not trusted unless it can be independently replicated. Supporting replicability for

controlled experiments requires establishment of controlon experimental factors and context; this is in-

creasingly difficult to achieve as the units of analysis and context become more complex. When performing

controlled experimentation with software testing techniques, the following replicability challenges exist:

• Artifacts utilized by researchers are rarely homogeneous.For example, programs may belong to

different domains and have different complexities and sizes, versions may exhibit different rates of
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evolution, processes employed to create programs and versions may vary, and faults available for the

study of fault detection may vary in type and magnitude.

• Artifacts utilized by researchers are provided in widely varying levels of detail. For example, pro-

grams freely available through the open source initiative are often missing formal documentation or

rigorous test suites. On the other hand, confidentiality agreements often constrain the industry data

that can be utilized in published experiments, especially data related to faults and failures.

• Experiment design and process details are often not standardized or reported in sufficient detail. For

example, different types of oracles may be used to evaluate testing technique effectiveness, different

and non-comparable tools may be used to capture coverage data, and when fault seeding is employed

it may not be clear who performed the activity and what process they followed.

Challenge 2: Supporting effective aggregation of findings across experiments.

Individual experiments may produce interesting findings, but can claim only limited validity under different

contexts. In contrast, a family of experiments following a similar operational framework can enable the

aggregation of findings, leading to generalization of results and further theory development.

Opportunities for aggregation are highly correlated with the replicability of an experiment (Challenge

1); that is, a highly replicable experiment is likely to provide detail sufficient to determine whether results

across experiments can be aggregated. (This reveals just one instance in which the relationship between

challenges is not orthogonal, and in which providing support to address one challenge may impact others.)

Still, even high levels of replicability cannot guarantee correct aggregation of findings unless there is

a systematic capture of experimental context [68]. Such systematic capture typically does not occur in the

domain of testing experimentation. For example, versions utilized in experiments to evaluate regression

testing techniques may represent minor internal versions or major external releases; these two scenarios

clearly involve very distinct levels of validation. Although capturing complete context is often infeasible, the

challenge is to provide enough support so that the evidence obtained across experiments can be leveraged.

Challenge 3: Reducing the cost of controlled experiments.

Controlled experimentation is expensive, and there are several strategies available for reducing this expense.

For example, experiment design and sampling processes can reduce the number of participants required for

a study of engineer behavior, thereby reducing data collection costs. Even with such reductions, however,
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obtaining and preparing participants for experimentationis costly, and the magnitude of that cost varies

with the domain of study, the hypotheses being evaluated, and the applicability of multiple and repeated

treatments on the same participants.

Controlled experimentation in which testing techniques are applied to artifacts does not require human

participants, it requires objects such as programs, versions, tests, and faults. This is advantageous because

artifacts are more likely to be reusable across experiments, and multiple treatments can be validly applied

across all artifacts at no cost to validity. Still, artifactreuse is often jeopardized due to the following factors:

• Artifact organization is not standardized. For example, different programs may be presented in differ-

ent directory structures, with different build processes,fault information, and naming conventions.

• Artifacts are incomplete. For example, open source systemsseldom provide comprehensive test suites,

and industrial systems are often “sanitized” to remove information on faults and their corrections.

• Artifacts require manual handling. For example, build processes may require software engineers to

configure various files, and test suites may require a tester to control execution and audit results.

Challenge 4: Obtaining sample representativeness.

Sampling is the process of selecting a subset of a populationwith the intent of making statements about the

entire population. The degree of representativeness of theselected sample is important because it directly

impacts the applicability of the conclusions to the rest of the population. Observe, however, that represen-

tativeness needs to be balanced with considerations for thehomogeneity of the sampled artifacts in order to

facilitate replication as well. Within the software testing domain, we have found two common problems for

sample representativeness:

• Sample size is limited. Since preparing an experiment artifact is expensive, experiments often utilize

small numbers of programs, versions, and faults. Further, researchers trying to reduce experimentation

costs (Challenge 3) do not prepare artifacts for repeated experimentation (e.g., test suite execution is

not automated). This lack of preparation for reuse limits the growth of the sample size even when the

same researchers perform similar studies.

• Samples are biased. Even when a large number of programs are collected they usually belong to a

set of similar programs. For example, as described in Section 2, many researchers have employed the

Siemens programs in controlled experiments with testing. This set of objects includes seven programs

with faults, versions, processing scripts, and automated test suites. The Siemens programs, however,
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each involve fewer than 1000 lines of code. Other sources of sample bias include the types of faults

seeded or considered, processes used for test suite creation, and code changes considered.

Challenge 5: Isolating the effects of individual factors.

Understanding causality relationships between factors isat the core of experimentation. Blocking and ma-

nipulating the effects of a factor increases the power of an experiment to explain causality. Within the testing

domain, we have identified two major problems for controlling and isolating individual effects:

• Artifacts may not offer the same opportunities for manipulation. For example, programs with multiple

faults offer opportunities for analyzing faults individually or in groups, which can affect the perfor-

mance of testing techniques as it introduces masking effects. Another example involves whether or

not automated and partitionable test suites are available;when available, these may offer opportunities

for isolating test case size as a factor.

• Artifacts may make it difficult to decouple factors. For example, it is often not clear what program

changes in a given version occurred in response to a fault, anenhancement, or both. Furthermore, it is

not clear at what point the fault was introduced in the first place. As a result, the assessment of testing

techniques designed to increase the detection of regression faults may be biased.

4 Infrastructure

We have described what we believe are the primary challengesfaced by researchers wishing to perform

controlled experimentation with testing techniques, and that have limited the progress in this area. Some of

these challenges involve issues for experiment design, andguidelines such as those provided by Kitchenham

et al. [47] address those concerns. Still, all of these challenges can be traced, at least partly (and some

primarily) to issues involving infrastructure.

To address these challenges, we have been designing and constructing infrastructure to support con-

trolled experimentation with software testing and regression testing techniques. Our infrastructure includes

a set of artifacts (programs, versions, tests, faults, and scripts) that enable researchers to perform controlled

experimentation and replications. Also included is documentation on the processes used to select, organize,

and further set up artifacts, and supporting tools that helpwith these processes. Together with our plans

for sharing and extending the infrastructure, these objects, documents, tools, and processes help address the

challenges described in the preceding section as summarized in Table 3.
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Table 3: Challenges and Infrastructure.

Infrastructure attributes
Artifact Documentation Sharing and

Challenges Selection Organization Setup and Tools Extending
Support Replicability X X X X X
Support Aggregation X X X X
Reduce Cost X X X X X
Obtaining Representativeness X X
Isolating Effects X X

We now proceed to describe our infrastructure and the processes used to assemble it. We then describe

supporting tools and documentation, and finally, we discussthe sharing and extension of our infrastructure.

4.1 Object selection, organization, and setup

Our infrastructure provides guidelines for object selection, organization, and setup processes. The selection

and setup guidelines assist in the construction of a sample of complete artifacts. The organization guidelines

provide a consistent context for all artifacts, facilitating the development of generic experiment tools, and

reducing the experimentation overhead for researchers.

4.1.1 Object selection

Object selection guidelines direct persons assembling infrastructure in the task of selecting suitable objects,

and are provided through a set of on-line instructions that include artifact selection requirements. In our

work thus far, we have specified two levels of required qualities for objects: 1st-tier required-qualities

(minimum lines of code required, source freely available, five or more versions available) and 2nd-tier

required-qualities (runs on platforms we utilize, can be built from source, allows automation of test input

application and output validation). When assembling objects, we first construct a list of objects that meet

first-tier requirements, which can be determined relatively easily, and then we prioritize these, and for each,

investigate second-tier requirements for likely candidates.

Part of the object selection task involves ensuring that programs and their versions can be built and ex-

ecuted automatically. Because experimentation requires the ability to repeatedly execute and validate large

numbers of tests, automatic execution and validation must be possible for candidate programs. Thus, our

infrastructure currently excludes programs that require graphical input/output that cannot easily be automat-

ically executed or validated. We also require programs thatexecute, or through edits can be made to execute,
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deterministically; this too is a requirement for automatedvalidation, and implies that programs involving

concurrency and heavy thread use might not be directly suitable.

Our infrastructure now consists of 17 C and two Java programs, as shown in Table 4. The first eight

programs listed are the Siemens and space programs, which constituted our first set of experiment objects;

the remaining programs consist of nine larger C programs andtwo Java programs (nanoxml and siena),

selected via the foregoing process. The significance of the other columns is as follows:

• The “Size” column presents the total number of lines of code,including comments, present in each

program, and illustrates our attempts to incorporate progressively larger programs.

• The “No. of Versions” column lists how many versions each program has. The Siemens and space

programs are available only in single versions (with multiple faults), a serious limitation, although the

availability of multiple faults has been leveraged, in experiments, to create various alternative versions

containing one or more faults. Our more recently collected objects, however, are available in multiple,

sequential releases (corresponding to actual field releases of the systems.)

• The “No. of Tests” column lists the number of tests availablefor the program (for multi-version

programs, the number available for the final version is listed). Each program has one or more types

of tests and one or more types of test suites (described laterin this section). In addition, the two Java

programs are provided with test drivers that invoke classesunder test.

• The “No. of Faults” column indicates the total number of faults available for each of the programs;

for multi-version programs we list the sum of faults available across all versions.

• The “Release Status” column indicates the current release status of each object as one of “released”,

“ready”, or “near release”. The Siemens and space programs,as detailed above, have been provided

to and used by many other researchers, so we categorize them as released. Bash, emp-server, pine,

vim, and siena are undergoing final formatting and testing and thus are listed as “near release”. The

rest of the programs listed are now available in our infrastructure repository.

Our object selection process helps provide consistency in the preparation of artifacts, supporting repli-

cability. The same process also reduces costs by discardingearlier the artifacts that are not likely to meet the

experimental requirements. Last, the selection mechanismlets us adjust our sampling process to facilitate

the collection of a representative set of artifacts.
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Table 4: Objects in our Infrastructure

Subjects Size (LOC) No. of Versions No. of Tests No. of Faults Release Status
tcas 173 1 1608 41 released
schedule2 374 1 2710 10 released
schedule 412 1 2650 9 released
replace 564 1 5542 32 released
tot info 565 1 1052 23 released
print tokens2 570 1 4115 10 released
print tokens 726 1 4130 7 released
space 9564 1 13585 35 released

gzip 6582 6 217 15 ready
sed 11148 5 1293 40 ready
flex 15297 6 567 81 ready
grep 15633 6 809 75 ready
make 27879 5 1043 17 ready
bash 48171 10 1168 69 near release
emp-server 64396 10 1985 90 near release
pine 156037 4 288 24 near release
vim 224751 9 975 7 near release
nanoxml 7646 6 217 33 ready
siena 6035 8 567 3 near release

4.1.2 Object organization

We organize objects and associated artifacts into a directory structure that supports experimentation. Each

object we create has its own “object” directory, as shown in Figure 1. An object directory is organized into

specific subdirectories (which in turn may contain subdirectories), as follows:

• The scripts directory is the “staging platform” directory from which experiments are run. This direc-

tory may also contain saved scripts that perform object-related tasks.

• The source directory is a working directory in which, duringexperiments, the program version being

worked with is temporarily placed.

• The versions.alt directory contains various variants of the source for building program versions; these

include (among others) original source code for each version, and fault-seeded variants of that code.

Each variant is itself organized as a subdirectory; that subdirectory contains subdirectories v0, v1,. . .,

vk corresponding to different versions.

• The inputs directory contains files containing inputs, or directories of inputs used in various tests.

• The testplans.alt directory contains subdirectories v0, v1, . . ., vk, each of which contains testing infor-

mation for a version of the system; testing information typically includes a “universe” file containing

a pool of tests, and possibly also various test suites drawn from that pool.
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scripts source versions.alt inputs testplans

testplans.alt traces.alt

outputs

outputs.alt

traces info

object

Figure 1: Object directory structure (top level)

• The traces.alt directory contains subdirectories v0, v1,. . ., vk, each holding trace information for a

version of the system, in the form of individual test traces or summaries of coverage information.

• The outputs.alt directory permanently stores the outputs of test runs, especially useful when experi-

menting with regression testing where outputs are comparedagainst previous outputs.

• The testplans, outputs, and traces directories serve as “staging platforms” during specific experiments.

Data from a specific “testplans.alt” subdirectory is placedinto the testplans directory prior to exper-

imentation; data from the outputs and traces directories isplaced into subdirectories in their corre-

sponding “.alt” directories following experimentation.

• The info directory contains additional information about the program, especially information gath-

ered by analysis tools and requiring saving for experiments, such as fault-matrix information (which

describe the faults that various test cases reveal).

Our object organization supports consistent experimentation conditions and environments, allowing us

to write generic tools for experimentation that know where to find things, and that function across all of

our objects. This in turn helps reduce the costs of executingand replicating controlled experiments, and

aggregating results across experiments. The structure also accommodates objects with various types and

classes of artifacts, such as multiple versions, fault types, and test suites, enabling us to control for and

isolate individual effects in conducting experimentation.

4.1.3 Object setup

Test suites

Systems we have selected for our repository have only occasionally arrived equipped with anything more

than rudimentary test suites. When suites are provided, we incorporate them into our infrastructure because

they are useful (at minimum) for case studies. For controlled experiments, however, we typically prefer

(depending on the aim of the experiment) to have test suites created by uniform processes. Such test suites
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can also be created in ways that render them partitionable, facilitating studies that isolate factors such as test

size, as mentioned in Section 3 (Challenge 5).

To construct test suites in ways that represent those that might be constructed in practice for particular

programs, we have relied primarily on two general processes, following the approach used by Hutchins et

al. [41] in their initial construction of the Siemens programs.

The first process involves specification-based testing using the category-partition method, based on a

test specification language, TSL, described in [65]. A TSL specification is written for an initial version of

an object, based on its documentation, by a person who has become familiar with that documentation and

the functionality of the object. Subsequent versions of theobject inherit this specification, or most of it, and

may need additional tests to exercise new functionality, which can be encoded in an additional specification

added to that version, or in a refined TSL specification. TSL specifications are processed by a tool, provided

with our infrastructure, into test frames, which describe the requirements for specific test cases. Each test

case is created and encoded in proper places within the object directory.

The second test process we have used involves coverage-based testing, in which we instrument the object

program, measure the code coverage achieved by specification-based tests, and then create tests that exercise

code not covered by those tests.

Employing these processes using multiple testers helps reduce threats to validity involving specific tests

that are created. Creating larger pools of test cases in thisfashion and sampling them to obtain various

test suites, such as test suites that achieve branch coverage or test suites of specific sizes, provides further

assistance with generalization. We store such suites with the objects along with their pools of tests.

At present, not all of our objects are equivalent in terms of the constructed tests and test suites that they

possess, but one goal in extending our infrastructure is to ensure that specific types of tests and test suites

are available, wherever possible, across all objects, to aid with the aggregation of findings. A further goal, of

course, is to provide multiple instances and types of tests suites per object, a goal that has been achieved for

the Siemens and space programs allowing the completion of several comparative studies, and that we are still

pursuing on other objects. Meeting this goal will be furtherfacilitated through sharing of the infrastructure,

and collaboration with other researchers.
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Faults

For studies of fault detection, we provide processes for twocases: the case in which naturally occurring

faults can be identified, and the case in which faults must be seeded. Either possibility presents advantages

and disadvantages: naturally occurring faults are costly to locate and typically cannot be found in large

numbers, but they represent actual events. Seeded faults are costly to place, but can be provided in larger

numbers, allowing more data to be gathered than would otherwise be possible, but with less external validity.

To help with the fault seeding process, and increase the potential external validity of results obtained

on seeded faults, we insert faults by following fault localization guidelines, which provide direction on

places that are likely to contain faults, how to identify them across versions and different fault seeders, and

classes of faults to consider. Faults are seeded independently by multiple persons with at least 3 years of

programming experience, to reduce the potential for bias.

Another motivation for seeding faults occurs when experimentation concerned with regression testing

is the goal. For regression testing, we wish to investigate errors caused by code change (regression faults).

With the assistance of a differencing tool, fault seeders locate code changes, and place faults within those.

4.2 Documentation and supporting tools

Documentation and guidelines supplied with our infrastructure provide detailed procedures for object selec-

tion and organization, test generation, fault localization, automatic tool usage, and current object descrip-

tions (our descriptions in this paper have summarized the far more extensive information available on our

infrastructure site.) As suggested in Section 3, such guidelines support sharing (and thus cost reduction), as

well as facilitating replication and aggregation across experiments. Documentation and guidelines are thus

as important as objects and associated artifacts.

Depending on the research questions being investigated, testing experiment designs and processes can

be very complex and require multiple executions, so automation is important. Our infrastructure provides a

set of automated testing tools that build scripts executingtests automatically, gather traces for tests, generate

test frames based on TSL specifications, and generate fault matrices (tables relating faults to the tests that

expose them) for objects. These tools make experiments simpler to execute, and reduce the possibility of

human errors, such as typing errors, supporting replicability as well. The automated testing tools function

across all objects, given the uniform directory structure for objects; thus, we can reuse these tools on new

objects as they are completed, reducing the costs of preparing such objects.
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4.3 Sharing and extending the infrastructure

Our standard object organization and tool support help our infrastructure be extensible; objects that meet

our object requirements can be assembled using the requiredformats and tools. This is still an expensive

process, but in the long run such extension will help us achieve sample representativeness, and help with

problems in replicability and aggregation as discussed in Section 3.

In our initial infrastructure construction, we have focused on gathering objects and artifacts for regres-

sion testing study, and on facilitating this with faults, multiple versions and tests. Such materials can also be

used, however, for experimentation with testing techniques generally, and with other program analysis tech-

niques. (Section 5 discusses cases in which this is already occurring.) Still, we intend that our infrastructure

be extended through addition of objects with other types of associated artifacts, such as may be useful for

different types of controlled experiments. For example, one of our Java objects, nanoxml, is provided with

UML state chart diagrams, and this would facilitate experimentation with UML-based testing techniques.

Extending our infrastructure can be accomplished in two ways: by our research group, and by collab-

oration with other research groups. To date we have proceeded primarily through the first approach, but

the second has many benefits. First, it is cost effective, mutually leveraging the efforts of others. Second,

through this approach we can achieve greater diversity among objects and associated artifacts, which will

be important in helping to increase sample size and achieve representativeness. Third, sharing implies more

researchers inspecting the artifacts setup, tools, and documentation reducing threats to internal validity. Ul-

timately, collaboration in constructing and sharing infrastructure can help us contribute to the growth in the

ability of researchers to perform controlled experimentation on testing in general.

As mentioned earlier, we have been making our Siemens and space infrastructure available, on request,

for several years. We have recently created web pages that provide this infrastructure, together with all more

recently created infrastructure described in this article, and all of the programs listed in Table 4 with the

exception of those listed as “near release”. We have made this web page available to researchers at three

other institutions for initial Beta testing, and we will make it available to any other researchers who request

the address from us by email, provided they are willing to report to us any experiences that will help us to

improve the infrastructure. Following this Beta shakedown, and correction of problems found during this

period, we intend to make our web site openly available.
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5 Conclusion: Impact and Potential Impacts of Infrastructure

We have presented our infrastructure for supporting controlled experimentation with testing techniques, and

we have described several of the ways in which it can potentially help address many of the challenges faced

by researchers wishing to conduct controlled experiments on testing. We close this article by providing

additional discussion of the impact, both demonstrated andpotential, of this infrastructure.

First, we remark on the impact of our infrastructure to date.Many of the infrastructure objects de-

scribed in the previous section are only now being made available to other researchers. The Siemens and

space programs, however, in the format extended and organized by ourselves, have been available to other

researchers since 1999, and have seen widespread use. In addition to our own papers describing experimen-

tation using these artifacts (over twenty such papers have appeared, see http://www.cs.orst.edu/˜grother) we

have identified seven other papers not involving creators ofthis initial infrastructure that describe controlled

experiments involving testing techniques using the Siemens and/or space programs [15, 36, 45, 58, 63, 98].

The artifacts have also been used in [27] for a study of dynamic invariant detection (attesting to the feasibility

of using the infrastructure in areas beyond those limited totesting).

In our review of the literature, we have found no similar usage of other artifactsfor controlled exper-

imentation in software testing; the willingness of other researchers to use the Siemens andspace artifacts

thus attests to the potential for infrastructure, once madeavailable, to have an impact on research. This same

willingness, however, also illustrates the need for improvements to infrastructure, given that the Siemens

and space artifacts present only a small sample of the population of programs, versions, tests, and faults. It

seems reasonable, then, to expect our extended infrastructure to be used for experimentation by others, and

to help extend the validity of experimental results throughwidened scope. Indeed, we ourselves have been

able to use several of the newer infrastructure objects thatare about to be released in controlled experiments

described in recent publications [21, 22, 56, 75], as well asin three publications currently under review.

In terms of impact, it is also worthwhile to discuss the costsinvolved in preparing infrastructure; it

is these costs that wesave when we re-use infrastructure. For example, the emp-serverand bash objects

required between 80 and 300 person-hours per version to prepare; two faculty and five graduate research

assistants have been involved in this preparation. The flex,grep, make, sed and gzip programs involved

two faculty, three graduate students, and five undergraduate students; these students worked 10-20 hours per

week on these programs for between 20 and 30 weeks. These costs are not costs typically affordable by
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researchers; it is only by amortizing the costs over the potential controlled experiments that can follow that

we render the costs acceptable.

Finally, there are several additional potential benefits tobe realized through sharing of infrastructure in

terms of challenges addressed; these translate into a reduction of threats to validity that would exist were

the infrastructure not shared. By sharing our infrastructure with others, we can expect to receive feedback

that will improve it. User feedback will allow us to improve the robustness of our tools and the clarity and

completeness of our documentation, enhancing the opportunities for replication of experiments, aggregation

of findings, and manipulation of individual factors.

We are in the process of setting up the necessary mechanisms for encouraging researchers who use our

infrastructure to contribute additions to it in the form of new fault data, new test suites, and variants of

programs and versions that function on other operational platforms. Ultimately, we expect the community

of researchers to assemble additional artifacts using the formats and tools prescribed, and contribute them

to the infrastructure, which will increase the range and representativeness of artifacts available to support

experimentation.

Through this effort we hope to aid the entire testing research community in pursuing controlled exper-

imentation with testing techniques, increasing our understanding of these techniques and the factors that

affect them in ways that can only be achieved through such experimentation.
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6 Appendix: Classification of Published Empirical Studies

Of 1377 articles from all issues and proceedings of the 4 publication venues we considered, we identified

170 articles on topics that focused on software testing issues such as testing techniques, test generation, test

strategy, and test adequacy criteria. We examined these articles, and determined that 70 reported results

of empirical studies. In this process, we included all articles that described their results as “empirical” or

clearly evaluated their proposed techniques or methods through experimentation. We analyzed these 70

articles based on the categories that we described in Section 2.

Tables 5 and 6 summarize the results of our analysis. Table 5 lists 29 articles from TSE and eight from

TOSEM, and Table 6 lists nine articles from ISSTA and 24 from ICSE. For some articles, we could not

obtain some data relevant to the tables, because the articles do not provide sufficiently detailed descriptions.

In these cases, we entered “NA” for that data. The description of each column is as follows:

• The “Articles” column lists an article identifier, consisting of four parts: publication-year-serialnumber

[citation]. For example, TSE-00-18[70] means that the article was published by TSE in 2000, it is the

18th of 29 TSE articles considered, and its reference numberis 70 in the reference section.

• The “Number of Objects” column presents the number of objects each study used. Most objects of

study used are computer programs, but some studies used different types of objects depending on their

goals. For these exceptions, we denoted their object type inparentheses. In this survey, we found only

2 exceptions, which used specifications : TSE-03-3 and TSE-94-29.

• The “Number of Versions” column lists how many physically released versions each object has. Some

of the articles having multiple objects have different numbers of versions per object. In these cases,

we listed the different numbers, separating them by commas.

• The “Multiple Experimental Versions” column indicates whether each object has multiple experimen-

tal versions for study purposes. For example, the Siemens and space programs are available only

in single released versions, but with multiple faults. Ideally, multiple versions of programs should

be provided to support experimentation on regression testing techniques, but researchers can simu-

late this situation with multiple faulty versions of a single released version when multiple released

versions of programs are not available.

• The “Object Size” column lists the total number of lines of code, including comments. If an article

describes two objects, then we listed their sizes separatedby a comma. If an article has more than
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two objects, then we listed the range of total number of lines. Some articles provide different types of

size measures, such as the number of methods and classes. In that case, we denoted the measure they

described in parentheses.

• The “Tests” column indicates whether test suites were utilized.

• The “Faults” column indicates whether fault data were utilized.

• The “Empirical Category” column lists the type of empiricalstudy performed: controlled experiment

(listed as “experiment” in the table), case study, and example, as described below.

• The “Shared Artifacts” column indicates whether the study involved artifacts provided by or made

available to other researchers.

For classifying types of empirical studies, we researched guidelines used in previous literature [5, 48,

93, 100]. These sources use slightly different criteria andcategories to classify empirical studies, but their

common categories are case study and experiment. In classifying empirical studies, we adopted Wohlin

et al.’s criteria [93] and focused primarily on whether the study involved manipulating factors to answer

research questions.

Many studies were relatively easy to classify: If a study utilizes a single program or version, and it has

no control factor, then it is clearly a case study or an example; if a study utilizes multiple programs and

versions, and it has multiple control factors, then it is a controlled experiment. However, some studies were

difficult to classify due to a lack of description of experiment design and objects. The artifacts listed in the

table are essential elements to consider in the process of classification of the type of an empirical study, but

further consideration of the experiment design was also required. For example, if a study used all types of

artifacts listed in the table, but its experiment design didnot manipulate any factors, then we classified it

as a case study or an example. On the other hand, if a study involved a single program, but its experiment

design manipulated and controlled factors such as versionsor tests, we classified it as an experiment.

For example, in Table 5, TSE-03-2 utilizes multiple programs, multiple versions, tests, and faults, but

we classified this study as a case study because its experiment design intended only to demonstrate the

effectiveness of the authors’ method, and it did not use control data. Another example is ISSTA-02-1 in

Table 6, which uses a single version of a program and no faults, but we classified this study as a controlled

experiment because its experiment design controlled factors (e.g. different levels of instrumentation) in

order to compare the authors’ various methods.
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Table 5: Classification of published empirical studies: TSE, TOSEM

Articles Number of Number of Multiple Object size Tests Faults Empirical Shared
Objects Versions Experimental Category Artifacts

Versions

TSE-03-1[58] 7 1 yes 173-726 yes yes experiment yes
TSE-03-2[4] 4 NA yes NA yes yes case study no
TSE-03-3[13] 4 (spec) 1 no NA yes no case study no
TSE-03-4[10] 5 1 no 1198-6710 no no experiment no
TSE-03-5[1] 4 1 no 61-369 yes no experiment no
TSE-03-6[55] 20 1 no NA yes no case study no
TSE-03-7[43] 2 1 yes 173, 9564 yes yes experiment yes
TSE-02-8[49] 3 1 no NA yes no experiment no
TSE-02-9[97] 2 1 no NA yes no case study no
TSE-02-10[26] 11 1,5,6 yes 173-300K yes yes experiment yes
TSE-02-11[101] 8 1 no NA yes no case study no
TSE-01-12[61] 11 1 no 30-2046 yes no experiment no
TSE-01-13[81] 8 1 yes 173-9564 yes yes experiment yes
TSE-01-14[17] 1 1 no 541 yes yes case study no
TSE-01-15[37] 7 1 yes 173-726 yes yes experiment yes
TSE-01-16[60] 1 1 no NA yes no case study no
TSE-00-17[83] 18 1 no 89-12303 (methods) no no case study no
TSE-00-18[69] 1 1 no NA yes no case study no
TSE-98-19[79] 9 1,5,9 yes 173-49316 yes yes experiment yes
TSE-98-20[11] 1 1 no NA yes no case study no
TSE-98-21[67] 1 1 no 350 yes yes case study no
TSE-97-22[33] NA NA no NA NA NA case study NA
TSE-97-23[8] 5 1 no NA yes no case study no
TSE-97-24[16] 2 1 no 1K-2K yes no case study no
TSE-97-25[73] 2 31 yes NA yes no case study no
TSE-96-26[70] 1 1 no NA no no case study no
TSE-96-27[85] NA NA no NA NA NA example NA
TSE-95-28[3] 5 1 no 50K-1M yes no case study no
TSE-94-29[92] 13 (spec) 1 no NA yes no case study no
TOSEM-01-1[7] 9 1,5 yes 173-49316 yes yes experiment yes
TOSEM-01-2[34] 9 1,5 yes 173-49316 yes yes experiment yes
TOSEM-01-3[74] 8 1 yes 16-61 (expressions) yes yes experiment no
TOSEM-98-4[12] 1 2 yes 48 yes yes example no
TOSEM-97-5[78] 8 1,5 yes 173-49316 yes yes experiment yes
TOSEM-96-6[62] 10 1 no 10-48 yes no experiment no
TOSEM-96-7[28] 11 1 no 26-483 yes no experiment no
TOSEM-94-8[19] 2 1 no 1K yes yes case study no

Having decided which papers presented controlled experiments, we next considered the remaining pa-

pers again, to classify them as case studies or examples. If their studies utilize only trivial programs, then

we classified them as examples. However, there was one exception to this criterion: ISSTA-02-2 used small

programs, but 5 programs were involved, and the study was carefully designed; thus we considered it a case

study. We identified 3 studies as examples: TSE-96-27, TOSEM-98-4, and ICSE-01-8.
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Table 6: Classification of published empirical studies: ISSTA, ICSE

Articles Number of Number of Multiple Object size Tests Faults Empirical Shared
Objects Versions Experimental Category Artifacts

Versions

ISSTA-02-1[87] 15 1 no NA yes no experiment no
ISSTA-02-2[84] 1 2 yes 1.8M yes no case study no
ISSTA-02-3[9] 5 1 no 10-20 yes no case study no
ISSTA-02-4[32] 2 1 no 373248 (states) yes no case study no
ISSTA-00-5[24] 8 1 yes 173-9564 yes yes experiment yes
ISSTA-00-6[39] 7 1 no NA yes no case study no
ISSTA-98-7[52] 5 1,3,5,6 yes 50-300 yes yes case study no
ISSTA-96-8[50] 3 1 no 100-400 yes no case study no
ISSTA-94-9[2] 5 1 no 50K-1M yes no experiment no
ICSE-03-1[36] 8 1 yes 173-9564 yes yes experiment yes
ICSE-03-2[23] 1 1 no NA yes yes case study no
ICSE-03-3[82] 4 1 no 8-24 (classes) yes no case study no
ICSE-02-4[45] 7 1 yes 173-726 yes yes experiment yes
ICSE-02-5[75] 2 5,9 yes 59K-67K yes yes experiment yes
ICSE-02-6[29] 8 1 no 16-61 (expressions) yes no experiment no
ICSE-02-7[44] 1 1 yes 9564 yes yes experiment yes
ICSE-01-8[72] 2 1 no NA yes no example no
ICSE-01-9[25] 1 1 yes 9564 yes yes case study yes
ICSE-01-10[18] 5 1 no NA yes yes experiment no
ICSE-00-11[53] 1 1 no NA yes no case study no
ICSE-00-12[46] 8 1 yes 173-9564 yes yes experiment yes
ICSE-99-13[59] 1 1 no NA yes no case study no
ICSE-99-14[66] 4 1 no 55-4K yes no case study no
ICSE-98-15[35] 7 1 yes 173-726 yes yes experiment yes
ICSE-98-16[80] 8 1 yes 16-61 (expressions) yes yes case study no
ICSE-97-17[20] 1 1 no NA yes no case study no
ICSE-97-18[42] 1 30 yes 300-500 yes no case study no
ICSE-96-19[51] 9 1,2,3,5,6 yes NA yes yes case study no
ICSE-96-20[90] 1 2 yes 387,1495 (states) yes no case study no
ICSE-96-21[30] 1 1 no NA yes no case study no
ICSE-95-22[94] 10 1 no 90-842 yes yes experiment no
ICSE-94-23[41] 7 1 yes 173-726 yes yes experiment yes
ICSE-94-24[14] 2 1,2 yes 1700, 11K yes no case study no
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