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InGaAs homojunction Tunnel FET devices are demonstrated with sub-60mV/dec Sub-threshold

Swing (SS) measured in DC. A 54mV/dec SS is achieved at 100 pA/lm over a drain voltage range

of 0.2–0.5V. The SS remains sub-60mV/dec over 1.5 orders of magnitude of current at room

temperature. Trap-Assisted Tunneling (TAT) is found to be negligible in the device evidenced by

low temperature dependence of the transfer characteristics. Equivalent Oxide Thickness (EOT) is

found to play the major role in achieving sub-60mV/dec performance. The EOT of the demon-

strated devices is 0.8 nm. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4971830]

The interest behind several years of research on tunnel

FET (TFET) devices arises from the physics of the operation

of this family of devices which is based on Band-To-Band

Tunneling (BTBT). BTBT allows for steep switching

exceeding the limit of 60mV/dec at room temperature. In

addition, the sub-threshold characteristics of the TFET are

potentially temperature independent except for the leakage

floor. These characteristics make the TFET an interesting

device for low power applications.1 III–V based TFETs are

being studied2–12 mainly to solve the low drive current issue

of TFETs and by far no solutions are found to deliver a rea-

sonable drive current which could compete with the

MOSFET performance at a reasonable steep sub-threshold

swing (SS). To date only one recent homojunction III–V

TFET is demonstrated13 showing sub-60mV/dec SS (in DC)

while sub-60mV/dec performance has obtained for hetero-

junction III–V based TFETs.7,14 Fast pulsed I–V measure-

ments have shown to suppress SS degrading mechanisms

like Trap-Assisted Tunneling (TAT) and result in sub-

60mV/dec SS despite large SS in DC.4 TFETs based on the

combination of Si and III–V are demonstrated with SS as

steep as 21mV/dec but at extremely low (less than 1 pA)

currents.9

This work reports the sub-60mV/dec SS performance

for a homojunction III–V TFET over a range of 1.5 orders of

magnitude of drain current by scaling the equivalent oxide

thickness (EOT) down to 0.8 nm.

The device structure is shown in Figure 1(a). The fabrica-

tion flow is similar to Ref. 3 and starts with the Metal-Organic

Chemical Vapor Deposition (MOCVD) growth of the III–V

stack on an InP substrate. The stack consists of a 10 nm InP

seed layer, a 90 nm thick unintentionally doped In0.53Ga0.47As

layer which serves as the channel material, a 3 nm thick

InP etch stop layer and a 50 nm nþ (Si, 1� 1019 cm�3)

In0.53Ga0.47As drain layer. A SiO2 layer is then deposited as

the hard mask and the drain of the device is defined through

wet etching. The gate stack is deposited in the next step and

consists of a bilayer of Atomic Layer Deposited (ALD) Al2O3

(1 nm) and HfO2 (either 3 nm or 2 nm). The deposition tem-

perature is 300 �C for both oxides. The corresponding EOT

for the gate stacks are 1 nm and 0.8 nm respectively consider-

ing a relative dielectric constant of 9 for Al2O3 and 21 for

HfO2. It should be noted that the sample surface is treated

with HCl:H2O (1:5 volume ratio) for a minute to remove the

FIG. 1. (a) Device structure. (b) SIMS measurement of the Zn concentration

in the source after a diffusion at 500 �C for 1min. Active doping concentra-

tion is around 2� 1019 cm�3 from Hall measurements and the junction depth

is around 40 nm.a)Currently at NUS, Singapore.

0003-6951/2016/109(24)/243502/4/$30.00 Published by AIP Publishing.109, 243502-1

APPLIED PHYSICS LETTERS 109, 243502 (2016)

http://dx.doi.org/10.1063/1.4971830
http://dx.doi.org/10.1063/1.4971830
http://dx.doi.org/10.1063/1.4971830
http://dx.doi.org/10.1063/1.4971830
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4971830&domain=pdf&date_stamp=2016-12-14


native oxide of InGaAs followed by a water rinse and treat-

ment in aqueous (NH4)2S:H2O (1:1 volume ratio) for 3min

which is reported to reduce the Al2O3 oxide trap density15

prior to the gate stack deposition. 100 nm Physical Vapor

Deposited (PVD) TiN is then deposited as the gate metal and

patterned using SF6 dry etching. Next, the Al2O3/HfO2 bilayer

gate stack is etched in diluted HF and the source of the device

is formed by zinc diffusion process2,3 which is reported first

by Ref. 2 to lead to minimal TAT in the TFET characteristics

as opposed to implantation. The device fabrication process

does not allow for in situ doping of the source and so the most

promising method of source formation would be diffusion.

The diffusion is performed self-aligned to the gate and the

gate stack is used as the diffusion mask over the channel area.

The Zn diffusion is performed from the gas phase in an

MOCVD epi reactor using DEZn (Diethyl zinc) precursor

providing Zn dopants and TBAs (Tributyl arsine) providing

arsenic overpressure to avoid arsenic outgassing from the

InGaAs surface at the diffusion temperature. The diffusion

temperature is 500 �C, and the duration of the diffusion is

1min. It should be noted that this approach is applicable for

the processing of scaled FET-based devices like nanowires

and avoids the complexity involved in diffusion from spin-on

dopants as reported before.2,3 The process is not only limited

to Zn diffusion, and the other dopant species (n-type or

p-type) like Be may be diffused using a similar procedure.

The Secondary Ion Mass Spectroscopy (SIMS) profile shown

in Figure 1(b) suggests a junction depth of about 40 nm, an

steepness of about 4.7 nm/dec and a doping concentration of

about 2� 1019 cm�3 comparable to the diffusion profiles

from spin-on dopants.2,3 The Mo/Al source/drain contacts are

deposited afterwards. The devices receive a 400 �C anneal in

forming gas (FOG) for 15min. Fabricated devices have a gate

length of 6–8lm and a width of 400lm.

Figures 2(a) and 2(b) show the room temperature trans-

fer characteristics as well as the gate leakage current on the

same plot for both gate stacks. The gate leakage (Ig) is signif-

icantly lower than the drain current (Id) at any given gate

voltage (Vg) and drain voltage (Vd) and as such, the SS can

be extracted reliably from the drain current. The gate leakage

increases with two orders of magnitude when scaling the

EOT from 1 nm to 0.8 nm.

The corresponding SS behaviors extracted from the

room temperature transfer characteristics of the devices are

also shown in Figures 2(c) and 2(d). For the device with

1 nm EOT, SS shows a minimum of 62mV/dec while for the

device with 0.8 nm EOT, a sub-60mV/dec SS can be seen

over a drain current range of 1.5 orders of magnitude (30�)

with a minimum of 54mV/dec at 100 pA/lm. I60, the maxi-

mum current at which SS is still sub-60mV/dec, is 740 pA/

lm. The SS behavior is Vd dependent since the off-state cur-

rent level increases with Vd and hinders the steep portion of

the characteristics. A large number of the measured devices

(>70%) show sub-60 performance over a significantly wide

drain current range.

Output characteristics of both devices are shown in

Figures 3(a) and 3(b). Figure 3(c) is the comparison of the

transconductance of both devices at Vd¼ 0.5V. The 0.8 nm

EOT device slightly outperforms the 1 nm EOT device in

FIG. 2. (a), (b) Transfer characteristics as well as the gate leakage current

for both gate stacks showing significantly lower gate leakage current than

the drain current. (c), (d) Corresponding SS behaviors show that the device

with 0.8 nm EOT demonstrates sub-60mV/dec over a drain current range of

1.5 order of magnitude with a point minimum of 54mV/dec. Horizontal line

shows the thermal limit at 60mV/dec. T¼ 300K for all plots.

FIG. 3. (a), (b) Output characteristics for both gate stacks. Decent saturation characteristics are observed in both cases. (c) Comparison of the transconductance

of both devices. The difference in on-state performance is not significant as EOT scales by 0.2 nm as evidenced from the transconductance comparison. (d)

The drain conductance slope plot for the EOT¼ 0.8 nm device. Such characteristics are reported16,17 to be a measure of how steep the TFET may achieve. In

strong on-state, the TFET operates as an Esaki diode. Conductance slope is 100mV/dec. (e) NDR was observed as Vg increases, and the channel inversion

charge forms. The plot is for the EOT¼ 0.8 nm. Similar behavior observed for the EOT¼ 1 nm (not shown). T¼ 300K for all plots.
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terms of the on-state performance. The conductance

slope16,17 plot where the Id/Vd is plotted against Vd for vari-

ous Vg values is shown in Figure 3(d). In strong on-state

(large Vg bias) the TFET operates as an Esaki-diode and the

conductance slope method should therefore be applicable.

For the sub-60mV/dec performing TFET, the conductance

slope is 100mV/dec when biased as an Esaki diode. The

Negative Differential Resistance (NDR) behavior was

observed for both devices with different EOTs as shown in

Figure 3(e) for the case of EOT¼ 0.8 nm. As Vg increases

beyond the threshold voltage, the inversion charge forms in

the channel, and the tunneling junction becomes operational

(similar to an Esaki junction) thereby the NDR emerges.

With higher Vg, the device moves to stronger inversion

regime, and the tunneling current increases further.

Analysis of the multi frequency Capacitance-Voltage

(C-V) behavior for both gate stacks shows a similar interface

quality for both of them. The C-V was directly measured on

the actual TFET devices. The extracted interface state den-

sity from the conductance technique is �2� 1012 cm�2eV�1

at the midgap for both devices. The Capacitance Equivalent

Thickness (CET) difference as suggested from the C-V char-

acteristics matches the expected EOT difference of 0.2 nm.

The extracted CET is �1.3 nm and �1.5 nm for the devices

with 0.8 nm and 1 nm EOT respectively.

Figure 4(a) shows the temperature dependent transfer

characteristics in the measurement temperature range of

50K to 300K for the device with 0.8 nm EOT. As the tem-

perature drops, the leakage floor reduces, and steeper portion

of the Id-Vg behavior is revealed. TAT in the device is not

significant as the SS above the leakage floor is not a strong

function of temperature. The corresponding extracted activa-

tion energy is plotted in Figure 4(b) as a function of Vg-Vth.

Threshold voltage (Vth) was extracted from the transconduc-

tance derivative peak.18 Vth correction is performed since the

threshold voltage shifts as a function of measurement tem-

perature as observed in Figure 4(a) due to factors like

bandgap narrowing. Each point of the plot is obtained from

the slope of the linear fit to Ln(Id) as a function of 1/kT as

shown in the inset. As plotted in the inset for an example Vg

point, two regimes are identified in the temperature depen-

dent behavior with two different activation energies: The

activation energy is low at the lower temperature range of

50–150K while it is high at the higher temperature range of

200–300K. It is believed that the lower temperature opera-

tion in the off-state is more dominant with a tunneling pro-

cess (TAT and/or BTBT) at the opposite junction at the drain

side (pTFET operation mode) and as the temperature

increases, the Shockley-Read-Hall (SRH) process starts to

contribute as well thereby increasing the activation energy.

Semi-classical simulations (with carefully calibrated

BTBT models19) of the impact of EOT scaling on the SS

behavior are plotted against experimental results in Figure 5.

A reasonable agreement is observed between the experiment

and predictions. Note that the simulations do not include

mechanisms which limit the off-state current and as such, the

SS will further reduce with the current.

Figure 6 is the benchmark of the DC sub-60 perfor-

mance of the III–V based TFET devices reported so far

(T¼ 300K). For a proper benchmarking of the sub-60

operating regime, we suggest a plot of the sub-60 operating

current window versus the average SS over the whole sub-60

operating window. Since the sub-threshold behavior is not

Vd dependent in the absence of Drain-Induced Barrier

FIG. 4. (a) Temperature dependent transfer characteristic at temperatures

from 50K to 300K in 50K steps for the device with 0.8 nm EOT. As the

temperature drops, the leakage floor reduces and the steeper portion of the

Id-Vg behavior is revealed. TAT in the device is not significant as the SS

above the leakage floor is not a strong function of temperature. (b) Drain

current activation energy extracted from the temperature dependent Id-(Vg-

Vth) behavior. Inset shows two regimes are identified in the temperature

dependent behavior with two different activation energies. In the off-state,

the activation energy is low at the lower temperature range of 50–150K

(tunneling dominant) while it is higher at the higher temperature range of

200–300K (enhanced SRH contribution).

FIG. 5. Semi-classical simulation of the EOT impact on sub-threshold

behavior. Simulations closely predict the observed experimental behavior

when the EOT is scaled by 0.2 nm.
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Lowering (DIBL) and leakage floor interference, no Vd com-

pensation would be needed. The data plotted on this bench-

mark figure are for Vd � 0.5 V (where available) to be

relevant for low power applications where the supply voltage

is limited. This work demonstrates the sub 60mV/dec perfor-

mance over a current range of 30� at an average sub-60 SS

of 56mV/dec.

Sub-60mV/dec DC operation of an InGaAs homojunc-

tion planar TFET is demonstrated. The source of the device

was formed by Zn diffusion from gas phase self-aligned to

the gate which was found to be similar to the diffusion from

spin-on dopants. The device has a sub-60mV/dec perfor-

mance over 1.5 decades of drain current with a point mini-

mum SS of 54mV/dec at 100 pA/lm. The enablers are

believed to be the high quality III–V layers and the source

junction realized by Zn diffusion as well as the EOT scaling

keeping a high quality gate stack interface with the III–V

channel.
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