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Abstract: Background: Patients with chronic obstructive pulmonary disease (COPD) are commonly
treated with inhaled corticosteroid/long-acting ß2-agonist combination therapy. While previous
studies have investigated the host–microbiome interactions in COPD, the effects of specific steroid
formulations on this complex cross-talk remain obscure. Methods: We collected and evaluated
data from the Study to Investigate the Differential Effects of Inhaled Symbicort and Advair on Lung
Microbiota (DISARM), a randomized controlled trial. Bronchoscopy was performed on COPD patients
before and after treatment with salmeterol/fluticasone, formoterol/budesonide or formoterol-only.
Bronchial brush samples were processed for microbial 16S rRNA gene sequencing and host mRNA
sequencing. Longitudinal changes in the microbiome at a community, phylum and genus level were
correlated with changes in host gene expression using a Spearman’s rank correlation test. Findings:
In COPD patients treated with salmeterol/fluticasone, the expression levels of 676 host genes were
significantly correlated to changes in the alpha diversity of the small airways. At a genus level, the
expression levels of 122 host genes were significantly related to changes in the relative abundance
of Haemophilus. Gene enrichment analyses revealed the enrichment of pathways and biological
processes related to innate and adaptive immunity and inflammation. None of these changes were
evident in patients treated with formoterol/budesonide or formoterol alone. Interpretation: Changes
in the microbiome following salmeterol/fluticasone treatment are related to alterations in the host
transcriptome in the small airways of patients with COPD. These data may provide insights into
why some COPD patients treated with inhaled corticosteroids may be at an increased risk for airway
infection, including pneumonia. Funding: The Canadian Institute of Health Research, the British
Columbia Lung Association, and an investigator-initiated grant from AstraZeneca.

Keywords: COPD; inhaled corticosteroids; 16S rRNA gene sequencing; mRNA-sequencing;
transcriptomics; bronchoscopy; fluticasone; budesonide; microbiome; inflammation
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1. Introduction

Inhaled corticosteroids (ICS) and long-acting ß2-agonists (LABA) are commonly pre-
scribed medications for patients with moderate-to-severe chronic obstructive pulmonary
disease (COPD) [1]. Compared with LABA monotherapy, combination therapy with
ICS/LABA has been shown to improve health status and lung function and reduce the risk
of acute exacerbations [1]. However, several studies have shown that COPD patients treated
with ICS and, in particular, inhaled fluticasone are at an increased risk of pneumonia [2,3].
While not fully settled, the risk of pneumonia in this setting may in part relate to the steroid
formulation and potency, with lipophilic and potent steroids enhancing the risk [2,4–6].

The risk of pneumonia may also relate to the airway microbiome, which is perturbed in
COPD. We have recently shown that ICS/LABA use is associated with a relative reduction
in alpha diversity of the small airway microbiome in COPD [7]. Here, we hypothesized that
ICS therapy is associated with changes in the airway microbiome that are related to host
transcriptomic changes in the small airway microenvironment. We also hypothesized that
these changes are steroid-specific based on potency and lipophilicity. To investigate these
hypotheses, we applied bacterial 16S rRNA gene sequencing and host mRNA-sequencing to
bronchial brushes to obtain profiles of the small airway microbiome and host transcriptome
from COPD patients treated with different ICS/LABA combinations.

2. Materials and Methods
2.1. Study Cohort and Design

We used data from the Study to Investigate the Differential Effects of Inhaled Symbicort
and Advair on Lung Microbiota (DISARM), which was a randomized controlled trial aimed
at evaluating the effects of inhaled fluticasone and budesonide on the airway microbiome
of patients with COPD. The DISARM trial is registered at ClinicalTrials.gov under the iden-
tifier NCT02833480 and has approval from the University of British Columbia/Providence
Health Care Research Ethics Committee (H14-02277). The patient cohort and overall study
design of the DISARM trial have been previously described in detail and are also shown in
Figure 1 [7].

Briefly, a total of 89 COPD patients who were clinically stable for at least 8 weeks
and did not receive prior treatment with systemic corticosteroids and/or antibiotics were
enrolled in the study. After providing informed consent, all participants underwent a
4-week run-in period during which they discontinued ICS (if they were on them) and
received only formoterol (Oxeze Turbuhaler® 12 ug twice daily) as a maintenance therapy
to wash out any residual effects of ICS in the lower airways. At the end of the 4-week run-in
period, participants underwent a baseline bronchoscopy where bronchial brushes were
obtained from the 6th to 8th generation airways of the right upper lobe (or left upper lobe
if the right upper lobe was not accessible) using a steel-tipped cytology brush. Following
the baseline bronchoscopy, 63 participants were randomly assigned to three treatment
groups for 12 weeks: salmeterol/fluticasone (SAL/FLU; Advair Diskus® 250 ug twice
daily; n = 22), formoterol/budesonide (FOR/BUD; Symbicort Turbuhaler® 400 ug twice
daily; n = 20) and formoterol-only (FOR; Oxeze Turbuhaler® 12 ug twice daily; n = 21). The
FOR group was considered the control group. At the end of the 12-week treatment period,
participants underwent a follow-up bronchoscopy where bronchial brushes were obtained
from the same airway as where the first bronchoscopic sampling took place.
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Figure 1. Participant flow diagram. Abbreviations: COPD, chronic obstructive pulmonary disease.

2.2. Microbial DNA Extraction and PCR Amplification

Bronchial brushings for microbiome profiling were collected and stored in Cytolyt
(Hologic, Marlborough, MA, USA) for DNA preservation as previously described [7].
Methods for microbial DNA extraction and PCR amplification have been described in detail
previously [7]. DNA was extracted from cytological brush specimens using the DNeasy
Blood and Tissue Kit (QIAGEN, Toronto, ON, Canada) according to the manufacturer’s
instructions. DNA extraction was followed by PCR amplification using primers targeting
the V4 region of the 16S rRNA gene. Purified PCR products were sequenced using the
Illumina MiSeq platform (Illumina, San Diego, CA, USA).

2.3. Microbiome Profiling

Methods for profiling the microbiome have been described in detail previously [7]. In
brief, raw sequencing reads (fastq files) were processed using the Quantitative Insights into
Microbial Ecology (QIIME2, version 2020.2) [8]. The divisive amplicon denoising algorithm
(DADA2) was used to denoise and cluster the sequencing reads into amplicon sequence
variants (ASVs) and merge the paired-end reads [9]. A Naïve Bayes taxonomic classifier
was trained on the SILVA rRNA database (v132, Ref NR 99) and used for taxonomic
assignment [10,11]. Low abundant taxa and ASVs with no taxa annotation at a phylum
level were omitted from the downstream analysis.
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2.4. Host RNA Extraction and RNA Sequencing

Bronchial brushings for host transcriptomic profiling were collected and stored in QI-
Azol RNA lysis buffer (QIAGEN, Stockach, Germany) to preserve RNA prior to extraction.
RNA was extracted from cytological brush specimens using the RNeasy Plus kit (QIA-
GEN, Stockach, Germany) according to the manufacturer’s protocol and sequenced at the
Biomedical Research Centre Sequencing Core at the University of British Columbia. Sample
quality control was performed using the Agilent 2100 Bioanalyzer (Agilent, Santa Clara,
CA, USA). Qualifying samples were then prepared following the standard protocol for
the NEBnext Ultra ii Stranded mRNA (New England Biolabs, Ipswich, MA, USA). mRNA
Sequencing was subsequently performed on the Illumina NextSeq500 (Illumina, San Diego,
CA, USA) platform with paired end 42 bp × 42 bp reads, as previously described [12].

2.5. Host Transcriptomic Profiling

Raw sequencing reads were analyzed for quality control using FastQC [13]. Salmon
was used for quantification and quasi-alignment of the sequencing reads to the GENCODE
genome reference (assembly GRCh37, release 31) [14,15]. Transcript level counts and
transcripts per million (TPM) were summarized to gene level using the “tximport” R
package, and gene level counts were filtered using the “filterByExpr” function in the
“edgeR” package [16,17]. The R package “limma” was used to normalize the count data
to log2 counts per million (CPM) [18,19]. After genes with low abundance (log2CPM < 1
or TPM < 2 in more than 80% of the samples) were filtered out, a total of 15,667 genes
remained.

2.6. Statistical Analysis

Longitudinal changes in the microbiome as well as the expression levels of individual
genes were quantified as post- minus pre-treatment. Only participants (n = 53) with both
pre- and post-treatment gene expression data as well as microbiome data were included in
the current study. From these participants, we independently correlated changes in gene
expression (∆log2CPM) in each treatment group with changes in alpha diversity (Shannon
diversity index) [20], beta diversity (Unweighted UniFrac Distance Matrix) [21] and relative
abundances of the main taxa (at the phylum and genus levels) using Spearman’s rank
correlations. Statistical significance was set at a Benjamini–Hochberg false discovery rate
(FDR) of less than 0.1. From the significantly correlated genes, the ingenuity pathway
analysis (IPA) (QIAGEN, Redwood City, CA, USA) was used to identify top canonical path-
ways, enriched biological pathways and diseases, and upstream transcription, cytokine and
transmembrane receptor regulators. To further validate the enriched pathways identified
by IPA, we performed pathway enrichment analyses using the package WebGestaltR [22]
in R (version 4.0.5) [23] on the same set of genes using gene ontology (GO) terms and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [24,25].

3. Results
3.1. Study Cohort

Fifty-three participants had both pre-and post-treatment gene expression data as well
as microbiome data (Figure 1). Baseline characteristics are shown in Table 1. No significant
differences according to demographics, lung function and clinical data were detected across
the three treatment groups (p > 0.05).
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Table 1. Baseline characteristics of participants included in the study (n = 53). Table shows the median
and interquartile range for quantitative variables. Abbreviations: BMI, body mass index; Post-BD
FEV1, post-bronchodilator forced expiratory volume in one second; FVC, forced vital capacity; ICS,
inhaled corticosteroids.

Variables FOR
n = 19

FOR/BUD
n = 16

SAL/FLU
n = 18

Age, years 63.0 (56.0–67.0) 66.0 (62.5–70.3) 66.0 (60.3–72.8)

Male, n (%) 18 (94.7%) 14 (87.5%) 14 (77.8%)

BMI, kg/m2 24.4 (22.0–31.3) 23.9 (19.4–28.5) 28.0 (23.2–32.6)

Current smokers, n (%) 10 (52.6%) 6 (37.5%) 10 (55.6%)

Smoking exposure, pack years 45.0 (22.0–60.0) 51.5 (43.3–58.5) 48.0 (34.5–59.0)

Post-BD FEV1, % of predicted 66.3 (50.0–73.5) 58.0 (48.1–70.5) 61.5 (47.9–86.5)

Post-BD FEV1/FVC, % 56.1 (49.6–62.7) 49.0 (44.6–59.2) 63.1 (49.9–66.7)

Hypertension, n (%) 4 (21.1%) 5 (31.3%) 3 (18.8%)

ICS at enrollment, n (%) 12 (63.2%) 7 (43.8%) 10 (62.5%)

3.2. Changes in Alpha Diversity of the Airway Microbiome Are Related to Changes in Host Gene
Expression in the Small Airways

To investigate the host–microbiome relationship in the small airways of COPD patients
treated with FOR/BUD or SAL/FLU, we compared the change (post- minus pre- treatment) in
the microbiome at a community, phylum, and genus level with changes in host gene expression.

Using a Spearman’s rank correlation, we related changes in alpha diversity using
the Shannon index as a summary indicator with changes in host gene expression in each
of the three treatment groups. Of the 15,667 genes analyzed, we noted changes in the
expression levels of 676 genes (500 negative and 176 positive) in COPD patients treated with
SAL/FLU and these correlated significantly (FDR < 0.1) with changes in the Shannon index
(Figure 2). At a more stringent threshold of FDR < 0.05, 180 genes remained significantly
correlated with changes in the Shannon index in the SAL/FLU group. Of the 676 genes
significantly correlated with changes in the Shannon Index, the majority were hematopoietic
and inflammatory cell-linked, followed by mesenchymal/stromal- and epithelial-linked
genes. Interestingly, out of the 15,667 genes analyzed, no genes were related to changes
in the Shannon index in the FOR/BUD or FOR treatment group. In all three treatment
groups, changes in beta diversity did not correlate significantly with changes in host gene
expression (data not shown).

3.3. Changes in Host Gene Expression Are Related to Phylum Level Changes in the Small
Airway Microbiome

Next, we investigated the relationship between changes in the relative abundance of
airway microbes at a phylum level and changes in genes expressed by cells in the small air-
way microenvironment. We independently correlated the changes in the relative abundance
of phylum groups with the changes in host gene expression in each of the treatment groups.
Of the 18 phyla detected in the microbiome samples, the most abundant were Firmicutes
(mean relative abundance 39.8%) followed by Bacteroidetes (24.3%), Proteobacteria (20.7%),
Actinobacteria (10.3%), and Fusobacteria (2.45%), comprising approximately 98% of the
sequencing reads. The changes in the relative abundance of these top five most abun-
dant phyla were correlated with changes in host gene expression. Statistically significant
(FDR < 0.1) genes are shown in Figure S1. The SAL/FLU treatment group had the highest
number of genes showing a correlation with relative abundance data at the phylum level:
Firmicutes (IGFBP3), Bacteroidetes (LPAR6), Actinobacteria (KLRC1), and Fusobacteria
(14 genes). In the FOR/BUD treatment group, only DONSON was significantly correlated
with the change in the relative abundance of Fusobacteria. Lastly, in the FOR treatment
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group, GGA3, WDR92, EIF3J-DT, ADAM28 and SPATA5L1 were correlated with the change
in the relative abundance of Bacteroidetes.
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Figure 2. Changes in gene expression in the small airways are related to changes in the microbiome
at a community level. (a) Heat map depicting significant (FDR < 0.1) correlations between changes
(post- minus pre-treatment) in host cell gene expression (delta log2 counts per million (∆log2CPM))
and changes in the Shannon diversity index (∆Shannon) in at least one of the three treatment groups:
formoterol-only (FOR), formoterol/budesonide (FOR/BUD) or salmeterol/fluticasone (SAL/FLU).
Colour represents Spearman’s correlation coefficient. Columns represent individual genes and are
arranged using hierarchical clustering. (b) Scatterplots of select genes that are negatively correlated.
(c) Scatterplots of select genes that are positively correlated. Abbreviations: FDR, false discovery rate.

3.4. Changes in Host Gene Expression Are Related to Genus Level Changes in the Small
Airway Microbiome

We investigated the relationship between microbes at a genus level and host cells in
the small airway following ICS/LABA treatment. We independently related changes in the
relative abundance of airway microbes at a genus level with changes in host gene expression
in each of the three treatment groups. Of the detected genera, the five most abundant were
Streptococcus (mean relative abundance 19.8%) followed by Prevotella 7 (13.3%), Veillonella
(12.6%), Haemophilus (7.7%), and Rothia (3.8%), comprising approximately 59% of the
sequencing reads. The changes in the relative abundance of these five genera were related
to changes in the host gene expression. Statistically significant (FDR < 0.1) genes are shown
in Figure S2. We identified 122 genes, primarily hematopoietic and inflammatory genes,
that were significantly correlated with changes in the relative abundance of Haemophilus
in the SAL/FLU treatment group (Figure 3). Of the 122 genes identified, 113 genes were
negatively correlated, and nine genes were positively correlated. In addition, the change in
the relative abundance of Streptococcus was correlated with the change in the expression
of FBXL6, FHAD1, SLC25A21-AS1, AC093495.1 and ZNF704 in the SAL/FLU treatment
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group. Conversely, only ZNF236-DT from the FOR treatment group was correlated with the
change in the relative abundance of Rothia, and no genes showed any significant correlation
in the FOR/BUD treatment group.
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3.5. Salmeterol/Fluticasone Treatment Is Associated with Enriched Biological Pathways in the
Small Airways

Next, we explored the functional role of the significantly correlated genes to gain insights
into how they may be involved in the complex interactions between the small airway micro-
biome and host cells in the small airway microenvironment. We first performed enrichment
analysis using IPA followed by validation with GO terms and KEGG pathways. Of the
previous analyses that generated gene lists, only resulting gene lists that were larger than
20 significant genes were evaluated for pathway enrichment. From the 676 genes, which
were significantly related to changes in the Shannon Index in the SAL/FLU treatment group,
we identified 176 canonical pathways that were significantly (p < 0.05) enriched. The top
50 canonical pathways are shown in Figure 4a. Interestingly, these included pathways in-
volving innate and adaptive immunity, extracellular and intracellular signaling, cell adhesion,
chemotaxis and migration of immune cells, cellular cytoskeletal reorganization, and metabolic
and biochemical processes. In addition, we identified significantly (p < 0.05) enriched bio-
logical functions and cellular processes related to cellular movement, cell-to-cell signaling
and interaction, cell death and survival, cellular morphology, and inflammation (Figure 4b).
To further identify factors potentially involved in regulating the 676 significantly correlated
genes, we performed upstream regulator analysis using IPA, which predicts potential up-
stream regulators, including transcription factors, cytokines, and transmembrane receptors
demonstrated experimentally to alter the affected gene pathways (Figure S3a). The top five
upstream cytokine regulators included IFNG, CSF2, IL13, IL17A, and IL10. Top five upstream
transcription and transmembrane receptor regulators included CEBPA, SMARCA4, RELA,
ECSIT, STAT3 and TREM1, TLR2, CD40, TLR7, TNFRSF18, respectively. Subsequent addi-
tional pathway enrichment analyses using GO revealed 141 biological processes that were
significantly (FDR < 0.05) enriched. The top 50 GO pathways with the greatest percentage of
overlapping genes, which, similar to IPA, showed primarily immunological processes, are
shown in Figure S4a. From the KEGG enrichment analysis, we identified 44 pathways that
were significantly enriched (Figure S4b). Similar to the GO pathways identified, immune
pathways and biological processes related to the activation of the innate and adaptive im-
mune response were primarily enriched followed by pathways related to infectious diseases
(e.g., Staphylococcus aureus infection).

From the 122 genes that were related to the changes in the relative abundance of
Haemophilus in the SAL/FLU treatment group, we identified 94 canonical pathways that
were significantly (p < 0.05) enriched, the majority of which were pathways related to
innate and adaptive immunity. The top 50 canonical pathways are shown in Figure 5a.
Biological functions and cellular processes enriched from the 122 genes are shown in
Figure 5b. Upstream cytokine, transcription and transmembrane receptor regulators are
shown in Figure S3b. The top five upstream cytokine regulators included IFNG, IL13, IL10,
CSF2 and IL17A. Top five upstream transcription and transmembrane receptor regulators
included STAT1, CEBPA, STAB1, STAT3, CEBPB and TLR2, CD69, CD14, TNFRSF10A, CD40,
respectively. Pathway enrichment analyses using GO revealed 45 biological processes that
were significantly (FDR < 0.05) enriched, the majority of which were pathways related to
innate and adaptive immunity. These included macrophage activation, T cell activation,
cell chemotaxis, interleukin-12 production, granulocyte activation, neutrophil-mediated
immunity, and antigen processing and presentation (Figure S5a). From the KEGG enrich-
ment analysis, we identified eight pathways at FDR < 0.05, and the top 10 pathways are
shown in Figure S5b.



Biomedicines 2022, 10, 1110 9 of 14Biomedicines 2022, 10, x FOR PEER REVIEW 9 of 14 
 

 
Figure 4. Ingenuity pathway analysis of the 676 host cell genes significantly correlated (FDR < 0.1) 
with changes in the Shannon diversity index in patients with chronic obstructive pulmonary disease 
treated with salmeterol/fluticasone. (a) Top 50 canonical pathways of genes significantly correlated 
to changes in the Shannon diversity index. (b) Enriched biological functions, cellular processes and 
diseases. The number in the parentheses represents genes from our 676 gene dataset that overlap 
with genes that appear in the enriched biological function, cellular process or disease. 

From the 122 genes that were related to the changes in the relative abundance of 
Haemophilus in the SAL/FLU treatment group, we identified 94 canonical pathways that 
were significantly (p < 0.05) enriched, the majority of which were pathways related to in-
nate and adaptive immunity. The top 50 canonical pathways are shown in Figure 5a. Bio-
logical functions and cellular processes enriched from the 122 genes are shown in Figure 
5b. Upstream cytokine, transcription and transmembrane receptor regulators are shown 
in Figure S3b. The top five upstream cytokine regulators included IFNG, IL13, IL10, CSF2 
and IL17A. Top five upstream transcription and transmembrane receptor regulators in-
cluded STAT1, CEBPA, STAB1, STAT3, CEBPB and TLR2, CD69, CD14, TNFRSF10A, 
CD40, respectively. Pathway enrichment analyses using GO revealed 45 biological pro-
cesses that were significantly (FDR < 0.05) enriched, the majority of which were pathways 
related to innate and adaptive immunity. These included macrophage activation, T cell 
activation, cell chemotaxis, interleukin-12 production, granulocyte activation, neutrophil-
mediated immunity, and antigen processing and presentation (Figure S5a). From the 
KEGG enrichment analysis, we identified eight pathways at FDR < 0.05, and the top 10 
pathways are shown in Figure S5b.  

Figure 4. Ingenuity pathway analysis of the 676 host cell genes significantly correlated (FDR < 0.1)
with changes in the Shannon diversity index in patients with chronic obstructive pulmonary disease
treated with salmeterol/fluticasone. (a) Top 50 canonical pathways of genes significantly correlated
to changes in the Shannon diversity index. (b) Enriched biological functions, cellular processes and
diseases. The number in the parentheses represents genes from our 676 gene dataset that overlap
with genes that appear in the enriched biological function, cellular process or disease.

Biomedicines 2022, 10, x FOR PEER REVIEW 10 of 14 
 

 
Figure 5. Ingenuity pathway analysis of the 122 host cell genes significantly correlated (FDR < 0.1) 
with changes in the relative abundance of Haemophilus in patients with chronic obstructive pulmo-
nary disease treated with salmeterol/fluticasone. (a) Top 50 canonical pathways of genes signifi-
cantly correlated to changes in the relative abundance of Haemophilus. (b) Enriched biological func-
tions, cellular processes and diseases. The number in the parentheses represents genes from our 122 
gene dataset that overlap with genes that appear in the enriched biological function, cellular process 
or disease. 

4. Discussion 
To our knowledge, this study is the first to explore the complex relationship between 

the airway microbiome and host transcriptome of small airways in COPD patients treated 
with ICS using data from a randomized controlled trial (RCT). Previous large RCTs have 
shown that inhaled fluticasone-based therapy increases the risk of pneumonia by ~75% 
(compared with LABA alone or placebo) in patients with COPD [26]. On the other hand, 
the use of budesonide, especially in low doses, has not been associated with pneumonia 
in COPD [27]. Moreover, there is growing evidence that dysbiosis (and, in particular, a 
reduction in microbial diversity) is a significant contributor to the occurrence of severe 
pneumonia [28]. While previous studies have investigated the relationship between the 
lung microbiome and host transcriptome in COPD [29–31], the effects of specific steroid 
formulations on this complex cross-talk have not been adequately explored. To address 
this knowledge gap, our study compared the effects of SAL/FLU and FOR/BUD on the 
changes in the microbiome and host transcriptome in the small airways of patients with 
COPD. Here, we show that in COPD patients treated with SAL/FLU, the host gene ex-
pression levels in the small airways are significantly related to longitudinal changes in 
their microbiome at a community, phylum and genus level. Specifically, longitudinal 
changes in the alpha diversity and the relative abundance of Haemophilus were primarily 
associated with changes in the expression levels of genes commonly found in hematopoi-
etic and inflammatory immune cells among patients treated with SAL/FLU. Furthermore, 
changes in alpha diversity were also associated with expression level changes in certain 
epithelial and mesenchymal/stromal cell genes. Similar trends were not observed in the 
FOR/BUD or FOR treatment group, suggesting that these observations are steroid-specific 

Figure 5. Ingenuity pathway analysis of the 122 host cell genes significantly correlated (FDR < 0.1)
with changes in the relative abundance of Haemophilus in patients with chronic obstructive pul-
monary disease treated with salmeterol/fluticasone. (a) Top 50 canonical pathways of genes sig-
nificantly correlated to changes in the relative abundance of Haemophilus. (b) Enriched biological
functions, cellular processes and diseases. The number in the parentheses represents genes from our
122 gene dataset that overlap with genes that appear in the enriched biological function, cellular
process or disease.



Biomedicines 2022, 10, 1110 10 of 14

4. Discussion

To our knowledge, this study is the first to explore the complex relationship between
the airway microbiome and host transcriptome of small airways in COPD patients treated
with ICS using data from a randomized controlled trial (RCT). Previous large RCTs have
shown that inhaled fluticasone-based therapy increases the risk of pneumonia by ~75%
(compared with LABA alone or placebo) in patients with COPD [26]. On the other hand,
the use of budesonide, especially in low doses, has not been associated with pneumonia
in COPD [27]. Moreover, there is growing evidence that dysbiosis (and, in particular, a
reduction in microbial diversity) is a significant contributor to the occurrence of severe
pneumonia [28]. While previous studies have investigated the relationship between the
lung microbiome and host transcriptome in COPD [29–31], the effects of specific steroid
formulations on this complex cross-talk have not been adequately explored. To address this
knowledge gap, our study compared the effects of SAL/FLU and FOR/BUD on the changes
in the microbiome and host transcriptome in the small airways of patients with COPD. Here,
we show that in COPD patients treated with SAL/FLU, the host gene expression levels
in the small airways are significantly related to longitudinal changes in their microbiome
at a community, phylum and genus level. Specifically, longitudinal changes in the alpha
diversity and the relative abundance of Haemophilus were primarily associated with changes
in the expression levels of genes commonly found in hematopoietic and inflammatory
immune cells among patients treated with SAL/FLU. Furthermore, changes in alpha
diversity were also associated with expression level changes in certain epithelial and
mesenchymal/stromal cell genes. Similar trends were not observed in the FOR/BUD or
FOR treatment group, suggesting that these observations are steroid-specific and may
be, in part, related to the more potent and lipophilic nature of fluticasone compared to
budesonide [6].

There is a growing body of evidence that suggests ICS can alter the airway micro-
biome in COPD patients, but cellular responses in the host that are related to airway
dysbiosis are poorly understood. Our findings support the notion that ICS therapy is
tightly linked to alterations in gene expression and microbiome changes in the small airway
microenvironment. Consistent with our observations, several studies have demonstrated
an association between the lung microbiome and host gene transcriptome in COPD lung
tissue [29], sputum [30] and bronchial brushings [31]. In lung tissue, we have previously
demonstrated an association between the Shannon Index and host gene expression, which
is consistent with our current findings [29]. Among the major genera analyzed in the
present study, Haemophilus was the most strongly associated with changes in genes related
to the innate and adaptive immune response in COPD patients, and this finding was
identified exclusively in the SAL/FLU group. This is consistent with the findings by Wang
and colleagues, who demonstrated in sputum samples an association between Haemophilus
and the host immune transcriptome during both clinical stability as well as during COPD
exacerbations [30]. In contrast, our findings are slightly different from those reported by
Ramsheh and colleagues [31]. These authors found that Prevotella and Moraxella were
associated with expression level changes in genes involved in immunity and inflammation
in COPD patients treated with ICS. However, this study was not an RCT, and there was
no run-in period wherein ICS was discontinued before obtaining bronchial brush samples.
In addition, they did not analyze the effects of specific steroid formulations, which could
influence the microbial composition and/or transcriptomic patterns. Nonetheless, our
study extends their findings by exploring the effects of different ICS formulations and
using RCT methodology.

Our findings support the view that ICS use, particularly fluticasone, is associated
with changes in both the microbiome as well as the transcriptome of hematopoietic and
immune cells in the small airways. However, whether changes in the airway microbiome
precede host gene expression changes or are a consequence of altered gene expression
related to ICS use cannot be concluded from the findings of this study. Our findings likely
represent one of three possible scenarios. With regards to the first scenario, ICS may directly
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alter the airway microbiome, which then may have indirect effects on gene expression
changes in cells in the local airway microenvironment. Whether ICS can directly interact
with bacteria via ligand–receptor interactions in the airway microbiome has not yet been
explored; however, it has been reported that bacteria possess receptors for, and respond to,
several mammalian hormones [32]. In addition, androgens and glucocorticoids have been
shown to impact microbial growth by affecting the rate of doubling of both Gram-positive
and Gram-negative bacteria [32]. Although the supporting evidence is not conclusive, it is
reasonable to hypothesize that ICS directly alters the airway microbiome, leading to dysbio-
sis. Indirect effects on host hematopoietic immune cells may then be facilitated by signals
provided by the dysbiotic microbiome in the form of bacterial metabolites. More recently, it
has been shown that metabolically active microbes within the small airway microbiome
are capable of producing immunomodulatory metabolites such as short-chain fatty acids
(SCFAs) [33]. The role of SCFAs in modulating the systemic immune response in various
chronic inflammatory lung diseases has been studied extensively [34–40]. SCFAs produced
by the small airway microbiome may modulate the local immune response by similar
mechanisms as gut-derived SCFAs. As receptors for SCFAs are abundantly expressed on
both immune cells [40,41] and epithelial cells [42], gene expression change as a consequence
of ICS-driven microbial dysbiosis in COPD is certainly a possibility. Second, contrary to
the previous scenario, ICS may directly interact with steroid receptors expressed in cells
in the local surrounding airway, particularly immune cells, which may have downstream
transcriptomic effects on inflammatory genes that lead to indirect changes to the resident
microbiota. Consistent with this notion, a previous study has shown that ICS treatment
induces microbial dysbiosis in the airways by suppressing cathelicidin produced by the
airway epithelium [43]; however, our data did not demonstrate an association between
changes in the microbiome and changes in the genes associated with cathelicidin. Nonethe-
less, the broad suppression of the immune response by corticosteroids may allow for certain
pathogenic strains of bacteria to colonize the airway resulting in microbial dysbiosis [44].
Finally, while our study suggests that changes in the microbiome are related to changes
in the hematopoietic compartment of the small airways or vice versa, these two variables
may be affected by ICS independently and simultaneously. The effects of ICS on the
host–microbiome relationship are complex and will require future studies to clarify the
directionality of this cross-talk.

There were several important limitations to the current study. First, the sample size
was relatively small. This was in part due to challenges in (1) performing two bronchoscopy
procedures per subject and (2) discontinuing ICS during the run-in phase for some patients.
Second, we recruited clinically stable patients with moderate-to-severe COPD. As such, the
findings from this study cannot be extended to patients with milder diseases and may not
be applicable to those who experience acute exacerbations. Third, the findings reported
in this study are relational and do not demonstrate causality or directionality. Lastly, our
study did not investigate the proteome, metabolome or epigenome of the small airway
because it was beyond the purview of the original RCT. Applying a multi-omics approach
would allow for a deeper comprehensive analysis of the small airway environment, which
may provide clarity on the mechanistic effects of ICS on the host–microbiome interaction in
the context of ICS-driven pneumonia in COPD.

In summary, our data indicate that transcriptomic changes in (chiefly immune) cells
in the small airway microenvironment are related to changes in the airway microbiome,
specifically the alpha diversity and relative abundance of the Haemophilus genus, in COPD
patients treated with salmeterol/fluticasone. Our findings provide insights into the dy-
namic host–microbiome relationship that may be important in identifying COPD patients
who may be at increased risk of pneumonia.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines10051110/s1.
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