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Abstract

Knowledge of a disease includes information

of various aspects of the disease, such as signs

and symptoms, diagnosis and treatment. This

disease knowledge is critical for many health-

related and biomedical tasks, including con-

sumer health question answering, medical lan-

guage inference and disease name recognition.

While pre-trained language models like BERT

have shown success in capturing syntactic, se-

mantic, and world knowledge from text, we

find they can be further complemented by spe-

cific information like knowledge of symptoms,

diagnoses, treatments, and other disease as-

pects. Hence, we integrate BERT with dis-

ease knowledge for improving these important

tasks. Specifically, we propose a new dis-

ease knowledge infusion training procedure

and evaluate it on a suite of BERT models in-

cluding BERT, BioBERT, SciBERT, Clinical-

BERT, BlueBERT, and ALBERT. Experiments

over the three tasks show that these models can

be enhanced in nearly all cases, demonstrat-

ing the viability of disease knowledge infusion.

For example, accuracy of BioBERT on con-

sumer health question answering is improved

from 68.29% to 72.09%, while new SOTA re-

sults are observed in two datasets. We make

our data and code freely available.1

1 Introduction

Human disease is “a disorder of structure or function

in a human that produces specific signs or symp-

toms” (Oxford-English-Dictionary, 2020). Dis-

ease is one of the fundamental biological enti-

ties in biomedical research and consequently it is

frequently searched for in the scientific literature

(Islamaj Dogan et al., 2009) and on the internet

(Brownstein et al., 2009).

Knowledge of a disease includes information

about various aspects of the disease, like the signs

1https://github.com/heyunh2015/diseaseBERT

Table 1: Disease knowledge of COVID-19 is presented

from three aspects: symptoms, diagnosis and treatment

(based on Wikipedia).

Disease Aspect Information

COVID-19 symptoms

Fever is the most common symptom,
but highly variable in severity and
presentation, with some older...

COVID-19 diagnosis

The standard method of testing is
real-time reverse transcription poly-
merase chain reaction (rRT-PCR)...

COVID-19 treatment

People are managed with supportive
care, which may include fluid therapy,
oxygen support, and supporting...

and symptoms, diagnosis, and treatment (Saleem

et al., 2012; Urnes et al., 2008; Du Jeong et al., 2017).

As an example, Table 1 highlights several aspects

for COVID-19. Specialized disease knowledge

is critical for many health-related and biomedical

natural language processing (NLP) tasks, including:

• Consumer health question answering (Abacha

et al., 2019) - the goal is to rank candidate

passages for answering questions like “What

is the diagnosis of COVID-19?” as shown in

Figure 1a;

• Medical language inference (Romanov and

Shivade, 2018) - the goal is to predict if a

given hypothesis (description of a patient) can

be inferred from a given premise (another

description of the patient);

• Disease name recognition (Doğan et al., 2014)

- the goal is to detect disease concepts in text.

For these tasks, it is critical for NLP models

to capture disease knowledge, that is the semantic

relations between a disease-descriptive text and its

corresponding aspect and disease:

• As shown in Figure 1a, if models can seman-

tically relate “...real-time reverse transcrip-

https://github.com/heyunh2015/diseaseBERT
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tion polymerase chain reaction...” (disease-

descriptive text) to the diagnosis (aspect) of

COVID-19 (disease), it is easier for them to

pick up the most relevant answer among the

candidates.

• Likewise, as shown in Figure 1b, if models

know that the premise is the symptoms (aspect)

of Aphasia (disease) in the hypothesis, they

can easily predict that it is entailment not

contradiction.

• Another example is shown in Figure 1c, if mod-

els can semantically relate “CTG expansion’

to the cause (aspect) of Myotonic dystrophy

(disease), it is easier for them to detect this

disease.

In a nutshell, NLP models require the disease knowl-

edge for these disease-related tasks.

Recently, a new style of knowledge learning and

leveraging has shaken NLP field with dramatic suc-

cesses, enabled by BERT (Devlin et al., 2019) and

its variants (Yang et al., 2019; Liu et al., 2019b;

Raffel et al., 2019; Lan et al., 2020). These mod-

els capture language and world knowledge (Qiu

et al., 2020; Rogers et al., 2020) in their parame-

ters via self-supervised pre-training over large-scale

unannotated data and then leverage these knowl-

edge in further fine-tuning over downstream tasks.

Moreover, many biomedical BERT models such as

BioBERT (Lee et al., 2020) are proposed, which are

pre-trained over biomedical corpora via a masked

language model (MLM) that predicts randomly

masked tokens given their context. This MLM

strategy is designed to capture the semantic re-

lations between random masked tokens and their

context, but not the disease knowledge. Because

the corresponding disease and aspect might not be

randomly masked or might not be mentioned at all

in the disease-descriptive text, the semantic rela-

tions between them cannot be effectively captured

via MLM. Therefore, a new training strategy is

required to capture this disease knowledge.

In this paper, we propose a new disease knowl-

edge infusion training procedure to explicitly aug-

ment BERT-like models with the disease knowl-

edge. The core idea is to train BERT to infer the

corresponding disease and aspect from a disease-

descriptive text, enabled by weakly-supervised sig-

nals from Wikipedia. Given a passage extracted

from a section (normally describes an aspect) of a

disease’s Wikipedia article, BERT is trained to infer

Question: …keen to learn how to get COVID-19 diagnosed, many thanks

Answer 1: ... real-time reverse transcription polymerase chain reaction...

Answer 2: ... diagnosis of vipoma requires demonstration of diarrhea...

Answer 3: ...affected by this disorder are not able to make lipoproteins…

Label: Answer 1 is the most relevant

Disease Knowledge: Answer 1 is the diagnosis of COVID-19

(a) Consumer Health Question Answering

Premise: She was not able to speak, but appeared to comprehend well

Hypothesis: Patient had aphasia

Label: entailment

Disease Knowledge: Premise describes the symptoms of aphasia

(b) Medical Language Inference

Text: Myotonic dystrophy (DM) is caused by a CTG expansion in the 3 

untranslated region of the DM gene.

Label: Myotonic dystrophy 

Disease Knowledge: the text contains the cause of Myotonic dystrophy 

(c) Disease Name Recognition

Figure 1: Examples of tasks that can benefit from dis-

ease knowledge.

the title of the corresponding section (aspect name)

and the title of the corresponding article (disease

name). For example, in Table 1, given “...testing

is real-time reverse transcription polymerase chain

reaction (rRT-PCR)...”, BERT is trained to infer

that this passage is from the section “diagnosis" of

the article “COVID-19”. Moreover, because some

passages do not mention the disease and aspect,

we construct auxiliary sentences that contain the

disease and aspect, such as “What is the diagnosis

of COVID-19?" and insert this sentence at the be-

ginning of the corresponding passage. After that,

we mask the disease and aspect in the auxiliary

sentence and then let BERT-like models infer them

given the passage. In this way, BERT learns how to

semantically relate a disease-descriptive text with

its corresponding aspect and disease.

To evaluate the quality of disease knowledge in-

fusion, we conduct experiments on a suite of BERT

models – including BERT, BlueBERT, Clinical-

BERT, SciBERT, BioBERT, and ALBERT – over

consumer health question (CHQ) answering, med-

ical language inference, and disease name recog-

nition. We find that (1) these models can be en-

hanced in nearly all cases. For example, accuracy

of BioBERT on CHQ answering is improved from

68.29% to 72.09%; and (2) our method is supe-

rior to MLM for infusing the disease knowledge.

Moreover, new SOTA results are observed in two

datasets. These results demonstrate the potential

of disease knowledge infusion into pre-trained lan-

guage models like BERT.
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2 Related Work

Knowledge-Enriched BERT: Incorporating exter-

nal knowledge into BERT has been shown to be

effective. Such external knowledge includes world

(factual) knowledge for tasks such as entity typ-

ing and relation classification (Zhang et al., 2019;

Peters et al., 2019; Liu et al., 2019a; Xiong et al.,

2019), sentiment knowledge for sentiment analysis

(Tian et al., 2020; Yin et al., 2020), word sense

knowledge for word sense disambiguation (Levine

et al., 2019), commonsense knowledge for com-

monsense reasoning (Klein and Nabi, 2020) and

sarcasm generation (Chakrabarty et al., 2020), le-

gal knowledge for legal element extraction (Zhong

et al., 2020), numerical skills for numerical reason-

ing (Geva et al., 2020), and coding knowledge for

code generation (Xu et al., 2020).

Biomedical BERT: BERT can also be enriched

with biomedical knowledge via pre-training over

biomedical corpora like PubMed, as in BioBERT

(Lee et al., 2020), SciBERT (Beltagy et al., 2019),

ClinicalBERT (Alsentzer et al., 2019) and Blue-

BERT (Peng et al., 2019). These biomedical BERT

models report new SOTA performance on several

biomedical tasks. Disease knowledge, of course, is

a subset of biomedical knowledge. However, there

are two key differences between these biomedical

BERT models and our work: (1) Many biomedical

BERT models are pre-trained via BERT’s default

MLM that predicts 15% randomly masked tokens.

In contrast, we propose a new training task: disease

knowledge infusion, which infers the disease and

aspect from the corresponding disease-descriptive

text; (2) Biomedical BERT models capture the gen-

eral syntactic and semantic knowledge of biomed-

ical language, while our work is specifically de-

signed for capturing the semantic relations between

a disease-descriptive text and its corresponding as-

pect and disease. Experiments reported in Section 4

show that our proposed method can improve the

performance of each of these biomedical BERT

models, demonstrating the importance of disease

knowledge infusion.

Biomedical Knowledge Integration Methods

with UMLS: Previous non-BERT methods connect

data of downstream tasks with knowledge bases

like UMLS (Sharma et al., 2019; Romanov and

Shivade, 2018). For example, they map medical

concepts and semantic relationships in the data to

UMLS. After that, these concepts and relationships

are encoded into embeddings and incorporated into

models (Sharma et al., 2019). The advantage is

that they can explicitly incorporate knowledge into

models. However, these methods have been out-

performed by biomedical BERT models such as

BioBERT in most cases.

Table 2: Eight aspects of knowledge of a disease that

are considered in this work.

Aspect Name Definition

Information The general information of a disease.
Causes The causes of a disease.
Symptoms The signs and symptoms of a disease.
Diagnosis How to test and diagnose a disease.
Treatment How to treat and manage a disease.
Prevention How to prevent a disease.
Pathophysiology The physiological processes of a disease.
Transmission The means by which a disease spread.

3 Proposed Method: Disease Knowledge

Infusion Training

In this section, we propose a new training task: Dis-

ease Knowledge Infusion Training. Our goal is to

integrate BERT-like pre-trained language models

with disease knowledge to achieve better perfor-

mance on a variety of medical domain tasks includ-

ing answering health questions, medical language

inference, and disease name recognition. Our ap-

proach is guided by three questions: Which diseases

and aspects should we focus on? How do we infuse

disease knowledge into BERT-like models? What

is the objective function of this training task?

3.1 Targeting Diseases and Aspects

First, we seek a disease vocabulary that provides

disease terms. Several resources include Medical

Subject Headings2 (MeSH) (Lipscomb, 2000), the

National Cancer Institute thesaurus (De Coronado

et al., 2004), SNOMED CT (Donnelly, 2006), and

Unified Medical Language System (UMLS) (Bo-

denreider, 2004). Each has a different scope and

design purpose, and it is an open question into

which is most appropriate here. As a first step,

we select MeSH, which is a comprehensive con-

trolled vocabulary proposed by the National Library

of Medicine (NLM) to index journal articles and

books in the life sciences, composed of 16 branches

like anatomy, organisms, and diseases. We collect

all unique disease terms from the Disease (MeSH

tree number C01-C26) and Mental Disorder branch

(MeSH tree number F01), resulting in 5,853 total

disease terms.

2https://meshb.nlm.nih.gov/treeView

https://meshb.nlm.nih.gov/treeView
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Passage: The WHO has published several testing protocols for the disease. The standard 

method of testing is real-time reverse transcription polymerase chain reaction (rRT-PCR)...

New Passage for MLM: What is the [MASK] of [MASK]? The WHO has published several 

testing protocols for the disease. The standard method of testing is real-time reverse 

transcription polymerase chain reaction (rRT-PCR)...

Auxiliary Sentence: What is the diagnosis of COVID-19?
5. Construct an auxiliary sentence that mentions the subject

disease and aspect.

3. Extract text from a section

as the passage.

6. Concatenate the passage

and the auxiliary Sentence.

BERT is trained to infer the

disease and aspect.

1. Obtain disease

terms fromMeSH

2. Obtain Articles of

diseases from Wikipedia

Disease: COVID-19 (title of the Wikipedia article)
4. Extract the weakly-supervised topic disease and aspect for

the passage.
Aspect: Diagnosis (title of the section)

Figure 2: Disease Knowledge Infusion Training: An example with COVID-19.

Knowledge of a disease involves information

about various aspects of the disease (Saleem et al.,

2012; Urnes et al., 2008; Du Jeong et al., 2017).

For each aspect, we focus on text alone (excluding

images or other media). Following Abacha and

Demner-Fushman (2019), we consider eight disease

aspects as shown in Table 2.

3.2 Weakly Supervised Knowledge Infusion

from Wikipedia

Given the target set of diseases and aspects, the

next challenge is how to infuse knowledge of the

aspects of these diseases into BERT-like models.

We propose to train BERT to infer the correspond-

ing disease and aspect from a disease-descriptive

text. By minimizing the loss between the predicted

disease and aspect and the original disease and

aspect, the model should memorize the semantic

relations between the disease-descriptive text and

its corresponding disease and aspect.

A straightforward approach is to mask and pre-

dict the disease and aspect in the disease-descriptive

text. However, this strategy faces two problems:

(1) Given a passage extracted from disease-related

papers, clinical notes, or biomedical websites, the

ground-truth of its topic (i.e., disease and aspect)

is difficult to identify. Medical expert annotation

is time-consuming and expensive; while automatic

annotation can suffer from large errors. For ex-

ample, we need to recognize disease names in the

passage, which is yet another challenging and still

open problem in biomedical text mining (Doğan

et al., 2014); (2) Diseases and aspects mentioned in

a passage are not necessarily the topic words. Mul-

tiple disease names or aspect names might appear,

making it difficult to determine which is the correct

topic. For example, in Table 1, the symptoms of

COVID-19 also mentions fever3, while the correct

topic is COVID-19.

3Fever is included in the disease branch of MeSH.

Weakly-Supervised Knowledge Source: Instead

of annotating an arbitrary disease-related passage,

we exploit the structure of Wikipedia as a weakly-

supervised signal. In many cases, each disease’s

Wikipedia article consists of several sections where

each introduces an aspect of the disease (like di-

agnosis). For example, step 2 in Figure 2 shows

several aspects on the Wikipedia page for COVID-

19. By extracting the passage from each section,

the title of the section (e.g., diagnosis) is the topic

aspect of the passage and the title of the article is

the topic disease (e.g., COVID-19). Specifically,

we search Wikipedia to obtain the articles for the

5,853 target disease terms from MeSH and apply

regular expressions to extract the text of the sections

corresponding to the appropriate aspects. In total,

we collect a disease knowledge resource consisting

of 14,617 passages.4 In fact, there are other online

resources5 with the similar structure. As a first step,

we start with Wikipedia.

Auxiliary Sentences for Disease and Aspect Pre-

diction: The second problem is that the extracted

passages do not necessarily mention the correspond-

ing disease and the aspect. For example, in Table

1, the disease name “COVID-19” does not appear

in the information of its symptoms. In the disease

knowledge resource, we find that only 51.4% of

passages mention both the corresponding diseases

and aspects. Hence, we cannot simply mask-and-

predict the disease and aspect because the passage

does not mention them at all.

A remedy for this problem is an auxiliary sen-

tence that contains the corresponding disease and

aspect for each passage. We use a template of

question style: “What is the [Aspect] of [Disease]?”

to automatically generate auxiliary sentences as

shown in step 5 in Figure 2. Some examples are

4Note that each disease article does not necessarily have
all eight target aspects.

5https://medlineplus.gov/skincancer.html

https://medlineplus.gov/skincancer.html
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shown in Table 3. The advantage of this question

style template is that the cloze statement of the

auxiliary sentences for all aspects (except for the

“information” aspect) are the same (What is the

[MASK] of [MASK]?). Hence, the auxiliary sen-

tences provide no clues (i.e., bias) for predicting

the corresponding aspect.

Table 3: Examples of auxiliary sentences

Aspect Name Auxiliary Sentence

Diagnosis What is the diagnosis of COVID-19?
Treatment What is the treatment of COVID-19?
Prevention What is the prevention of COVID-19?
Transmission What is the transmission of COVID-19?
Cloze Statement What is the [MASK] of [MASK]?

After that, we replace the corresponding disease

and aspect with the special token [MASK] in the

auxiliary sentences. Then, we insert the auxil-

iary sentence at the beginning of its corresponding

passage to form a new passage with a question-and-

answer style as shown in Figure 2, where BERT is

trained to predict the original tokens of the masked

disease and aspect.

3.3 Training Objective and Details

Finally, we show the objective function of disease

infusion training. Since most disease names are out

of BERT vocabulary, the WordPiece tokenizer (Wu

et al., 2016) will split these terms into sub-word

tokens that exist in the vocabulary. For example,

“COVID-19" will be split into 4 tokens: “co", “vid",

“-" and “19". Formally, let - = (G1, ..., G) ) denote

a sequence of ) tokens that are split from a disease

name where GC is the C-th token. The original cross-

entropy loss is to get the conditional probability of

a masked token as close as possible to the 1-hot

vector of the token:

L38B40B4 = −

)∑

C=1

;>6 ?(GC |?0BB064) (1)

where ?(GC |2>=C4GC) is a conditional probability

over GC given the corresponding passage, which can

be defined as:

?(GC |?0BB064) =
4G?(IC )∑
I∈V 4G?(I)

(2)

where V is the vocabulary and IC is the unnor-

malized log probability of GC . Let yC denote the

embedding of token GC from the output layer of

BERT. We can estimate IC via:

IC = w·yC+1 (3)

where the weight w and bias 1 are learnable vectors.

Note that the vocabulary size of BERT is around

30,000 which means masked language modeling

task is a 30,000 multi-class problem. The logits

(like IC ) after the normalization of softmax (Equa-

tion 2) will be pretty small (the expectation of mean

should be around 1/30,000=3.3*e-5), which might

cause some obstacles for the learning. Therefore,

we also maximize the raw logits (like IC ) before

softmax normalization which might keep more use-

ful information. Empirically, we add the reciprocal

of the logits to the cross-entropy loss:

L38B40B4 = −

)∑

C=1

;>6?(GC |?0BB064)+
V

∑)
C=1

IC
(4)

where V balances the two parts of the loss. The

final objective function is combined with the loss

of the disease and aspect: L = L38B40B4+L0B?42C

where L0B?42C = −;>6 ?(0 |?0BB064) and 0 is the

token of the aspect name. By minimizing this loss

function, BERT can update its parameters to store

the disease knowledge.

4 Experiments

In this section, we examine disease knowledge

infusion into six BERT variants over three disease-

related tasks: health question answering, medical

language inference, and disease name recognition.

Reproducibility: The code and data in this paper

is released.6 A model is firstly initialized with the

pre-trained parameters from BERT or its variants

and then is further trained by disease knowledge

infusion to capture the disease knowledge. We use

a widely used Pytorch implementation7 of BERT

and Adam as the optimizer. We empirically set

learning rate as 1e-5, batch size as 16 and V as

10. Because MeSH (5,853 disease terms) is chosen

as the disease vocabulary in our experiments, as

a smaller vocabulary compared with others like

UMLS (540,000 disease terms), we obtain a rel-

atively small dataset of 14,617 passages. Hence,

the training of disease knowledge infusion is as

fast as fine-tuning BERT over downstream datasets,

which takes 2-4 epochs to enhance BERT for a

better performance on downstream tasks, which

will be discussed in Section 4.5. The training is

performed on one single NVIDIA V100 GPU and

6https://github.com/heyunh2015/diseaseBERT
7https://github.com/huggingface/

transformers

https://github.com/heyunh2015/diseaseBERT
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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it takes about 10 minutes to complete one training

epoch using BERT-base architecture. The repro-

ducibility for fine-tuning over downstream tasks

will be detailed in Section 4.2.

4.1 BERT and its Biomedical Variants

We consider six BERT models: two pre-trained over

general language corpora (BERT and ALBERT)

and four pre-trained over biomedical corpora (Clin-

ical BERT, BioBERT, BlueBERT and SciBERT).

BERT (Devlin et al., 2019) is a multi-layer bidirec-

tional Transformer encoder. Since the following

biomedical versions of BERT are often based on the

BERT-base architecture (12 layers and 768 hidden

embedding size with 108M parameters), we choose

BERT-base here for fair comparison.

ALBERT8 (Lan et al., 2020) compresses the ar-

chitecture of BERT by factorized embedding pa-

rameterization and cross-layer parameter sharing.

Via this compression, ALBERT can have a sub-

stantially higher capacity than BERT, with stronger

performance on many tasks. We choose the maxi-

mum version ALBERT-xxlarge (12 layers and 4096

hidden embedding size with 235M parameters).

BioBERT9 (Lee et al., 2020) is the first BERT

pre-trained on biomedical corpora. It is initialized

with BERT’s pre-trained parameters (108M) and

then further trained over PubMed abstracts (4.5B

words) and PubMed Central full-text articles (13.5B

words). We choose the best version BioBERT v1.1.

ClinicalBERT10 (Alsentzer et al., 2019) is a BERT

model initialized from BioBERT v1.0 (Lee et al.,

2020) and further pre-trained over approximately

2 million notes in the MIMIC-III v1.4 database of

patient notes (Johnson et al., 2016). We adopt the

best performing version of ClinicalBERT (108M pa-

rameters) based on discharge summaries of clinical

notes: Bio-Discharge Summary BERT.

BlueBERT11 (Peng et al., 2019) is firstly initial-

ized from BERT (108M parameters) and further

pre-trained over a biomedical corpus of PubMed

abstracts and clinical notes (Johnson et al., 2016).

SciBERT12 (Beltagy et al., 2019) is a BERT-base

(108M parameters) model pre-trained on a random

sample of the full text of 1.14M papers from Se-

mantic Scholar (Ammar et al., 2018), with 18% of

8https://huggingface.co/albert-xxlarge-v2
9https://github.com/dmis-lab/biobert
10https://huggingface.co/emilyalsentzer
11https://github.com/ncbi-nlp/bluebert
12https://huggingface.co/allenai/scibert_

scivocab_uncased

Table 4: Summary of Tasks and Datasets.

Datasets Train Dev Test

MEDIQA-2019 208 (1, 701)1 25 (234) 150 (1,107)
TRECQA-2017 254 (1,969) 25 (234) 104 (839)

MEDNLI 11, 232
2 1,395 1,422

BC5CDR-disease 4, 182
3 4,244 4,424

NCBI 5,145 787 960

1, Questions with associated answers; 2, Pairs of premise
and hypothesis; 3, Disease name mentions

papers from the computer science domain and 82%

from the biomedical domain.

4.2 Tasks

We test disease knowledge infusion over three

biomedical NLP tasks. The dataset statistics are in

Table 4. For fine-tuning of BERT and its variants,

the batch size is selected from [16, 32] and learning

rate is selected from [1e-5, 2e-5, 3e-5, 4e-5, 5e-5].

Task 1: Consumer Health Question Answering.

The objective of this task is to rank candidate

answers for consumer health questions.

Datasets. We consider two datasets: MEDIQA-

2019 (Ben Abacha et al., 2019) and TRECQA-2017

(Abacha et al., 2017).13 MEDIQA-2019 is based

on questions submitted to the consumer health

QA system CHiQA14. TRECQA-2017 is based

on questions submitted to the National Library of

Medicine. Medical experts manually re-ranked the

original retrieved answers and provide Reference

Score (1 to 11) and Reference Rank (4: Excellent, 3:

Correct but Incomplete, 2: Related, 1: Incorrect).

Fine-tuning. MEDIQA-2019 and TRECQA-2017

are used as the fine-tuning dataset for each other.

MEDIQA-2019 also contains a validation set for

tuning hyper-parameters for both datasets. Fol-

lowing Xu et al. (2019), the task is cast as a

regression problem where the target score is:

B2>A4 = Reference Score−
Reference Rank−1

<
where

< is the number of candidate answers. Each

question-answer pair is packed as a single sequence

as the input for BERT. A single linear layer is on top

of the output embedding of the special token [CLS]

to generate the predicted score. MSE is adopted

as the loss and we use Adam as the optimizer. All

hyper-parameters are tuned on the validation set in

terms of accuracy, where we set the batch size as

16 and learning rate as 1e-5.

13https://sites.google.com/view/mediqa2019
14https://chiqa.nlm.nih.gov/

https://huggingface.co/albert-xxlarge-v2
https://github.com/dmis-lab/biobert
https://huggingface.co/emilyalsentzer
https://github.com/ncbi-nlp/bluebert
https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/allenai/scibert_scivocab_uncased
https://sites.google.com/view/mediqa2019
https://chiqa.nlm.nih.gov/
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Table 5: Experimental Results

Tasks Consumer Health Question Answering NLI NER

Datasets MEDIQA-2019 TRCEQA-2017 MEDNLI BC5CDR NCBI

Metrics(%) Accuracy MRR Precision Accuracy MRR Precision Accuracy F1 F1

BERT 64.95 82.72 66.49 74.61 56.17 52.55 75.95 83.09 85.14
BERT + disease* 66.40↑ 83.33↑ 68.94↑ 75.33↑ 56.41↑ 54.01↑ 77.29↑ 83.47↑ 86.81↑

BlueBERT 65.13 81.50 67.35 74.26 48.40 52.55 82.21 85.73 87.78
BlueBERT + disease 68.47↑ 81.17 71.57↑ 77.59↑ 50.96↑ 57.62↑ 83.90↑ 86.30↑ 87.79↑

ClinicalBERT 67.30 84.78 70.59 77.00 52.56 56.62 81.50 84.90 87.25
ClinicalBERT + disease 69.02↑ 88.94↑ 69.84 78.90↑ 54.97↑ 60.40↑ 81.65↑ 85.63↑ 87.22

SciBERT 68.47 84.47 68.07 77.23 54.57 57.54 80.94 86.16 87.24
SciBERT + disease 73.35↑ 85.44↑ 76.28↑ 79.02↑ 56.57↑ 59.57↑ 82.14↑ 86.34↑ 88.30↑

BioBERT 68.29 83.61 72.78 77.12 49.84 57.25 81.86 85.99 87.70
BioBERT + disease 72.09↑ 87.78↑ 74.40↑ 78.43↑ 54.76↑ 58.45↑ 82.21↑ 86.52↑ 87.14

ALBERT 76.54 88.46 81.41 75.09 58.57 53.03 85.48 84.28 87.56
ALBERT + disease 79.49↑ 90.00↑ 84.02↑ 80.10↑ 57.21 62.40↑ 86.15↑ 84.71↑ 87.69↑

SOTA* 78.00 93.67 81.91 77.23 54.57 57.54 84.00 87.15 89.71

* SOTA, state-of-the-art as of May 2020, to the best of our knowledge.
* “ + disease" means that we train BERT via disease knowledge infusion training before fine-tuning.

SOTA. The state-of-the-art (SOTA) performance

on MEDIQA-2019 is achieved by Xu et al. (2019),

which is an ensemble method. Because TRECQA-

2017 is fine-tuned on MEDIQA-2019, which is

different from the original settings (Abacha et al.,

2017) (BERT had not been proposed at that time),

we use the best result of SciBERT among the BERT

models as SOTA for TRECQA-2017.

Task 2: Medical Language Inference. The goal

of this task is to predict whether a given hypothesis

can be inferred from a given premise.

Datasets. MEDNLI (Romanov and Shivade, 2018)

is a natural language inference dataset for the clini-

cal domain.15 For each premise (a description of a

patient) selected from clinical notes (MIMIC-III),

clinicians generate three hypotheses: entailment

(alternate true description of the patient), contradic-

tion (false description of the patient), and neutral

(alternate description that might be true).

Fine-tuning. Following Peng et al. (2019), we pack

the premise and hypothesis together into a single

sentence. A linear layer is on top of the output

embedding of [CLS] to generate logits. Cross-

entropy loss function is adopted, and we use Adam

as the optimizer. All hyper-parameters are tuned on

the validation set in terms of accuracy, where we

set the batch size as 32 and learning rate as 1e-5.

SOTA. To the best of our knowledge, the state-

of-the-art on MEDNLI is achieved by BlueBERT,

15https://physionet.org/content/mednli/1.0.

0/

reported in Peng et al. (2019).

Task 3: Disease Name Recognition. This task is

to detect disease names from free text.

Datasets. BC5CDR16 (Wei et al., 2016) and

NCBI17 (Doğan et al., 2014) are collections of

PubMed titles and abstracts. Medical experts an-

notate diseases mentioned in the collection. Since

BC5CDR includes both chemicals and diseases, we

focus on diseases in this dataset.

Fine-tuning. Following Peng et al. (2019), we cast

this task as a token-level tagging (classification)

problem, where each token is classified into three

classes: B (beginning of a disease), I (inside of a

disease) or O (out of a disease). Cross-entropy is

adopted as the loss function and we use Adam as

the optimizer. All hyper-parameters are tuned on

the validation set in terms of F1, where we set the

batch size as 32 and learning rate as 5e-5.

SOTA. The best performance is achieved by

BioBERT v1.1, reported in Lee et al. (2020)18.

4.3 Results

The experimental results are presented in Table

5. We show each original model and its disease

16https://github.com/ncbi-nlp/BLUE_Benchmark
17https://www.ncbi.nlm.nih.gov/CBBresearch/

Dogan/
18Although SciBERT reports a better result in NCBI, it uses

a conditional random field on top of BERT, which is more
complicated than the linear layer normally used in fine-tuning
for BERT models including BioBERT.

https://physionet.org/content/mednli/1.0.0/
https://physionet.org/content/mednli/1.0.0/
https://github.com/ncbi-nlp/BLUE_Benchmark
https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/
https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/
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knowledge infused variant (e.g,. BERT and BERT

+ disease). We have two main findings:

Effectiveness of Disease Infusion. First, by infus-

ing disease knowledge via our new training regimen,

we see a significant improvement in nearly all cases.

For example, ALBERT + disease achieves 80.10%

in terms of accuracy which is superior to 75.09% by

ALBERT alone on TRECQA-2017. Standing on the

shoulders of ALBERT, disease knowledge infusion

leads to state-of-the-art results on MEDIQA-2019

and MEDNLI, to the best of our knowledge. Al-

though BERT and ALBERT are pre-trained on all

of Wikipedia, including the articles of diseases,

they might not pay enough attention to the disease

part since Wikipedia is so large. Hence, disease

knowledge infusion that leverages the Wikipedia

structure to capture the disease knowledge is a com-

plement for BERT and ALBERT. Moreover, it is

encouraging to see the improvements of disease

knowledge infusion in biomedical BERT models,

even though these variants are already pre-trained

over large-scale biomedical corpora like PubMed

with access to comprehensive disease information.

This improvement demonstrates that the disease

knowledge captured by our method – that is, the

semantic relations between a disease-descriptive

text and its corresponding aspect and disease – is

different from the general linguistic knowledge in

the biomedical domain captured by the randomly

masked tokens prediction strategy of these biomedi-

cal BERT models. To sum up, the results show that

the proposed disease knowledge infusion method

can effectively complement BERT and its biomed-

ical variants and hence improve the performance

on health question answering, medical language

inference, and disease name recognition.

Effectiveness of Biomedical BERT Models. We

also observe that BERT models pre-trained on

biomedical corpora outperform the same BERT

architecture that is pre-trained on general language

corpora. For example, BioBERT achieves 68.29%

in terms of accuracy on MEDIQA-2019 while

BERT only obtains 64.95%. This demonstrates

that with the same model architecture, pre-training

on biomedical corpora can capture more biomed-

ical language knowledge that improves BERT for

downstream biomedical tasks.19

19Note that our results for the biomedical BERT models in
Table 5 are slightly different from the results reported in the
original papers that normally only provide a search range for
hyper-parameters and not the specific optimal ones.

Table 6: Ablation Study on MEDIQA-2019

Variants Accuracy MRR Precision

Default 79.49 90.00 84.02
- Auxiliary Sentence 78.23 90.89 78.10
- Aspect Prediction 78.41 89.06 80.00
- Disease Prediction 72.90 85.72 79.44
15% Randomly Masked Tokens 77.06 87.33 85.18

In addition, we find that a high-capacity model

like ALBERT can achieve similar performance

as biomedical BERT models on TRECQA-2017,

BC5CDR and NCBI, and even better performance

on MEDIQA-2019 and MEDNLI. This observation

might motivate new biomedical pre-trained models

based on larger models like ALBERT-xxlarge.

4.4 Ablation Study

We present the results of an ablation study on

MEDIQA-2019 in Table 6. Similar results are ob-

served on other datasets but omitted here due to the

space limitation. We first remove “Auxiliary Sen-

tence”. That is, we remove the auxiliary question:

“What is the [Aspect] of [Disease]?” and let BERT

to predict the corresponding disease and aspect in

the original passage if they appear. We observe

worse results in terms of accuracy and precision,

which shows that the auxiliary sentence is an effec-

tive remedy for the problem that some passages do

not mention their disease and aspects. We also re-

move aspect prediction or disease prediction in the

auxiliary sentence; both lead to worse results but

removing disease prediction leads to a much lower

performance. This shows that it is more important

for BERT to infer the disease than the aspect from

the passage. We also pre-train BERT on the same

corpus (the disease-related passages) as our method.

Following Devlin et al. (2019), we randomly mask

15% tokens in each sentence and let BERT to pre-

dict them. As shown in “15% Randomly Masked

Tokens", we observe that our proposed disease infu-

sion training task outperforms the default masked

language model in BERT. This shows that our ap-

proach that leverages the structure of Wikipedia

article to enhance the disease knowledge infusion

works better than simply adding more data to the

training process. Specifically, via leveraging the

Wikipedia structure, we could effectively mask key

words like aspect names and disease names that

are related to disease knowledge and hence more

effective than randomly masking strategy over the

simply added data.
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Figure 3: Learning curve of disease infusion knowl-

edge. The y-axis is the accuracy of BERT models over

MEDIQA-2019.

4.5 Learning Curve

In this section, we present the learning curve of

our proposed disease infusion training task. The

x-axis denotes the training epochs and the y-axis

denotes the performance of BERT models that are

augmented with disease infusion training at that

epoch. We take BioBERT and MEDIQA-2019 as

examples; similar results are obtained in other mod-

els over other tasks. The results in terms of accuracy

are presented in Figure 3, where we observe that (1)

disease knowledge infusion takes only three epochs

to achieve the optimal performance on BioBERT

over the CHQ answering task. (2) cross-entropy

loss used by disease knowledge infusion can be

enhanced by adding the term of maximizing the

raw logits (Equation 4).

5 Conclusions

In this paper, we propose a new disease infu-

sion training procedure to augment BERT-like

pre-trained language models with disease knowl-

edge. We conduct this training procedure on a suite

of BERT models and evaluate them over disease-

related tasks. Experimental results show that these

models can be enhanced by this disease infusion

method in nearly all cases.
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