
INGENIAS Development Kit: a visual Multi-Agent System
development environment

(Demo Paper)
Jorge J. Gomez-Sanz

Facultad de Informática
Universidad Complutense de

Madrid
28040 Madrid, Spain

jjgomez@sip.ucm.es

Rubén Fuentes
Facultad de Informática

Universidad Complutense de
Madrid

28040 Madrid, Spain
ruben@sip.ucm.es

Juan Pavón
Facultad de Informática

Universidad Complutense de
Madrid

28040 Madrid, Spain
jpavon@sip.ucm.es

Ivan García-Magariño
Facultad de Informática

Universidad Complutense de
Madrid

28040 Madrid, Spain
ivan_gmg@fdi.ucm.es

Categories and Subject Descriptors
D.2 [Software Engineering]: Design Tools and Techniques;
D.2 [Software Engineering]: Coding Tools and Techniques;
D.2 [Software Engineering]: Testing and Debugging

General Terms
Design, Experimentation

Keywords
Integrated Development Environment, Agent Oriented Soft-
ware Engineering, Multi-Agent System

1. INTRODUCTION
The INGENIAS Development Kit, IDK from now on, is

the development support tool for the INGENIAS method-
ology [2]. It is distributed as GPL software and devel-
oped in Java. The distribution can be downloaded from
http://ingenias.sourceforge.net while updated versions
are always available in the subversion repositores hosted
within the INGENIAS sourceforge project.

This tool was created in 2002 as part of a thesis on the
modelling of Multi-Agent Systems [1]. The project is rather
active and has originated around 5800 downloads since its
creation. Compared to other development environments, it
contributes with some original functionalities, like round-
trip features (generating code and managing the changes
made to it), debugging facilities (breakpoints at the task
level) and openness (possibility of integrating new function-
ality by means of plugins).

The demo will illustrate how a development with the IDK
is like. The demo will review the aspects related with the

Cite as: INGENIAS Development Kit (Demo Paper), Jorge J. Gomez-
Sanz, Rubén Fuentes, Juan Pavón, and Ivan Garcia-Magariño, Proc. of
7th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.),

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

MAS specification creation (section 2), the implementation
(section 3), or testing and debugging (section 4).

2. PRODUCING A MAS SPECIFICATION
In INGENIAS, specifications of the system are produced

with a visual editor, see figure 1. This editor has the follow-
ing relevant features:

Project management features. The tool uses multiple
diagrams constructed according to the methodology. These
diagrams can be organised into packages. The organizations
can be modified at any time by drag and dropping diagram
icons.

MAS Specification entities management features.
The user can browse the instances created so far of INGE-
NIAS meta-model entities. The user can as well search
within this dictionary, reuse elements across diagrams, or
decide to remove them from all diagrams.

It is an open tool. The source code is avaliable and any-
body can create plugins that are automatically integrated in
the tool. Plugin creation is rather easy, since it suffices to
extend one of the classes of the application. The tool comes
with the sources of different plugins to exemplify how to do
this.

The notation. The notation is not hard-coded in the tool
as in other existing alterantives. It can be modified by us by
changing the original meta-model it bases on. This permits
to change the tool as the methodology evolves. Besides, the
icons used in the different diagrams be changed to be UML-
like or INGENIAS at any time. This reduces the learning
curve since users do not have to learn what means each icon.

Remarking the documentation aspects. It supports
exporting the diagrams in different formats, including ex-
tended postcript. This is very useful for people writing pa-
pers in latex, for instance. Besides, there are plugins for
generating a full html documentation of the current specifi-
cation. The tool itself has a manual that introduces its basic
features, and it is distributed from sourceforge as well. There
are also manuals and training material that tells how to use

May,12-16.,2008,Estoril,Portugal,pp. 1675-1676.



the tool to develop complex multi-agent systems. Train-
ing material is distributed from http://grasia.fdi.ucm.

es/UK/index.php?enlace=training/index.html.
Saving the time of the user. Just in case the tool

could crash, automatic backup copies are generated periodi-
cally. Besides, the tool can simplify the creation of diagrams
in several steps when the circumstances allow it. Speed is
important as well. Profiling techniques have been applied
to improve the performance of the tool. Right now, it can
be executed with a reasonable efficiency in computers with
512MB and conventional Pentium processors.

3. IMPLEMENTING THE MAS
The tool uses extensively a model driven development ap-

proach [3], producing automatically functional multi-agent
systems from the specification. The responsible of producing
the implementation is the INGENIAS Agent Framework or
IAF, part of this framework is integrated as a plugin in the
IDK. It produces MAS working over the JADE platform.

When the specification is complete enough, the developer
can order the IAF plugin to transform the specification into
Java code. As a result, several error or warning messages
will be presented to the user, indicating missing entities or
incorrect combinations of elements. After, solving all errors,
source code files as well as compiling/executing scripts are
stored in the project folder. Though the system is executable
at this step, the functionality provided is not complete yet.
It requires from the developer to tell each individual gener-
ated task file how the transformation from the input entities
to the output entities occur. These changes can be intro-
duced externally with any editor, like the Eclipse editor.
Changes can be uploaded to the original specification with
the aid of the INGENIAS Code Uploader, another plugin de-
veloped for this purpose. The plugin traverses the different
task Java files looking for concrete modifications. When one
is found, the change is uploaded to the specification. This
way, the next time the code generation is invoked, the mod-
ifications made will not be lost. Thanks to this plugin, the
specification remains synchronised with the code.

4. TESTING AND DEBUGGING
The specification can define the existence of tests and the

MAS initialisation conditions these test require. Later, when
the test need to be concreted, a developer uses libraries from
the IDK to inspect the internal state of the agents and track
each individual behaviour. Tests are defined as extensions of
JUnit classes. To run them, a JUnit based system is needed,
although command line execution of all tests is provided in
the IAF as well.

During execution, the developer is aided with GUIs that
provide useful information, such as what mental entities are
stored within each agent or what interactions are being exe-
cuted. The IAF GUI works into two modes: automatic and
manual. In the manual mode, tasks which are going to be
executed are presented to the user first. In this mode, the
inputs and outputs of a task can be inspected. The user can
accept to execute the task by pressing a button. The results
can be immediately observed in the mental state inspector
of the corresponding agent. In the automatic mode, tasks
scheduled for execution are launched as they reach the top
of the executing queue.

Using this automatic/manual binomy, a breakpoint mech-

Figure 1: The visual editor for producing specifica-
tions

anism has been devised. The system can be told to switch
to manual mode whenever certain type of task is going to
be executed. This permits inspecting the current inputs and
outputs of scheduled tasks at that point and detect what is
going wrong. Also, searchable log facilities are accessible
from the GUI. The developer can inspect logs associated to
concrete actions of the agent or filter existing logs according
to typed keywords.

5. CONCLUSIONS
The IDK is a powerful tool that has been applied in academy

and industry developments. The list of projects in which our
research group participates is avaliable at http://grasia.

fdi.ucm.es/UK/index.php?enlace=projects/index.html.

6. ACKNOWLEDGMENTS
This work has been supported by the project Methods

and tools for agent-based modelling supported by Spanish
Council for Science and Technology with grant TIN2005-
08501-C03-01.

7. REFERENCES
[1] J. J. Gomez-Sanz. Modelado de Sistemas Multi-agente.

PhD thesis.

[2] J. Pavón, J. Gomez-Sanz, and R. Fuentes.
Agent-Oriented Methodologies, chapter The INGENIAS
Methodology and Tools, pages 236–276. Idea Group
Publishing, 2005.

[3] J. Pavón, J. J. Gómez-Sanz, and R. Fuentes. Model
driven development of multi-agent systems. In
A. Rensink and J. Warmer, editors, ECMDA-FA,
volume 4066 of Lecture Notes in Computer Science,
pages 284–298. Springer, 2006.


