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Infusing theory into deep learning for interpretable
reactivity prediction
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Despite recent advances of data acquisition and algorithms development, machine learning

(ML) faces tremendous challenges to being adopted in practical catalyst design, largely due

to its limited generalizability and poor explainability. Herein, we develop a theory-infused

neural network (TinNet) approach that integrates deep learning algorithms with the well-

established d-band theory of chemisorption for reactivity prediction of transition-metal sur-

faces. With simple adsorbates (e.g., *OH, *O, and *N) at active site ensembles as repre-

sentative descriptor species, we demonstrate that the TinNet is on par with purely data-

driven ML methods in prediction performance while being inherently interpretable. Incor-

poration of scientific knowledge of physical interactions into learning from data sheds further

light on the nature of chemical bonding and opens up new avenues for ML discovery of novel

motifs with desired catalytic properties.
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A
dsorption energies of simple molecules or their fragments
at solid surfaces often serve as reactivity descriptors in
heterogeneous catalysis1. Rapid discovery of structural

motifs with kinetics-favorable descriptor values, for example
using quantum-chemical calculations, is appealing while
remaining a daunting task due to the formidable computational
cost in accurately solving the many-electron Schrödinger equa-
tion. In this aspect, the d-band theory of chemisorption pioneered
by Hammer and Nørskov2–6 has been widely used for under-
standing reactivity trends of d-block metals7,8 and, to some
extent, their compounds9. However, its quantitative prediction
accuracy using individual d-band characteristics, e.g., the number
of d-electrons10, d-band center2, and d-band upper edge6,11, is
limited due to the perturbative nature of the theoretical
framework12 and a large variation of site properties in high-
throughput catalyst screening.

In recent years, machine learning (ML) has emerged as an
alternative approach to predicting the chemical reactivity of cat-
alytic sites with either hand-crafted13–20 or algorithm-derived
features21–25. By learning correlated interactions of atoms, ions,
or molecules with a substrate from a sufficient amount of ab initio
data, it is possible to compute adsorption properties orders of
magnitude faster than traditional practices and narrow down
candidate materials prior to experimental tests13,14,16–18,22,25–28.
A major limitation of black-box ML models, particularly with the
resurgent deep learning algorithms29, is that it is easy to learn
some correlates that look deceptively good on both training and
test samples, but do not generalize well outside the labeled data.
To alleviate the issue, active learning workflows guided by key
performance indicators17,30 and/or model uncertainties16 have
been used to accelerate the exploration of the enormous, essen-
tially infinite, size of the accessible design space. Nevertheless, the
necessity of a very large amount of data samples for model
development and difficulties in interpreting model prediction
impose tremendous challenges toward its adoption for automated
search of high-performance catalytic materials.

Herein, we present a theory-infused neural network (TinNet)
approach to predicting chemical reactivity of transition-metal
surfaces and, more importantly, to extracting physical insights
into the nature of chemical bonding that can be translated into
catalyst design strategies. Incorporation of scientific knowledge of
physical interactions into data-driven ML methods is an emerging
area of research in catalysis science13,18,19,23,24,31,32. To the best of
our knowledge, no such hybrid surrogate models of chemisorption
were developed within a fully integrated ML framework that is
reasonably accurate (~0.1−0.2 eV error) and transferable across
diverse samples. By learning from ab initio adsorption properties
with deep learning algorithms, e.g., convolutional neural networks,
while respecting the well-established d-band theory of chemi-
sorption in architecture design, the TinNet can be applied for a
broad range of d-block metal sites and naturally encodes physical
aspects of bonding interactions, inheriting the merits of both
worlds. We demonstrate the approach using adsorbed hydroxyl
(*OH) at {111}-terminated intermetallics and near-surface alloys
as a representative descriptor species, such as in finding efficient
electrocatalysts for metal-catalyzed O2 reduction33, CO2

reduction34, and H2 oxidation in alkaline electrolytes35. This fra-
mework can be straightforwardly applied to other adsorbates (e.g.,
*O) or active site ensembles of multiple bonding atoms as shown
for *N adsorption at {100}-terminated metal surfaces. The TinNet
not only achieves prediction performance on par with purely
regression-based ML methods, especially for out-of-sample sys-
tems with unseen structural and electronic features but also
enables physical interpretation, paving the path toward ML dis-
covery of novel motifs with desired catalytic properties.

Results
Deep network architecture. As illustrated in Fig. 1, the TinNet
framework contains two sequential components: a regression
module and a theory module. The input into the regression
module built with convolutional neural networks is the feature
representation of the adsorbate–substrate system that encodes the
atomic information and bonding interactions of each atom with
its neighboring environment. The output units from the regression
module then serve as unknown parameters in the theory module
that is built upon the d-band theory of chemisorption for pre-
dicting adsorption properties of a d-metal site. To ensure model
transferability, easily accessible graph features were used (see
Fig. 1). In the graph-level scheme, each atom or node is repre-
sented by a binary vector, comprising nine properties of the atom,
e.g., electron affinity, atomic volume, and electronegativity26,36.
Similarly, each connection or edge encodes the pair interaction
between neighboring atoms, including the solid angles swept out
by the shared face of Voronoi polyhedra22 and the kernelized
distances36. A surface at the optimized bulk geometry with the
adsorbate attached to the site of interest is used37, thus avoiding
the time-consuming structural optimization in the exploration of
new systems22. Neural nets with m convolution-pooling layers are
connected to the feature representation sub-module. Within the
convolutional layers, multi-dimensional feature arrays are itera-
tively updated by convolution (i.e., feature mapping) to extract
high-level patterns and by pooling for feature subsampling. The
2D array is flattened into a vector, which can be fed into a fully
connected network with k hidden layers and a certain number of
hidden neurons at each layer to capture the complex mapping
between the extracted features and output targets. Finally, the
output vector from the regression is incorporated into the theory
module as local parameters along with user-defined global para-
meters, if any, that are independent of input features.

The physical meaning of each output unit from the regression
module is pre-assigned in the TinNet framework. Historically, many
factors have been used to correlate with the chemical reactivity of d-
block metals, e.g., atomic or bulk properties10,38, coordination
numbers39,40, and d-band characteristics2,6. Mapping physically
relevant factors onto adsorption energies with ML algorithms has
been previously explored with some success13–15,17–19,21,25,31,32,41.
Besides the ambiguity of physical interpretation inherent to highly
non-linear regression techniques, another major criticism is that
some of the hand-crafted features require fully optimized geometric
and/or electronic structures of the clean adsorption site, adding
computational overhead costs to reactivity prediction of new
materials. Instead of purely mathematical regression, we resort to
the d-band theory of chemisorption with Newns–Anderson-type
Hamiltonians31,42,43 for computing the adsorption properties of
metal sites. The central idea of the approach is to employ the
activation output from the regression module as unknown, albeit
trainable, parameters in the theory module (see Fig. 1). According to
the d-band theory of chemisorption, chemical bonding at transition-
metal surfaces can be conceptually separated into two consecutive
steps2. First, the gas-phase adsorbate species, characterized by an
orbital aj i at ϵ0a , is embedded into the delocalized sp-states of the
substrate, leading to a resonance state at ϵa with a Lorentzian line
shape. Second, the adsorbate resonance interacts with a distribution
of localized d-states ρd, shifting up in energies due to the orbital
orthogonalization penalty for satisfying the Pauli exclusion principle
(termed Pauli repulsion) and then hybridizing into bonding and
antibonding states. The first step interaction with the sp-band
contributes the largest part of chemical bonding, albeit as a constant
ΔE0 for a given adsorbate and site type. The adsorption energy
difference from one metal to the next is governed by the 2nd step
ΔEd, which consists of Pauli repulsion and orbital hybridization44, as
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illustrated in Fig. 1. The orthogonalization cost of interacting orbitals

ΔEorth
d can be quantified simply as proportional to the coupling

integral V and overlap integral S, which are related through S ≈ α∣V∣
(α as the overlap coefficient)44. V2 can be conveniently written as
βV2

ad , in which β denotes the coupling coefficient. V2
ad represents

the interatomic coupling integral squared when the atoms are
aligned along the z-axis and its standard value for a d-metal relative
to Cu has been estimated from the linear muffin-tin orbitals
(LMTO) theory and is readily available on the solid-state table45. To

a first approximation, the d-band hybridization contribution ΔE
hyb
d

can be obtained from one-electron eigenenergies using Green’s
function approach43 with the parameterized Hamiltonian and the
density of d-states ρd as the input. The total adsorption energy ΔE is
the sum of the energy contributions from the metal sp-states and d-
states, ΔE0 and ΔEd, respectively. Another important piece of
information from the d-band theory with the Newns–Anderson
model is the density of states projected onto the adsorbate orbital ρa.
Inclusion of multiple frontier orbitals 1⋯ i of an adsorbate while
considering their degeneracies can be realized by stacking fully
connected network sub-modules (see Fig. 1). A full account of the
theoretical framework was recently presented to bridge the
complexity of electronic descriptors in understanding reactivity
trends of pristine transition-metal surfaces and their alloys31.

A TinNet model using the architecture in Fig. 1 can be
considered as a complex function mapping the graph feature
representation of an adsorbate-substrate system to adsorption
properties, i.e., the adsorption energy ΔE, projected density of
states onto the adsorbate frontier orbital(s) ρ1a ⋯ ρia, and d-band
moments μ1⋯ μj of the adsorption site. Such mapping is
parameterized by learnable weights of convolutional filters and
neural connections in the regression module that is subsequently
regularized by the theory module. The training of TinNet models
can be performed by minimizing the sum-of-squares error loss
function J between model-predicted properties and DFT-
calculated ground truths in the output layer (see Fig. 1). In the
current TinNet implementation, two low-order moments (μ1, μ2)
are embedded in the network for constructing the semi-ellipse ρd,

which is centered at ϵd (μ1, the first moment of the distribution
relative to the Fermi level) with a full-width Wd (4

ffiffiffiffiffi

μ2
p

, μ2 is the
second moment of the distribution relative to the center). This
simplified distribution is sufficient in computing orbital hybridi-
zation energies compared with self-consistent, DFT-calculated
density of d-states for transition-metal surfaces11. Higher-order
moments of a distribution can be included using moment
methods if necessary6,46. Using the backpropagation and
stochastic gradient descent (SGD) algorithms, the constrained
optimization can be performed. The PyTorch framework is used
for implementing the hierarchical neural networks26,36 in Fig. 1.
In the optimization of ML models, the output activations from
the fully connected layers in the regression module are directly
passed into the theory module as a vector. Those vector elements
are partitioned into different parts and assigned to the d-band
moments of the site atoms and interaction parameters of
individual adsorbate frontier orbitals with the metal sp- and d-
states. The binding energy of the adsorbate and the projected
density of states onto adsorbate orbitals can then be computed
from the theory module. For comparison purposes, the fully
connected neural network (FCNN) and crystal graph convolu-
tional neural network (CGCNN)26,36 models were developed
using the Adaptive Moment Estimation algorithm with weight
decay (AdamW), see the details of input features and model
optimization in the “Methods” section. The complete code,
named TinNet, is available at a Github repository https://
github.com/hlxin/tinnet for public access.

Model benchmark. A comparison of the TinNet with the purely
regression-based FCNN and CGCNN on predicting the chemical
reactivity of d-block metal surfaces is shown in Fig. 2a. The
dataset corresponds to *OH at 748 {111}-terminated transition-
metal surfaces with a wide variety of site compositions. Specifi-
cally, it includes intermetallics (A3B) and near-surface alloys
(A0@AML, A–B@AML, A3B@AML, A@A2B2, and A@AB3), where
A (or A0) represents 10 fcc/hcp metals and B covers 26 d-metals
across the periodic table, see the “Methods” section for

Fig. 1 Schematic illustration of the theory-infused neural network (TinNet). The information flows from the graph representation of a given

adsorbate–substrate system to the adsorption energy ΔE, the projected density of states onto the adsorbate frontier orbital(s) ρ1a ⋯ ρia, and d-band

moments μ1⋯ μj of the adsorption site. Circles and squares in the regression module represent neurons and feature maps, respectively.
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computational details. OH is adsorbed at the atop site while the O
−H bond is tilted toward the bridge site. The straight-up *OH
adsorption configuration is less favorable than the tilted ones on
transition metals because of the directional 1π-orbital interactions
with metal d-states. In this study, we did not include other local
minima of tilted *OH adsorption configurations. In the feature
representation, bonding angles are also not included in the
CGCNN/TinNet framework. Note that other developments that
are built upon the CGCNN, e.g., iCGCNN47, and ALIGNN48,
have implemented angle features, which will be useful if multiple
local minima exist in the dataset. Compared with previous studies
that include different surface terminations and adsorption
sites17,26, we are focusing on a relatively small but representative
dataset14,49,50. For *OH, we explicitly included the 3σ, 1π, and
4σ* frontier molecular orbitals in the network design. To rigor-
ously evaluate the prediction performance of ML models with a
balanced bias/variance trade-off, we adopted k-fold cross-
validation (k= 10) to optimize hyperparameters, including
learning rate, # of atomic features, # of convolution-pooling
layers, # of hidden layers, and # of hidden neurons of each layer51.
A validation set (10%) is randomly split off the training set for
early stopping of the optimization process as a form of regular-
ization to avoid overfitting. In Fig. 2a, we present the learning
curves of the FCNN, CGCNN, and TinNet models, in which the

mean absolute error (MAE) of prediction and its standard
deviation are estimated by the nested 10-fold cross-validation
approach52 (see Supplementary Table 1 for the hyper-parameters
of each model scheme). We include a diagram of the TinNet
model architecture and hyperparameters in Supplementary Fig. 2
for *OH to further clarify the flow/mapping of graph features to
target properties. In the data-scarce region, the FCNN showed a
relatively accurate and stable prediction of *OH adsorption
energies compared with CGCNN and TinNet models because of
employing physics-based features (e.g., orbitalwise coordination
numbers13) rather than low-level graph features. As the number
of training samples increases, the TinNet can attain a 0.118 eV
MAE of prediction with a 0.022 eV deviation, outperforming the
FCNN (0.152 ± 0.015 eV) and on par with the CGCNN
(0.114 ± 0.025 eV). Figure 2b shows a 2D histogram representing
the TinNet-predicted *OH adsorption energies of all 10-fold test
sets against DFT-calculated values. In graph representation, the
strain and ligand effects on site reactivity can be captured by
atomic features and neighboring information. For the TinNet
framework, graph representation of the local coordination
environment is naturally reflected by the output activations from
the regression module, including (1) the d-band center (1st

moment) and width (2nd moment) of the site atoms and (2)
interaction parameters of individual adsorbate frontier orbitals
with the metal sp- and d-states, such as the orbital overlap and
coupling coefficients which are dependent on d-orbital radii,
interatomic distances, and local electron densities based on the
tight-binding theory45. To make a clear benchmark comparison
of the TinNet/CGCNN/FCNN models in this work and pre-
viously published ML models of *OH chemisorption on alloy
surfaces, we have tabulated their feature type, learning algorithm,
# of tuning parameters, # of samples, data range, and prediction
errors (MAE and RMSE) in Table 1. In a comparison of those
methods, FCNN and CGCNN models rely on data to learn the
underlying correlations between a site structure and the adsorp-
tion energy of *OH in a pure regression fashion, while the TinNet
embeds the well-established physics, i.e., the Newns–Anderson
model within the d-band theory of chemisorption, into the net-
work architecture. Compared to the Bayschem model31 trained
with pristine transition-metal data (Supplementary Fig. 7), the
significant improvement of the prediction accuracy (MAEs,
Bayeschem: 0.27 eV, TinNet: 0.118 eV) can be attributed to the
design of the TinNet architecture, allowing the algorithms to
learn local interaction parameters of individual adsorbate frontier
orbitals with the metal sp- and d-states from data samples of
diverse site coordination environments. In contrast to ML models
with hand-crafted features13,14,21,25,31,41, the electronic structure
of test samples is not needed for prediction using the TinNet.
This elaborate design of the network architecture, as seen in
Fig. 1, further improves the transferability of the TinNet
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Fig. 2 Model development. a Learning curves of FCNN, CGCNN, and

TinNet (this work) models of *OH adsorption energies on {111}-terminated

intermetallics and near-surface alloys with respect to the number of

available data samples. The error bar corresponds to the standard deviation

of the error estimates from nested 10-fold cross-validation. b DFT-

calculated vs. TinNet-predicted *OH adsorption energies for all 10-fold test

sets, along with a histogram of data sampling. The error bar corresponds to

the standard deviation of the error estimates from 10 final models. Note:

MAE represents mean absolute error, the color scheme of atoms includes

light gray (H), red (O), and dark gray (metal).

Table 1 Benchmark comparison of ML models of *OH chemisorption on alloy surfaces.

Source Algorithm Representation # of parameters # of samples Range (eV) MAE (eV) RMSE (eV)

Li et al.14 ANNa Electronic descriptors 106 635 1.8 – 0.240

This work ANNa Geometric descriptors 50,291 748 4.8 0.152 0.222

Mamun et al.20 GPRb Connectivity matrix Nonparametric 1235 4.6 0.170 0.240

Bayeschem, Wang et al.31 Bayesian Density of states 11 512 2.2 0.160 0.209

Bayeschem, this work Bayesian Density of states 11 748 4.8 0.270 0.435

DOSnet, Fung et al.25 CNNc Density of states 1,718,301 1103 5.4 0.156 0.221

CGCNN, this work CNNc Graph 62,593 748 4.8 0.114 0.189

TinNet, this work CNNc Graph 281,339 748 4.8 0.118 0.188

aArtificial neural network.
bGaussian process regression.
cConvolutional neural network.
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framework and signifies its potential as a robust ML approach for
guiding catalyst design beyond labeled material structures.

Model validation with single-atom alloys. To test the prediction
performance of those final models for unseen data, we chose
single-atom alloys (SAAs)53 as an out-of-sample material system
that was not used in model training and cross-validation. This
emerging type of material has received substantial interest in
recent years because of its simplicity in the structure allowing us
to control catalytic properties at the atomic level. Here, we cal-
culated *OH adsorption at the atop the site of SAAs with Cu, Ag,
or Au as the host and 26 d-metals as the single-atom active site.
Because of the limited overlap between the d-states wavefunction
of an active d-metal and that of the inert host, most of those SAAs
exhibit previously unseen free-atom-like d-states54,55, resembling
the localized electronic structure in homogeneous molecular
catalysts. With the Cu1/Ag(111) single-atom alloy as a specific
case, recent spectroscopic measurements validated the formation
of such peaky d-states and its effect on surface reactivity of Cu1
sites55. Using the TinNet-predicted interaction parameters (Δi

0,
ϵ
i
a, α

i, and βi, where i represents an adsorbate frontier orbital) of
Cu1/Ag(111) from the regression module, Fig. 3a shows the
model-constructed projected density of states onto the OH 3σ, 1π,
and 4σ* orbitals against with DFT-calculated distributions. The d-
states distribution ρd of a Cu1 site and its Hilbert transform along
with the adsorbate line y ¼ ðϵ� ϵaÞ=πβV2

ad for each orbital are
plotted for the graphical solution of the Newns–Anderson
model43. The intersections in Fig. 3a represent either the
adsorbate-substrate bonding and antibonding states (2 localized
roots) for 1π or the resonance state (1 localized root) for 3σ and
4σ*. Given the simplicity of the model, the clearly captured
strong-coupling and weak-coupling signatures for 1π and 3σ/4σ*

orbitals, respectively, justified the TinNet in qualitatively pre-
dicting the electronic structure of an adsorbate–substrate system.
In another aspect, the comparison of model performance for
predicting *OH adsorption energies between FCNN, CGCNN,
and TinNet is shown in Fig. 3b and Supplementary Fig. 4. Using
the 10-fold cross-validated final models, the TinNet (MAE:

0.161 ± 0.008 eV) improves its prediction error over the FCNN
(MAE: 0.193 ± 0.026 eV) and CGCNN (MAE: 0.179 ± 0.029 eV),
particularly for the region involving highly active early transition
metals. Supplementary Fig. 5 shows the DFT-calculated vs.
model-predicted d-band center ϵd and full-width Wd (MAE: 0.13
and 0.37 eV, respectively) that were used to construct the semi-
ellipse representing the projected d-states distribution ρd onto a
metal site. As an additional metric of model performance, the
MAEs of the TinNet-predicted ρia are 0.0205, 0.0166, and
0.0187 eV−1 for the OH 3σ, 1π, and 4σ* orbitals, respectively. To
better understand the origin of the improved generalization
performance, we have re-trained the FCNN and CGCNN models
using multi-task learning (MTL), i.e., including both the
adsorption energy and the d-band moments of the adsorption site
in the loss function. We found that the generalization error of the
adsorption energy prediction of SAAs remains similar or slightly
worsens for the FCNN (MAE: 0.198 ± 0.039 eV) and CGCNN
(MAE: 0.185 ± 0.029 eV). The improved generalization perfor-
mance can be attributed to the solid physical basis of the TinNet
framework for property prediction of out-of-sample systems with
unseen structural and electronic features, rather than accessing
more electronic structure information. It is important to note that
optimizing hyperparameters in deep learning architectures and
training deployable models with a rigorous validation procedure
is quite expensive even with current GPU architectures (102−103

GPU hours). Future development of the TinNet framework
should enable transfer learning of trained model parameters to
other adsorbate systems. For adsorbates with an identical set of
frontier orbitals, e.g., atomic px, py, and pz orbitals of C, N, and O
adatoms, it is natural to start from past fittings since the output
vectors from the regression module have the same length and
physical meaning of individual adsorbate frontier orbital inter-
acting with the metal sp- and d-states. For adsorbates with a
distinct set of frontier orbitals, e.g., O, OH, and OOH, it is gen-
erally accepted that the underlying physics or factors governing
the interaction strength of those adsorbates with alloy surfaces are
universal. In that scenario, convolution filter parameters that
extract high-level feature representations of adsorption sites can
be preloaded to speed up optimization processes.

Discussion
A significant advantage of the TinNet framework is the model
interpretability empowered by the theory module. To provide
physical insights into the reactivity trend of *OH at transition-
metal surfaces, we deconvolute the d-contributed adsorption
energy ΔEd into Pauli repulsion and orbital hybridization (see
Fig. 4a). Not surprisingly, orbital hybridization dominates the
overall trend of *OH adsorption energies, in agreement with the
Bayesian chemisorption model developed for pure metals31. In
the strong-binding region, the Pauli repulsion due to orbital
orthogonalization involving less than half-filled d-shells is
expected to be negligible, very well captured by the TinNet.
However, it becomes prominently important for late transition
metals with completely or nearly filled d-states3,33. Although this
phenomenon was recognized, leveraging this physical aspect of
chemical bonding for catalyst design in addition to strain5 and
ligand4 effects has not been realized. For the diverse sites con-
sidered here, neither the d-band center nor the upper edge is
linearly correlated with the *OH adsorption energy (R2: 0.64 and
0.49, respectively) (see Supplementary Fig. 6). We argue that a
linear descriptor of this kind might not exist for such a diverse
dataset. Interestingly, the TinNet-predicted coupling integral
squared V2, i.e., βV2

ad , correlates very well with the orbital
hybridization energies for 3σ (R2 ~ 0.93), 1π (R2 ~ 0.87), and 4σ*

(R2 ~ 0.89) orbitals (see Fig. 4b). This result showcases the ability
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of the TinNet framework to provide a detailed physical inter-
pretation of the reactivity trend of metal sites that is inaccessible
with purely regression-based models.

To demonstrate the approach for other adsorbates and facets,
we developed the TinNet models for *O at the atop the site of the
{111}-terminated bimetallic alloy surfaces and *N at the hollow
site of {100}-terminated ternary alloy surfaces, as shown in Fig. 5.
The 10-fold cross-validated MAEs are 0.147 and 0.116 eV for *O
and *N, respectively. We use the same set of alloy surfaces for *O
as the *OH models (748 total). For *N adsorbed at the four-fold
hollow site, we used 329 {100}-terminated Pt-based ternary alloy
surfaces (Pt3M and Pt2M2 intermetallics with M0 dopants at
different positions of the top two layers, see the “Methods” sec-
tion for details). *N adsorption at metal sites represents an
important reactivity descriptor for ammonia electro-oxidation as
the anode reaction in direct ammonia fuel cells56–58. We note that
the surface has a coadsorbed *OH spectator species for all the
samples. Our previous study has shown that *OH play a crucial
role in stabilizing *NHx species under relevant operating
conditions59. The dataset showcases the inclusion of
adsorbate–adsorbate interactions in developing ML models. In
the current TinNet implementation, for an n-atom site ensemble,
the regression module automatically allocates 2n output neurons
for the 1st and 2nd moments of the d-states distribution of site
atoms. The d-states distribution of the adsorption site will be
represented by a superposition of individual d-dos constructs,
e.g., semi-elliptic functions. Other output neurons representing
interaction parameters of the adsorbate frontier orbitals with the
metal sp- and d-states have the same dimension and physical
meanings for adsorption sites of different atom ensembles.

This study highlights the importance of the frontier molecular
orbital theory, electronic structure methods, and deep learning
algorithms in developing interpretable ML models of chemical
bonding. Infusing theory into ML fueled with ab initio adsorption
properties will eventually lead us to better understand the fun-
damentals of linear energy relationships60,61 and devise strategies
to overcome such constraints in catalysis62. For example, elec-
trolyte molecules or ions can exert an additional coupling term

with the adsorbate energy level ϵa, often via hydrogen
bonding63,64, which could be leveraged to break the adsorption-
energy scaling relations for hydrogen-containing species. Indeed,
there is evidence that adding a co-solvent or ionic species into the
bulk electrolyte does have a positive effect on stabilizing charge-
transfer intermediates in metal-air batteries65, ammonia
synthesis66, CO2 reduction67, and oxygen evolution68. This
physical aspect of chemical bonding can be built into the TinNet
for screening improved catalytic systems with consideration of
electrolyte choices. As a related note, all the structures used in this
study are DFT-optimized local minima. Informing the learning
algorithms of this physical information (forces are less than a
threshold) in the spirit of incorporating physics, if the forces are
accessible in the TinNet framework, can further constrain deep
learning models and improve their transferability. Beyond a
better estimation of adsorption energetics that is extensively
explored in the field of catalysis, activation barriers,
adsorbate–adsorbate interactions, and surface segregation ener-
gies are also important for predicting reaction kinetics and site
stability prior to catalyst screening. The framework proposed here
is a step toward that direction.

To conclude, the herein proposed theory-infused neural net-
work (TinNet) represents a generalized ML approach to pre-
dicting the chemical reactivity of solid surfaces with atomically
tailored active sites. Importantly, physical insights by learning
from data come naturally with the TinNet, which cannot be
obtained otherwise using purely regression-based methods, irre-
spective of feature representations. We demonstrate the approach
using simple adsorbates (e.g., *OH, *O, and *N) at active site
ensembles as specific cases, and it can also be transferred directly
to other descriptor species and nanostructures of different site
geometries or electronic complexities, e.g., metal compounds with
strongly correlated d electrons, paving the path toward inter-
pretable ML discovery of novel motifs with desired catalytic
properties. This study encapsulates all of the important ingre-
dients of the ML approach and can be straightforwardly extended
to generic models or principles where the neuron representing
parameters should be treated on a case-by-case basis.

Methods
DFT calculations. Spin-polarized DFT calculations of *OH and *O adsorption
systems were performed through Quantum ESPRESSO69 with ultrasoft
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pseudopotentials. The exchange-correlation was approximated within the gen-
eralized gradient approximation (GGA) with Perdew–Burke–Ernzerhof (PBE)70.
{111}-terminated metal surfaces were simulated using (2 × 2) supercells with 4
layers and a vacuum of 15Å between two images. The bottom two layers were fixed
while the top two layers and adsorbates were allowed to relax until a force criteria
of 0.1 eV/Å. A plane-wave energy cutoff of 500 eV was used. The *N adsorption
systems consist of {100}-terminated Pt-based bimetallic surfaces doped with a third
element. It includes Pt3M and PtM bimetallics where M can be any of the transition
metals, while the dopants cover 15 elements: Fe, Zn, Cu, Co, Ni, Rh, Pd, Ag, Ir, Pt,
Au, Ru, Mo, Cr, and W. Spin-polarized DFT calculations were performed through
Vienna ab initio simulation package (VASP) with projector-augmented wave
pseudopotentials. The exchange-correlation was approximated within the GGA
with the revised Perdew–Burke–Ernzerhof (RPBE)71. A plane-wave energy cutoff
of 450 eV was used. The {100}-terminated alloy surfaces were modeled using
(2 × 2) supercells with 4 layers and a vacuum of 15Å between two images. The
bottom two layers were fixed while the top two layers and adsorbates were allowed
to relax until force criteria of 0.05 eV/Å. In order to consider the effect of aqueous
solvation on adsorption energies, an implicit solvation model was employed
through the VASPsol package72. All of the Pt-based alloy surfaces have coadsorbed
*OH (θOH= 1/4 ML) as a spectator species. Doping is simulated by replacing one
of the top two-layer metal atoms with dopant metals. For both {111} and {100}
terminations, a Monkhorst–Pack mesh of 6 × 6 × 1 was used to sample the Bril-
louin zone, while for molecules and radicals only the Gamma point was used.
Methfessel–Paxton smearing scheme was used with a smearing parameter of 0.1 eV
for adsorbate systems and 0.001 eV for molecules. Electronic energies are extra-
polated to kBT= 0 eV. The projected atomic and molecular density of states were
obtained by projecting the eigenvectors of the full system at a denser k-point
sampling (12 × 12 × 1) with an energy spacing of 0.01 eV onto the ones of the part,
as determined by gas-phase calculations.

FCNN models. A FCNN is the simplest artificial neural network, and there is no
cycle between node connections. The input features of FCNN include atomic
features, surface features, and bulk features, which represent characteristics of the
adsorption site, the environment of the adsorption site, and properties of the entire
crystal. The "BulkFingerprintGenerator.bulk_average" module of the CatLearn
package37 is used to extract properties of the adsorption site, the first two surface
layers, and the bulk as atomic, surface, and bulk features, respectively. All missing
properties in the module are set to zero. In addition to previous properties, atomic
features also contain Pauling electronegativity (χ0), V

2
ad , and atomic radius (r0)

while surface features include local Pauling electronegativity (χ) and orbitalwise
coordination numbers (CNs and CNd)40.

Hyperparameter optimization. In this study, five hyperparameters, namely
learning rate (lr), number of hidden layers (n_h), number of neurons of each
hidden layer (h_fea_len), number of convolutional layers (n_conv), and the length
of atomic features into the convolution (atom_fea_len), were tuned by using the
random search algorithm through the Ray package51. lr is randomly sampled from
0.0001 to 1 with log uniform distribution. atom_fea_len, n_conv, h_fea_len, and
n_h are random integers between 16–112, 1–10, 32–224, and 1–10, respectively.
For each model, 150 randomly selected combinations are used as the hyper-
parameter set for the training. For each hyperparameter set, regular 10-fold cross-
validation (CV) is applied. The data set is divided into 10 folds first. A fold is used
as the test set for each calculation. The rest of 90% of data set will be divided into
10 folds again and a randomly chosen one fold is used as the validation set for early
stopping the training procedure. Supplementary Fig. 1 illustrates the hyperpara-
meter optimization procedure. AdamW optimization algorithm, MSE loss func-
tion, and Softplus, Sigmoid, and ReLU activation functions are implemented in the
training. Batch size and weight decay are 64 and 0.0001, respectively. If no better
validation loss within 1000 epochs, the model with minimal validation loss will be
selected as the final model of that fold. For FCNN and CGCNN, the loss function
only contains MSE(ΔE), but, for TinNet, the loss function is constructed with
MSE(ΔE)+MSE(μ1)+MSE(2

ffiffiffiffiffi

μ2
p

)+ λ[MSE(ρ3σ)+MSE(ρ1π)+MSE(ρ4σ� )]. The

energy contribution from the sp-electrons (ΔE0) and the weight of density of states
(λ) are set at −2.69 eV and 0.01, respectively, as derived from Bayesian learning
models31. The final loss (average 10 test loss) of that hyperparameter set will be
obtained. An optimized hyperparameter set with a minimal loss for each algorithm
is shown in Supplementary Table 1. These hyperparameter sets will be used for all
later ML optimization. Details of the CGCNN model set can be found in refs. 22,36.

Learning curve. The nested 10-fold cross-validation with different proportions of
the dataset (from 5% to 100% with 5% as the interval) was used to evaluate the
model performance. For each proportion, the dataset is divided into 10 folds. One
of the folds is used as the test set, the other fold is used as the validation set, and all
other eight folds are used as the training set. Supplementary Fig. 3 illustrates the
procedure for generating the learning curve with the nested 10-fold cross-valida-
tion approach. 90 models, whose test set is not equal to the validation set, are used
to evaluate model performance. Those 10 models whose test set is also the vali-
dation set will be used as final models for predicting unknown systems. For

different methods, the average wall-time consumed to train a model for a given
data split is shown in Supplementary Table 2.

Data availability
The training and test data of transition-metal alloy surfaces data used in this study are

available in the Github repository (https://github.com/hlxin/tinnet).

Code availability
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