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17 Abstract

18 The direct delivery of antibiotics to the lung has been considered an effective approach 

19 to treat pulmonary tuberculosis, which represents approximately 80% of total cases. In 

20 this sense, this work aimed at producing inhalable chitosan microparticles simultaneously 

21 associating isoniazid and rifabutin, for an application in pulmonary tuberculosis therapy. 

22 Spray-dried chitosan microparticles were obtained with adequate flow properties for deep 

23 lung delivery (aerodynamic diameter of 4 µm) and high drug association efficiencies 

24 (93% for isoniazid and 99% for rifabutin). The highest concentration of microparticles 

25 that was tested (1 mg/mL) decreased the viability of macrophage-differentiated THP-1 

26 cells to around 60% after 24 h exposure, although no deleterious effect was observed in 

27 human alveolar epithelial (A549) cells. The release of LDH was, however, increased in 

28 both cells. Chitosan microparticles further evidenced capacity to activate macrophage-

29 like cells, inducing cytokine secretion well above basal levels. Moreover, the propensity 

30 of macrophages to internalise microparticles was demonstrated, with uptake levels over 

31 90%. Chitosan microparticles also inhibited bacterial growth by 96%, demonstrating that 

32 the microencapsulation preserved drug antibacterial activity in vitro. Overall, the obtained 

33 data suggest the potential of chitosan microparticles systems for inhalable lung 

34 tuberculosis therapy.

35

36 Keywords: chitosan, inhalable microparticles, isoniazid, rifabutin, spray-drying, 

37 pulmonary tuberculosis.

38

39 1. Introduction

40 Although tuberculosis (TB) is a curable condition, in 2016 it caused 1.3 million 

41 deaths worldwide [1]. As pulmonary TB represents approximately 80% of total cases, the 
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42 direct delivery of antibiotics to the infection site has been explored as an effective 

43 approach to treat the disease. However, the airway structure, local degradation and 

44 specific defence mechanisms (e,g. mucociliary clearance) are some limitations imposed 

45 by the pulmonary route [2]. Such limitations may be overcome by drug 

46 microencapsulation, a strategy that demands the design of inhalable carriers capable of 

47 reaching the alveoli, where infected macrophages reside. Additionally, further benefit 

48 may be attained if the carriers can be recognised by macrophage surface receptors. This 

49 can be mediated by the chemical composition of chitosan (CS), composed by N-

50 acetylglucosamine and D-glucosamine residues, the former already described to be 

51 recognised by macrophages [3], thus, possibly, potentiating phagocytosis. Other materials 

52 have been proposed to mediate the referred macrophage recognition and our group has 

53 recently published other works reporting the ability of fucoidan microparticles to provide 

54 this effect [4,5]. Nevertheless, CS is, in comparison, much more explored as matrix 

55 material, while the report of macrophage targeting ability of CS-based microparticles is 

56 scarce. In turn, CS microparticles were previously proposed as inhalable carriers of 

57 isoniazid [6], in a study focusing essentially on the chemical analysis of microparticles 

58 and their mucoadhesive capacity.

59 In this context, the present work aimed at producing inhalable CS microparticles 

60 (MP) that efficiently associate both isoniazid (INH) and rifabutin (RFB) in a single 

61 formulation for an application in pulmonary TB therapy. The proposed combined therapy 

62 is in agreement with WHO guidelines recommended for active pulmonary TB [1]. 

63 Microparticles were characterised and their respirability evaluated along with 

64 biocompatibility and antibacterial activity in vitro. Furthermore, the potential affinity of 

65 the produced carriers for alveolar macrophages was assessed, as well as their capacity to 

66 activate the target cells. 
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67 2. Materials and methods

68 2.1. Materials

69 CS (low molecular weight, 75-85% deacetylation degree, 116 kDa), buffer 

70 solution pH 5 (citric acid ~0.096 M, sodium hydroxide ~0.20 M), dimethylformamide 

71 (DMF), Dulbecco’s modified Eagle’s medium (DMEM), hydrogen chloride (HCl), 

72 isoniazid (INH,), lipopolysaccharide (LPS), N-(3- dimethylaminopropyl)-N´-

73 ethylcarbodiimide hydrochloride (EDAC), non-essential amino acids solution, 

74 penicillin/streptomycin (10000 units/mL, 10000 g/mL), sodium dodecyl sulphate (SDS), 

75 trypan blue solution (0.4%), trypsin-EDTA solution (2.5 g/L trypsin, 0.5 g/L EDTA), and 

76 triton-X 100 were purchased from Sigma-Aldrich (Germany). Lactate dehydrogenase 

77 (LDH) kit was supplied by Takara Bio (Tokyo, Japan), while RPMI 1640 and Ham’s F12 

78 media were provided by Lonza Group AG (Switzerland). Rifabutin (RFB) was obtained 

79 from Chemos (GmbH, Germany) and phorbol 12-myristate 13-acetate (PMA) by Cayman 

80 Chemicals (USA). Tween 80®, Phosphate buffer saline (PBS) tablets pH 7.4, and 

81 thiazolyl blue tetrazolium bromide (MTT) were purchased from Amresco (USA). 

82 Dimethyl sulfoxide (DMSO) was supplied by VWR (France) and fetal bovine serum 

83 (FBS) along with L-glutamine solution (200 mM) by Gibco (Life Technologies, USA). 

84 Middlebrook 7H9 (M7H9; 4.7 g/L) and OADC (oleic acid, albumin, dextrose and 

85 catalase) were obtained from Remel (Lenexa, USA). Quantikine® HS ELISA kits for 

86 TNF-α and IL-8 were from R&D Systems (USA). All other chemicals were reagent grade. 

87 Ultrapure water (MilliQ, Millipore, UK) was used throughout the studies. 

88

89 2.2 Microparticle production

90 Microparticles were obtained from CS (2% w/v, dissolved in 1% v/v acetic acid) 

91 solutions, containing both INH and RFB. INH was solubilised in 1% (v/v) acetic acid, 
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92 whereas RFB was dissolved in 10% (v/v) ethanol. Drugs were ground prior to 

93 solubilisation and afterwards incorporated dropwise into the CS solution. Drugs were 

94 added to obtain final CS/INH/RFB mass ratio of 10/1/0.5. A formulation of CS/INH/RFB 

95 = 10/1/0.2 (w/w) was specifically produced to be used in cytotoxicity assays (Section 

96 2.8). CS solutions (with and without drugs) were spray-dried, using a spray-dryer (Büchi 

97 B-290 Mini Spray Dryer, Switzerland) equipped with a high-performance cyclone, and 

98 operated as follows: spray flow rate of 473 L/h, aspirator at 80%, inlet temperature of 160 

99 ± 1 ºC and feed flow of 1.3 mL/min. The production yield was calculated as a percentage 

100 of the total solid content in the feed dispersion.

101 Fluorescent CS microparticles were also produced to be used in a single assay 

102 (macrophage capture – section 2.8). Briefly, CS (1% w/v, dissolved in 0.1 M acetic acid) 

103 reacted with fluorescein in the presence of EDAC [7]. After stirring (24 h, protected from 

104 light), the reaction mixture was dialysed against distilled water. The resulting solution 

105 was frozen, freeze-dried (FreeZone Benchtop Freeze Dry System, USA) and finally 

106 spray-dried, as described above, to produce unloaded fluorescent microparticles.

107

108 2.3. Surface morphology and particle size

109 The morphology of CS microparticles was observed with field emission scanning 

110 electron microscopy (FESEM Ultra Plus, Zeiss, Germany). To do so, samples were placed 

111 onto metal plates and sputter-coated (model Q150T S/E/ES, Quorum Technologies, UK) 

112 with iridium (5 nm thick).

113 The median volume diameter (D(v,0.5)) was determined using a SprayTec® 

114 (Malvern, UK), after dispersing microparticles (15 mg) in 2-propanol (15 mL) and 

115 sonicating (5 min). Analyses (n = 3) were performed with an obscuration threshold of 

116 10% [8]. 
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117 2.4. Drug association efficiency and loading capacity

118 Drug content was determined by dissolving dry powder (30 mg) in HCl 0.1 M (10 

119 mL), under constant stirring (20 min). Then, the solution was filtered (cellulose acetate, 

120 0.45 µm) before quantification by UV-Vis spectrophotometry (Pharmaspec UV-1700, 

121 Shimadazu, Japan) at 268.5 nm (INH) and 500 nm (RFB). The measurement at 500 nm 

122 provided a direct calculation of the RFB amount present in CS microparticles. In turn, the 

123 measurement performed at 268.5 nm required a 1:10 dilution and represented the sum of 

124 amounts of INH and RFB. The amount of INH was thus calculated by subtracting the 

125 amount of RFB from this value. Calibration curves were obtained from standard solutions 

126 of both drugs prepared using the medium resulting from dissolution of unloaded 

127 microparticles in HCl 0.1M. Drug association efficiency (AE) and microparticle loading 

128 capacity (LC) were estimated (n = 3) as follows [6]:

129

AE (%) = (Real amount of drug /Theoretical drug content) x 100 (1)

LC (%) = (Real drug content /Weight of microparticles) x 100 (2)

130

131 2.5. In vitro aerosolisation 

132 The aerodynamic assessment was determined as previously described in the 

133 literature [9], using the Andersen cascade impactor (ACI, Copley Scientific Ltd., UK) at 

134 a flow rate of 60 L/min. Cut-offs of the stages from −1 to 6 are the following: 8.60, 6.50, 

135 4.40, 3.20, 1.90, 1.20, 0.55 and 0.26 µm. For each determination (n = 3), three capsules 

136 (HPMC size 3; Quali-V-I, Qualicaps, Spain) were manually filled with microparticles (30 

137 mg/capsule) and aerosolised using the RS01 dry powder inhaler (Plastiape Spa, Italy). 

138 Aerosolised microparticles were rinsed with a mixture of water/acetonitrile (50/50, v/v), 

139 then sonicated (5 min), and filtered (0.45 µm, RC, Sartorius, USA). Drug deposition on 
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140 each stage of the ACI was determined by HPLC (Agilent 1200 series, Germany) at 275 

141 nm (diode array detector). The mobile phase was phosphate buffer 20 mM pH = 7 (A) 

142 and acetonitrile (B). The gradient started with 95:5 (A:B) during 5 min, reaching a ratio 

143 of 30:70 (A:B), in the following 3 min, a condition kept for 19 min. The injection volume 

144 was 20 µL and the flow rate was set at 1 mL/min. Drug deposition on each stage was 

145 determined from standard calibration curves.

146

147 2.6. Drug release 

148 In vitro drug release was conducted in citrate buffer pH 5 and PBS pH 7.4, both 

149 containing 1% (v/v) Tween® 80. To do so, dry powder (15 mg) was suspended in the 

150 release medium (10 mL) and maintained under mild shaking (100 rpm; Orbital Shaker 

151 OS 10, Biosan, Latvia) at 37 ºC (Dry line; VWR, USA). Samples of 1 mL were taken at 

152 pre-established time intervals, centrifuged (16,000 x g, 15 min; Heraeus Fresco 17 

153 Centrifuge, ThermoScientific, USA) and then filtered (0.45 µm). Drug quantification was 

154 performed by spectrophotometry as described above (section 2.5). Calibration curves 

155 were established using standard solutions of drugs dissolved in the medium resulting from 

156 the incubation of unloaded CS microparticles with the release medium, followed by 

157 centrifugation (4000 rpm, 20 min; Centrifuge MPW 223e, Poland) and filtration (0.45 

158 µm). 

159

160 2.7. Evaluation of cytotoxicity 

161 The cytotoxic profile of microparticles was evaluated by the MTT assays and the 

162 LDH release assay. A549 cells (American Type Culture Collection, UK) and THP-1 

163 human monocytic cells (Leibniz-Institut DSMZ, Germany) were used, the latter 
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164 undergoing a pre-treatment with PMA (50 nM, 48 h exposure) for differentiation into 

165 macrophage phenotype [10]. 

166 To perform the assays, A549 cells (1.0 x 104 cells/well) and macrophage-

167 differentiated THP-1 cells (3.5 x 105 cells/well) were exposed (3 h and 24 h) to unloaded 

168 and drug-loaded CS microparticles at concentrations of 0.1, 0.5 and 1.0 mg/mL. Dry 

169 powders were dispersed in the proper cell culture medium (CCM) without FBS. Free 

170 drugs were tested as control at concentrations equivalent to their theoretical loadings in 

171 microparticles: 0.01, 0.05 and 0.1 mg/mL (INH) and 0.005, 0.025 and 0.05 mg/mL (RFB). 

172 SDS (solution at 2%, w/v) was used as negative control of cell viability. The viability of 

173 treated cells was expressed as a percentage of that observed for the positive control 

174 (untreated cells). 

175 In simultaneous assays, the amount of LDH released by the cells upon contact 

176 with the microparticles (1 mg/mL) and controls was measured upon 24 h. Cell supernatant 

177 was collected, centrifuged and analysed using a commercial kit. LDH was quantified by 

178 spectrophotometry at 490 nm (Infinite M200, Tecan, Austria), with background 

179 correction at 690 nm. CCM was used as negative control and Triton-X100 as positive 

180 control (100% LDH release). LDH released upon incubation with each sample was 

181 determined by comparison with the positive control. The assay was performed in 

182 triplicate.

183

184 2.8. Interaction of CS microparticles with macrophages 

185 The ability of macrophage-like cells to internalise CS microparticles was 

186 evaluated by flow cytometry (FacScalibur cell analyser, BD Biosciences, Belgium). 

187 Macrophage-differentiated THP-1 (3.50 x 105 cells/mL) and rat alveolar macrophages 

188 NR8383 cells (2.0 x 105 cells/mL) were used for the assay, being exposed to fluorescent 
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189 CS microparticles at 50 and 200 µg/cm2. Microparticles were aerosolised using a Dry 

190 Powder Insufflator™ (Model DP-4, Penn-Century™, USA) and cell samples prepared as 

191 described elsewhere [7].  Untreated cells were considered the negative control. For each 

192 dose, experiments were performed at least three times (n ≥ 3).

193 Macrophage-differentiated THP-1 cells (3.5 x 105 cells/well) were further 

194 incubated (24 h) with drug-loaded CS microparticles and CS polymer (raw material) to 

195 evaluate the induction of TNF-α and IL-8 secretion. Cell supernatants (100 µL) were 

196 centrifuged (16,000 xg, 5 min) and the cytokines quantified using ELISA kits. 

197 Absorbance was detected at 450 nm with background correction at 540 nm. Values were 

198 expressed according to reference standard curves. The level of cytokines obtained from 

199 LPS- and CCM-treated cells were used as control. 

200

201 2.9. In vitro antibacterial effect

202 The susceptibility of Mycobacterium bovis BCG (DSM 43990; a gift from 

203 Universidade Nova de Lisboa – CEDOC/FCM-UNL) was evaluated in vitro. The 

204 minimum concentration of drug-loaded CS microparticles required to inhibit 

205 mycobacteria growth by 95–100% was determined by the MTT assay, according to a 

206 previously described protocol [5]. 

207 Assays were conducted after bacterial suspensions achieved an optical density 

208 value (OD600nm) of approximately 0.2, as measured by spectrophotometry (Infinite M200, 

209 Tecan, Austria). Bacterial suspensions (20 µL, n = 3) were inoculated with test samples 

210 serially diluted (180 µL). Bacterial suspension inoculated with broth in the absence of 

211 test samples were assumed as positive control, whereas M7H9 medium only (200 µL) 

212 was considered as negative control. Free drugs were also tested as control. After 1-week 

213 incubation (37 °C, Binder, USA), MTT (30 μL) sterile solution was added, following 1 h 
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214 incubation before the addition of DMSO (50 μL). Measurements (n = 3) were conducted 

215 by spectrophotometry at 540 nm. 

216

217 2.10. Statistical analysis

218 Sigmaplot (version 12.5) was used to statistically analyse the generated data. 

219 Student t-test and one-way analysis of variance (ANOVA) with the pairwise multiple 

220 comparison procedures (Holm-Sidak method) were performed. Differences were 

221 considered significant when p-values were smaller than 0.05. 

222

223 3. Results and Discussion

224 3.1. Production and characterisation of chitosan microparticles

225 Spray-drying yielded 75 ± 5% of dry powder, which is satisfactory and actually 

226 higher than other values recently reported for spray-dried CS microparticles [6,11]. In 

227 this case, high yields could be mainly attributed to the instrumentation design, since the 

228 use of high performance cyclone, instead of the manufacturer’s standard separator, 

229 greatly improved the powder yield [12]. The simultaneous association of INH and RFB 

230 to CS microparticles was effective, complying with the combined therapeutic regimen of 

231 TB, recommended by WHO [1]. Microparticles presented high and similar association 

232 efficiencies – INH (93 ± 4%) and RFB (99 ± 5%) –  despite the different aqueous 

233 solubilities: 125 mg/mL for INH [7] and 0.19 mg/mL for RFB [13]. Loading capacity of 

234 both antibiotics was found to be 8.1 ± 0.3% (INH) and 4.3 ± 0.2% (RFB), values close to 

235 the theoretical maximum (8.7% for INH and 4.4% for RFB). In this work, INH was 

236 included in higher amount than RFB, as the latter is a more potent antibiotic [14], and 

237 also has a more toxic profile, as demonstrated later (section 3.4). Moreover, the amount 
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238 of CS in microparticles was maintained purposely high in order to favour macrophage 

239 internalisation [3].

240 These results demonstrate the great capacity of spray-drying to provide drug 

241 association, similarly to what was reported for other CS-based microparticles associating 

242 antitubercular drugs. However, unlike the present study, the production of the referred 

243 microparticles required more than one production step and involved the use of a 

244 crosslinking agent (e.g. tripolyphosphate) in order to improve drug retention in the 

245 formulation [6]. The literature reports the production of CS microparticles loaded with 

246 one [6,15] or more antitubercular drugs [16], using spray-drying or other methods. 

247 Nevertheless, such studies included dispersing agents (e.g. lactose) and/or other 

248 polysaccharides (e.g. alginate) in the process. To the best of our knowledge, this is the 

249 first report describing single step produced spray-dried CS microparticles, combining 

250 INH and RFB in a single formulation. 

251 The morphological analysis showed that CS microparticles are spherical, with 

252 wrinkled surfaces that generally become smoother after drug incorporation (Figure 1). 

253 These morphologies are coincident with previous descriptions of spray-dried CS 

254 microparticles [17]. The median volume diameter (D(v,0.5)) was determined as 5.9 ± 1.7 

255 µm for drug-loaded microparticles, which agrees with Figure 1.

256

257 Insert [Figure 1 near here]

258

259 The aerosolisation properties of CS microparticles were investigated in vitro using 

260 an ACI and the obtained data are displayed in Table 1. The assessment revealed high 

261 emitted doses (80–90%) with respirable fractions (FPF ≤ 5µm) of approximately 45%, 

262 indicating adequate flowability of microparticles, and supporting the intended 

Page 11 of 37

URL: http:/mc.manuscriptcentral.com/lddi  Email:hugh.smyth@austin.utexas.edu

Drug Development and Industrial Pharmacy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

12

263 application. Moreover, drug recoveries were found to be 91 ± 4% (INH) and 87 ± 1% 

264 (RFB), complying with the recommendations of the European Pharmacopeia [9]. 

265

266 Insert [Table 1 near here]

267

268 The formulation generated adequate aerosol size (MMAD around 4 µm) for 

269 efficient lung deposition, as particles with aerodynamic diameter of 1-5 μm have great 

270 tendency to reach the respiratory zone, while those with less than 2 µm are prone to 

271 deposit in peripheral airways [18]. Therefore, drug-loaded CS microparticles display 

272 suitable aerodynamic diameter to reach the respiratory zone and possibly to be 

273 internalised by macrophages, the target cells, which are described to uptake particulate 

274 material with diameter within 1–6 µm [19]. 

275 Drug deposition profiles evidenced co-deposition of both INH and RFB on the 

276 different ACI stages (Figure 2). This observation reinforces that spray-drying was 

277 adequate to associate two antibiotics in a single dry powder formulation for an application 

278 in TB therapy, as the drugs are evenly distributed. In summary, the proposed systems 

279 exhibited acceptable aerodynamic properties for deep lung delivery of anti-TB drugs.

280

281 Insert [Figure 2 near here]

282

283 3.2. Drug release profiles

284 Drug release profiles were determined in PBS pH 7.4, containing 1% (v/v) Tween 

285 80®, which mimics the natural surfactant existent in the lung lining fluid [20], and also 

286 facilitates RFB dissolution in the medium, considering its poor water solubility. The 
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287 release of drugs was further assessed in a medium of pH 5 that simulates the intracellular 

288 environment of alveolar macrophages [21]. 

289 Figure 3 shows the release of INH and RFB from CS microparticles. The two 

290 antibiotics evidenced complete release within two hours (Figure 3 a,b). At pH 7.4 and at 

291 initial time points, the release of RFB was slower compared to INH (Figure 3 a, p <0.05). 

292 At these time points, the amount of RFB was below the limit of detection, justifying 

293 plotting only from 30 min on, time at which about 70% of RFB was released. On the other 

294 hand, INH released almost completely (over 90%) in the same period and RFB reached 

295 approximately 100% release at 120 min. However, in acidic medium, no significant 

296 difference was perceived between INH and RFB profiles at any time point (Figure 3 b). 

297 Although not statistically significant, RFB showed faster release at pH 5 (97% at 60 min) 

298 than at pH 7.4 (87% at 60 min), certainly due to its higher solubility in acidic medium. 

299 Overall, drug release profiles exhibited similar patterns in both media, suggesting that pH 

300 does not have a significant impact on drug release from CS microparticles. 

301

302 Insert [Figure 3 near here]

303

304 The release of both drugs under both conditions was similar to that reported for 

305 other polysaccharide microparticles loaded with either INH [23] or RFB proposed for 

306 pulmonary delivery [24]. Although not immediate, the release may be considered rapid, 

307 as in all cases over 70% of the drug was released in the first 30 min. Nevertheless, it must 

308 be considered that the used in vitro setting does not represent accurately the lung 

309 physiology. In fact, the amount of liquid is overestimated in the assay, as microparticles 

310 are immersed in the release media, not simulating the volume and thickness of alveolar 

311 lung lining fluid [25]. In this way, the rapid release of the drugs, which follows 
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312 microparticle dissolution, is certainly different from in vivo environment, wherein 

313 microparticles would be only partially in contact with the alveolar fluid. Thus, in vivo 

314 profiles will probably show slower release of drugs [25,26]. 

315

316 3.3. Evaluation of cytotoxicity 

317 The effect of unloaded and drug-loaded CS microparticles on cell viability was 

318 evaluated in A549 cells and macrophage-differentiated cells by the MTT assay. For the 

319 purpose of discussion, the occurrence of a cytotoxic effect was assumed when the material 

320 decreased cell viability below 70% [27].

321 The exposure of A549 cells to drug-loaded CS microparticles revealed cell 

322 viability over 70% at all tested concentrations and at both time points (3 h and 24 h), as 

323 depicted in Figure 4 a,b. These results indicate absence of cytotoxicity of the formulation. 

324 However, despite no significant differences were observed in terms of dose, the viability 

325 of A549 cells decreased over time, suggesting a time-dependent effect (p<0.05). In turn, 

326 a dose-dependent effect was perceived on macrophage-differentiated THP-1 cells, as cell 

327 viability decreased from 90% (0.1 mg/mL) to 59% at the highest tested dose (1.0 mg/mL) 

328 upon 24 h exposure (p<0.05, Figure 4 b). The observed toxic effect of microparticles on 

329 these cells is possibly related with RFB content, an antibiotic that has also shown to be 

330 toxic in vivo [28]. Overall, both cell lines tolerated well the exposure to unloaded CS 

331 microparticles (Figure 4 a,b), which is in agreement with other studies showing low 

332 toxicity of CS-based systems tested in the same cell lines [29,30]. The effect of the free 

333 drugs, in the concentrations corresponding to those loaded in the microparticles, was 

334 reported in a previous work [5]. Free INH showed mild effect on the viability of both cell 

335 lines, remaining above 76% in all tested conditions. Oppositely, free RFB (0.05 mg/mL, 

336 the highest concentration tested) induced around 50% cell viability in the two cell lines. 
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337 A concentration-dependent effect of RFB on cell viability was confirmed in the present 

338 work by testing microparticles with lower RFB content (CS/INH/RFB = 10/1/0.2, w/w), 

339 which were purposely produced to undergo this assay. The decrease in RFB loading led 

340 to viability of macrophage-like cells above 70% in all tested conditions referred above 

341 (data not shown). Interestingly, free RFB at 0.025 mg/mL had demonstrated  a cytotoxic 

342 effect 24 h-post exposure to macrophage-differentiated THP-1 cells [5], but the 

343 detrimental effect was not perceived for drug-loaded CS microparticles at the same time 

344 point (Figure 4 b). Therefore, it is suggested that microencapsulation may revert RFB 

345 cytotoxic effect at some extent (p<0.05), as proposed previously [5]. 

346 Insert [Figure 4 near here]

347

348 It must be mentioned that the highest dose tested in the present study is considered 

349 much higher than that to be observed in vivo upon inhalation, taking into account the large 

350 area of the alveolar zone [31]. Therefore, in vivo concentrations will most likely correlate 

351 those of the lower doses tested, at which no cytotoxicity were perceived. In this sense, 

352 both cell lines were considered to tolerate well the exposure to CS/INH/RFB 

353 microparticles.

354 Complementarily to the determination of cell viability through metabolic activity, 

355 the cell membrane integrity was assessed by determining the level of LDH released from 

356 both cell lines upon exposure to the microparticles and free drugs. 

357 The incubation with CCM resulted in basal release of LDH of 21% and 34%, for 

358 A549 and macrophage-differentiated THP-1 cells, respectively (Figure 5). Unloaded CS 

359 microparticles did not raise the release of the enzyme, evidencing that CS itself did not 

360 show toxic effect on any cell line (Figure 5), as also reported elsewhere [32,33]. 

361
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362 Insert [Figure 5 near here]

363

364 Drug-loaded microparticles exhibited toxicity on macrophage-differentiated 

365 THP-1 cells, with 49% LDH release, which is higher than the 34% of CCM (p<0.05). 

366 Unexpectedly, A549 cells also showed significantly increased release of LDH (28%) 

367 upon exposure to drug-loaded microparticles, compared with CCM (p<0.05, Figure 5). 

368 This slight cytotoxicity was not evident in the MTT assay (cell viability around 80%). 

369 Despite the increased release of LDH observed in both cell lines, the developed carriers 

370 induced lower LDH release than free RFB (p<0.05) and an effect similar to that of free 

371 INH, thus suggesting the ability of microencapsulation to potentially reduce drug 

372 toxicological effects. Data regarding the exposure of both cell lines to free drugs were 

373 presented in a previous publication [5]. Importantly, the level of enzyme secreted after 

374 exposure to microparticles is far lower than the observed for the positive control.

375 The different outcomes registered in both assays (MTT and LDH release) have 

376 been reported [34] and are due to the fact that the two methods assess cell-particle 

377 interactions in different ways. Microparticles possibly interact with cytoplasmic 

378 membrane, promoting cell lysis, but not necessarily interfere with intracellular functions, 

379 such as mitochondrial dehydrogenase activity [35]. Contrarily, particles may enhance 

380 metabolic activity, despite the small number of viable cells, leading to an overestimation 

381 of cell viability, determined by MTT assay [36]. Therefore, the measurement of LDH 

382 release should be taken as a complement to the MTT assay, but there is the need to extend 

383 the range of tests to rigorously characterise the safety profile of the proposed carriers.

384

385 3.4. Interaction of microparticles with macrophages
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386 Considering the intended application of the produced carriers, both the phagocytosis 

387 of microparticles and the subsequent induction of macrophage activation would be 

388 beneficial. The preliminary internalisation of CS microparticles was assessed in 

389 macrophage-differentiated THP-1 cells and rat alveolar macrophages NR8383. Cells 

390 were exposed to fluorescently-labelled CS microparticles for 2 h, since 50 – 75% of 

391 microparticles are reported to be phagocytosed within 2–3 h [37]. Microparticle uptake 

392 by differentiated THP-1 cells was very high at both concentrations (94.3 ± 1.5 for 50 

393 µg/cm2 and 98.1 ± 1.8% for 200 µg/cm2), as depicted in Figure 6. Likewise, NR8383 cells 

394 internalised up to 99.9 ± 0.1, regardless of the dose. These preliminary results suggest 

395 high affinity of macrophages for CS microparticles independently of concentrations and 

396 cell type. It is well-known that macrophages are specialised cells, which recognise and 

397 engulf particulate matter, and thus the internalisation of particles was expected. 

398 Nevertheless, residues of N-acetylglucosamine, a structural unit of CS, have been 

399 described to be preferentially recognised by macrophages [3]. The presence of such units 

400 possibly mediated the phagocytic mechanism, which could explain the high affinity of 

401 cells for the produced microparticles. However, it is deemed adequate to consider future 

402 assays providing comparison with a material devoid of units recognised by macrophages. 

403 In this way, the favourable recognition of CS-based carriers by macrophage-like cells 

404 could be unequivocally established. Furthermore, complementation with confocal 

405 microscopy would strenghten the data.

406

407 Insert [Figure 6 near here]

408

409 Following phagocytosis, macrophages may become activated, which contributes to 

410 the efficient control of the proliferation and dissemination of pathogens by producing 
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411 cytokines (e.g. TNF-α and IL-8) [38]. Such pro-inflammatory cytokines are reported to 

412 be secreted by human alveolar macrophages upon infection with M. tuberculosis [39]. In 

413 light of this, macrophage-differentiated THP-1 cells were exposed (24 h) to CS/INH/RFB 

414 microparticles and the levels of TNF-α and IL-8 were quantitatively determined in cell 

415 culture supernatants. CCM and lipopolysaccharide (LPS) were used as negative and 

416 positive controls, respectively [5]. 

417 Drug-loaded microparticles induced the secretion of a considerable amount of 

418 cytokines,  614  pg/mL for TNF-α and 10.6 x 103 pg/mL for IL-8 (Figure 7 a,b). In both 

419 cases the values were much higher compared with basal secretion of cells incubated with 

420 CCM (p<0.05). No significant differences were found between TNF-α secretion 

421 promoted by loaded carriers and CS polymer (Figure 7 a), but a significant difference was 

422 observed for IL-8 (Figure 7 b; p<0.05). In that case, drug association apparently interfered 

423 with cell receptor signaling during immune activation, thus decreasing macrophage 

424 activation ability. A possible explanation for this effect is that the lenght of the released 

425 polymeric chain and also the number of fractions of N-acetylglucosamine residues 

426 influence the level of immune activation, and drug association can possibly alter this 

427 pattern [40]. As referred previously, N-acetylglucosamine moieties have reported 

428 recognition by macrophage receptors [3], thus, possibly, inducing cell activation.

429 Although the formulation induced cytokine production at lower levels compared to 

430 LPS, the exposure of macrophage-like cells to CS microparticles resulted in the increased 

431 release of TNF-α and IL-8 in relation to CCM (p<0.05). Other studies describe similar 

432 effects [6,41]. Although the natural immunomodulatory properties of CS have been 

433 already demonstrated [42], the mechanism through which CS particles induce immune 

434 response still needs to be unveiled.

435
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436 Insert [Figure 7 near here]

437

438 3.5. In vitro antibacterial effect 

439 The viability of M. bovis DSM 43990 cells was verified upon exposure to drug-

440 loaded CS microparticles and free drugs (either alone or in combination). MIC values 

441 were calculated in relation to control (culture of mycobacteria), assumed as 100% 

442 bacterial growth. MIC value of free INH was 0.125 µg/mL, being alligned with literature 

443 descriptions [43]. RFB had a much lower MIC value (0.004 µg/mL), evidencing its higher 

444 antimicrobial effect compared to INH. This is possibily related to RFB lipophilicity, 

445 which may facilitate cell membrane permeation [44]. Different MIC values of RFB have 

446 been reported, varying according to the methodologies used to test suceptibility and the 

447 tested strains of M. bovis [43].

448 In combination, free INH and RFB inhibited bacterial growth by 94 ± 1%, 

449 presenting MIC values of 0.008 µg/mL and 0.004 µg/mL, respectively. Curiously, the 

450 MIC of INH alone (0.125 µg/mL) decreased in the presence of RFB, which MIC remained 

451 unchanged. This different behaviour between INH and other antibiotics has been 

452 described [45] and the stronger antibacterial acitivity of RFB compared to INH is also 

453 reported [14]. Additionally, a dose of 0.08 µg/mL of drug-loaded CS microparticles was 

454 the minimum concentration needed to inhibit mycobacterial growth by 96 ± 1%. At this 

455 concentration, microparticle drug contents are approximately 0.007 µg/mL (INH) and 

456 0.004 µg/mL (RFB), considering the association efficiencies. It is worth noting that these 

457 results are in line with MIC values determined for the combined solution of free 

458 antibiotics. In other words, no differences were perceived in terms of inhibition effects 

459 comparing drug-loaded CS microparticles (96 ± 1%) and free INH/RFB (94 ± 1%). This 

460 indicates that the combined microencapsulation of the drugs did not intefere with their 
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461 antibacterial activity. As well, results demonstrate that the proposed formulation can 

462 potentially inhibit the growth of M. bovis in vitro.

463 Conclusion 

464 Inhalable CS dry powder loaded with both INH and RFB was prepared by spray-

465 drying, with drug association efficiencies of 93% (INH) and 99% (RFB). The developed 

466 microparticles displayed MMAD around 4 µm and FPF of approximately 45%, thus 

467 showing suitable aerodynamic properties for deep lung delivery. Cytotoxicity assays 

468 demonstrated that the formulation is well tolerated by alveolar epithelial cells. 

469 Nevertheless, a slight decrease on cell viability of macrophage-like cells (to 60%) was 

470 observed at the highest microparticle concentration tested (1.0 mg/mL) after 24 h 

471 exposure, although this dose is possibly overestimated comparing to real in vivo 

472 conditions. Furthermore, a preliminary evaluation indicated strong ability of CS 

473 microparticles to undergo macrophage uptake (up to 99.9%) and the ability to induce 

474 macrophage activation. Additionally, drug antibacterial activity against M. bovis was 

475 demonstrated to be preserved after drug microencapsulation. In conclusion, the developed 

476 dual drug-loaded CS microparticles demonstrated to be potential candidates for inhalable 

477 therapy of pulmonary TB. Despite that, long-term effects of CS microparticles upon 

478 pulmonary administration in vivo, along with in vivo antibacterial efficacy of the systems, 

479 are very relevant evaluations to perform in the future.

480
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655 Figure captions

656 Figure 1. Scanning electron microphotographs of (a) unloaded chitosan microparticles 

657 and (b) chitosan microparticles loaded with isoniazid and rifabutin.

658

659 Figure 2. Aerodynamic deposition profiles (n = 3, mean ± SD) of isoniazid (INH) and 

660 rifabutin (RFB) in the Andersen Cascade Impactor. Drugs were associated with spray-

661 dried chitosan microparticles. Cps: capsule; Dev.: inhaler device; F: filter; IP: induction 

662 port; St: stage.

663

664 Figure 3. In vitro release of isoniazid (INH) and rifabutin (RFB) from chitosan 

665 microparticles in (a) PBS pH 7.4-Tween 80® and b) buffer at pH 5.0-Tween 80®. Mean 

666 ± SD (n = 3). *p<0.05 comparing release of the two drugs.

667    

668 Figure 4. Viability of A549 (lighter colours) and macrophage-differentiated THP-1 cells 

669 (darker colours) upon a) 3 h and b) 24 h exposure to unloaded and drug-loaded chitosan 

670 (CS) microparticles (CS/INH/RFB = 10/1/0.5, w/w). Data are expressed as a percentage 

671 of untreated cells (positive control) and indicate mean ± SEM (n = 3, six replicates per 

672 experiment at each concentration). Dashed lines represent 70% cell viability. 

673

674 Figure 5. Percentage of LDH released from A549 cells (lighter colours) and macrophage-

675 differentiated THP-1 cells (darker colours) exposed (24 h) to chitosan (CS) microparticles 

676 (1 mg/mL).  Triton X-100 and cell culture medium (CCM) were used as positive and 

677 negative controls, respectively (data from [5]). Data represent mean ± SEM (n = 3, six 

678 replicates per experiment at each concentration). *p<0.05 compared to respective CCM.

679
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680 Figure 6. Percentage (mean ± SEM; n ≥ 3) of macrophage-differentiated THP-1 cells and 

681 NR8383 phagocytosing fluorescently-labelled chitosan microparticles. Cells were 

682 exposed (2 h) to 50 and 200 µg/cm2 of microparticles. 

683

684 Figure 7. Release of a) TNF-α and b) IL-8 from macrophage-differentiated THP-1 cells 

685 induced by chitosan (raw material) and drug-loaded CS microparticles. Cell culture 

686 medium (CCM) and lipopolysaccharide (LPS) were used as negative and positive 

687 controls, respectively (data from [5]). *p<0.05 compared to CCM. 

688

689

690
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1

1 Table 1. Aerosolisation properties (n = 3, mean ± SD) of chitosan microparticles 

2 associating isoniazid (INH) and rifabutin (RFB). The amount of drug loaded corresponds 

3 to 2.8 mg of INH and 1.5 mg of RFB, based on the drug content found in the formulation. 

Drug Metered 

Dose (mg)

Emitted dose 

(mg)

MMAD

(µm)

FPD <5 µm

(mg)

FPF <5µm

(%)

INH 2.7 ± 0.2 2.5 ± 0.3 4.2 ± 0.1 1.1 ± 0.2 43.6 ± 4.2

RFB 1.3 ± 0.1 1.2 ± 0.2 4.1 ± 0.2 0.5 ± 0.1 45.2 ± 3.1

4 FPD: fine particle dose; FPF: fine particle fraction; MMAD: mass median aerodynamic 

5 diameter.

6
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