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Abstract

We analyze human’s disagreements about the

validity of natural language inferences. We

show that, very often, disagreements are not

dismissible as annotation ‘‘noise’’, but rather

persist as we collect more ratings and as we

vary the amount of context provided to raters.

We further show that the type of uncertainty

captured by current state-of-the-art models for

natural language inference is not reflective

of the type of uncertainty present in human

disagreements. We discuss implications of our

results in relation to the recognizing textual

entailment (RTE)/natural language inference

(NLI) task. We argue for a refined evaluation

objective that requires models to explicitly

capture the full distribution of plausible human

judgments.

1 Introduction

Entailment is arguably one of the most fun-

damental of language understanding tasks, with

Montague himself calling entailment ‘‘the basic

aim of semantics’’ (Montague, 1970). Compu-

tational work on recognizing textual entailment

(RTE) (also called natural language inference, or

NLI) has a long history, ranging from early efforts

to model logical phenomena (Cooper et al., 1996),

to later statistical methods for modeling practical

inferences needed for applications like informa-

tion retrieval and extraction (Dagan et al., 2006),

to current work on learning common sense hu-

man inferences from hundreds of thousands of

examples (Bowman et al., 2015; Williams et al.,

2018).

Broadly speaking, the goal of the NLI task is to

train models to make the inferences that a human

would make. Currently, ‘‘the inferences that a

human would make’’ are determined by asking

multiple human raters to label pairs of sentences,

and then seeking some consensus among them.

For example, having raters choose among discrete

labels and taking a majority vote (Dagan et al.,

2006; Bowman et al., 2015; Williams et al., 2018),

or having raters use a continuous Likert scale and

taking an average (Pavlick and Callison-Burch,

2016a; Zhang et al., 2017). That is, the prevailing

assumption across annotation methods is that there

is a single ‘‘true’’ inference about h given p that

we should train models to predict, and that this

label can be approximated by aggregating multi-

ple (possibly noisy) human ratings as is typical

in many other labelling tasks (Snow et al., 2008;

Callison-Burch and Dredze, 2010).

Often, however, we observe large disagree-

ments among humans about whether or not h can

be inferred from p (see Figure 1). The goal of

this study is to establish whether such disagree-

ments can safely be attributed to ‘‘noise’’ in the

annotation process (resolvable via aggregation),

or rather are a reproducible signal and thus should

be treated as part of the NLI label assigned to the

p/h pair. Specifically, our primary contributions

are:

• We perform a large-scale study of humans’

sentence-level inferences and measure the

degree to which observed disagreements

persist across samples of annotators.

• We show that current state-of-the-art NLI

systems do not capture this disagreement

by default (by virtue of treating NLI as

probabilistic) and argue that NLI evaluation

should explicitly incentivize models to pre-

dict distributions over human judgments.

• We discuss our results with respect to the

definition of the NLI task, and its increased

usage as a diagnostic task for evaluating

‘‘general purpose’’ representations of natural

language.
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Figure 1: Example p/h pair on which humans exhibit

strong disagreements about whether h can be inferred

from p. Here, the disagreement appears to stem from

the implicature, but we observe similar disagreements

on a variety of linguistic phenomena.

2 The RTE/NLI Task

The task of RTE/NLI is fundamentally concerned

with drawing conclusions about the world on the

basis of limited information, but specifically in

the setting when both the information and the

conclusions are expressed in natural language.

That is, given a proposition p, should one infer

some other proposition h to be true?

Traditionally, in formal linguistics, the defini-

tion of entailment used is that defined in formal

logic—namely, p entails h if h is true in every

possible world in which p is true. This logical

definition takes for granted that lexical and con-

structional meanings are fixed in such a way that it

is possible to fully pre-specify and then repeatedly

apply those meanings across all contexts. From the

point of view of evaluating NLP systems’ ability

to reason about entailment, these are clearly diffi-

cult criteria to operationalize. Thus, within NLP,

we have rarely if ever evaluated directly against

this definition. Rather, work has been based on

the below informal definition:

p entails h if, typically, a human reading

p would infer that h is most likely

true. . . [assuming] common human un-

derstanding of language [and] common

background knowledge (Dagan et al.,

2006).

This definition was intended to undergo refine-

ment overtime, with Dagan et al. (2006) explicitly

stating that the definition was ‘‘clearly not mature

yet’’ and should evolve in response to observed

shortcomings, and, in fact, substantial discussion

surrounded the original definition of the RTE task.

In particular, Zaenen et al. (2005) argued that the

definition needed to be made more precise, so

as to circumscribe the extent to which ‘‘world

knowledge’’ should be allowed to factor into in-

ferences, and to explicitly differentiate between

distinct forms of textual inference (e.g., entailment

vs. conventional implicature vs. conversational

implicature). Manning (2006) made a counter-

argument, pushing back against a prescriptivist

definition of what types of inferences are or are

not licensed in a specific context, instead advocat-

ing that annotation tasks should be ‘‘natural’’ for

untrained annotators, and that the role of NLP

should be to model the inferences that humans

make in practical settings (which include not just

entailment, but also pragmatic inferences such as

implicatures). Both supported the use of the term

‘‘inference’’ over ‘‘entailment’’ to acknowledge

the divergence between the working NLP task

definition and the notion of entailment as used in

formal semantics.1

Since the task’s introduction, there has been

no formal consensus around which of the two

approaches offers the better cost–benefit tradeoff:

precise (at risk of being impractical), or organic

(at risk of being ill-defined). That said, there has

been a clear gravitation toward the latter, apparent

in the widespread adoption of inference datasets

that explicitly prioritize natural inferences over

rigorous annotation guidelines (Bowman et al.,

2015; Williams et al., 2018), and in the overall

shift to the word ‘‘inference’’ over ‘‘entailment.’’

There has also been significant empirical evidence

supporting the argument that humans’ semantic

inferences are uncertain and context-sensitive

(Poesio and Artstein, 2005; Versley, 2008; Simons

et al., 2010; Recasens et al., 2011; de Marneffe

et al., 2012; Passonneau et al., 2012; Pavlick

and Callison-Burch, 2016a,b; Tonhauser et al.,

2018, among others) suggesting computational

models would benefit from focusing on ‘‘speaker

meaning’’ over ‘‘sentence meaning’’ when it

comes to NLI (Manning, 2006; Westera and

Boleda, 2019).

Thus, in this paper, we assume that NLP will

maintain this hands-off approach to NLI, avoiding

definitions of what inferences humans should

make or which types of knowledge they should

invoke. We take the position that, ultimately, our

1We, too, adopt the word ‘‘inference’’ for this reason.
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goal in NLP is to train models that reverse-

engineer the inferences a human would make

when hearing or reading language in the course of

their daily lives, however ad-hoc the process that

generates those inferences might be. Therefore,

our question in this paper is not yet what process

humans use to draw inferences from natural lan-

guage, but merely: Left to their own devices,

do humans, in general, tend to follow the same

process? Note that this question is independent

of the decision of whether to treat annotations as

discrete versus gradable. Even if NLI is treated as a

gradable phenomenon (as we believe it should be),

a world in which all humans share the same notion

of uncertainty necessitates very different models,

annotation practices, and modes of evaluation than

a world in which people may disagree substan-

tially in specific situations, use different heuristics,

and/or have different preferences about how to

resolve uncertainty.Specifically, current practices—

in which we aggregate human judgments through

majority vote/averaging and evaluate models on

their ability to predict this aggregated label—are

only appropriate if humans all tend to use the same

process for resolving uncertainties in practice.

3 NLI Data and Annotation

To perform our analysis, we collect NLI judg-

ments at 50× redundancy for sentence pairs drawn

from a variety of existing NLI datasets. Our anno-

tation procedure is described in detail in this

section. All of the data and collected anno-

tations are available at https://github.

com/epavlick/NLI-variation-data.

3.1 Sentence Pairs

We draw our p/h pairs from the training sets of

each of the following five datasets: RTE2 (Dagan

et al., 2006), SNLI (Bowman et al., 2015), MNLI

(Williams et al., 2018), JOCI (Zhang et al., 2017),

and DNC (Poliak et al., 2018b). Table 1 shows

randomly sampled positive (p → h) and negative

(p �→ h) examples from each. These datasets differ

substantially in the procedures used to generate the

data, and in the types of inferences they attempt

to test. RTE2 consists of premises/hypothesis

pairs derived predominantly from the output of

information retrieval systems run over newswire

text and annotated by experts (researchers in

the field). SNLI consists of premises derived

from image captions with hypotheses written and

judged by non-expert (crowdsourced) annotators.

MNLI was constructed in the same way as SNLI

but contains premises drawn from a range of text

genres, including letters, fiction, and telephone

conversations. JOCI is intended to target ‘‘com-

mon sense’’ inferences, and contains premises

drawn from existing NLI datasets2 paired with

hypothesis that were automatically generated via

either templates or seq2seq models and then

refined by humans. The DNC consists predomi-

nantly of naturally occurring premises paired with

template-generated hypotheses, and comprises a

number of sub-corpora aimed at testing systems’

understanding of specific linguistic phenomena

(e.g., lexical semantics, factuality, named entity

recognition). We draw from this variety of data-

sets in order to ensure a diversity of types of tex-

tual inference and to mitigate the risk that the

disagreements we observe are driven by a specific

linguistic phenomenon or dataset artifact on which

humans’ interpretations particularly differ.

We sample 100 p/h pairs from each dataset.

In every dataset, we limit to pairs in which the

premise and the hypothesis are both less than or

equal to 20 words, to minimize cognitive load

during annotation. We attempt to stratify across

expected labels to ensure an interesting balance of

inference types. For RTE2, SNLI, and MNLI,

this means stratifying across three categories

(ENTAILMENT/CONTRADICTION/NEUTRAL). For JOCI,

the p/h pairs are labeled on a five-point Likert

scale, where 1 denotes that h is ‘‘impossible’’

given p and 5 denotes thath is ‘‘very likely’’ given

p, and thus we stratify across these five classes.

In the DNC, all sub-corpora consist of binary

labels (ENTAILMENT/NON-ENTAILMENT) but some sub-

corpora contain finer-grained labels than others

(e.g., three-way or five-way labels). Thus, when

sampling, we first stratify across sub-corpora3

and then across the most fine-grained label type

available for the given sub-corpus.

3.2 Annotation

We show each p/h pair to 50 independent raters

on Amazon Mechanical Turk. We ask them to

2We skip the subset of JOCI that was drawn from SNLI,

to avoid redundancy with our own SNLI sample.
3We skip two sub-corpora (VerbCorner and Puns), the

former because it contains nonced words and thus is difficult

to ask humans to label without some training, and the latter

because of the potential for noisy labels due to the fact that

some people, bless their hearts, just don’t appreciate puns.
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SNLI Three dogs on a sidewalk. → There are more than one dog here.

A red rally car taking a slippery turn in a race. → ¬ The car is stopped at a traffic light.

MNLI Historical heritage is very much the theme at Ichidani. → Ichidani’s historical heritage is important.

okay i uh i have five children all together → ¬ I do not have any children.

RTE2 Self-sufficiency has been turned into a formal public awareness campaign in San Francisco, by

Mayor Gavin Newsom. → Gavin Newsom is a politician of San Francisco.

The unconfirmed case concerns a rabies-like virus known only in bats → ¬ A case of rabies was

confirmed.

JOCI It was Charlie ’s first day of work at the new firm → The firm is a business.

A young girl is holding her teddy bear while riding a pony . → ¬ The bear attacks.

DNC Tony bent the rod. → Tony caused the bending.

When asked about the restaurant, Jonah said, ‘Sauce was tasteless.’ �→ Jonah liked the restaurant.

Table 1: Examples of p/h pairs from each of our source datasets. The top pair is one labeled by the

original dataset as a valid inference (one that should be drawn), the bottom as an invalid inference

(either h is contradictory given p (p → ¬h), or h simply cannot be inferred (p �→ h)). For DNC,

examples shown are from the VerbNet (top) and Sentiment (bottom) sub corpora.

indicate using a sliding bar, which ranges from

−50 to 50,4 how likely it is that h is true given

that p is true, where −50 means that h is definitely

not true (p → ¬h), 50 means that h is definitely

true (p → h), and 0 means that h is consistent

with but not necessarily true given p (p �→ h).

Raters also have the option to indicate with a

checkbox that either/both of the sentences do not

make sense and thus no judgment can be made.

We attempt to pitch the task intuitively and keep

the instructions light, for reasons discussed in

Section 2. We provide brief instructions followed

by a few examples to situate the task. Our exact

instructions and examples are shown Table 2.

Raters label pairs in batches of 20, meaning

we have a minimum of 20 ratings per rater. We

pay $0.30 per set of 20. We restrict to raters who

have a 98% or better approval rating with at least

100 HITs approved, and who are located in a

country in which English is the native language

(US, Canada, UK, Australia, New Zealand).

3.3 Preprocessing

Filtering. In total, we had 509 workers complete

our HITs, with an average of 2.5 tasks (50 sentence

pairs) per worker. We follow the methods from

White et al. (2018) and remove workers who

demonstrate consistently low correlations with

others’ judgments. Specifically, for each sentence

pair s, for each worker wi, we compute the

Spearman correlation between wi’s labels and

4Raters do not see specific numbers on the slider.

For each pair of sentences, assume that the first sentence (S1)

is true, describes a real scenario, or expresses an opinion.

Using your best judgment, indicate how likely it is that

the second sentence (S2) is also true, describes the same

scenario, or expresses the same opinion. If either sentence

is not interpretable, check the ‘‘Does Not Make Sense’’ box.
Several examples are given below.

Example 1: In the below example, the slider is far to the right

because we can be very confident that if a person is ‘‘on a

beach’’ than that person is ‘‘outside’’.

S1: A woman is on a beach with her feet in the water.
S2: The woman is outside.

Example 2: In the below example, the slider is far to the left

because we can be very confident that if a person is ‘‘on a

beach’’ then that person is NOT ‘‘in her living room’’.

S1: A woman is on a beach with her feet in the water.
S2: The woman is in her living room.

Example 3: In the below example, the slider is in the center

because knowing that woman is on the beach does not give us

any information about the color of her hair and so we cannot

reasonably make a judgment about whether or not her hair is
brown.

S1: A woman is on a beach with her feet in the water.

S2: The woman has brown hair.

Table 2: Instructions and examples shown to

raters. Raters indicated their responses using a

sliding bar which ranged from −50 to 50. In

the instructions actually shown, the examples

were shown alongside a sliding bar reflecting

the desired rating. Exact UI not shown for

compactness.

every other wj who labeled s. Across all pairs of

workers, the mean correlation is 0.48. We consider

a pair of workers on a given assignment to be an

outlier if the correlation between those workers’

ratings falls outside 1.5 times the interquartile
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range of all the correlations (White et al., 2018).

We find 234 pairs to be outliers, and that

they can be attributed to 14 individual workers.

We therefore remove all annotations from these

14 workers from our analysis. Additionally, we

remove ratings from 37 workers5 who have fewer

than 15 useable data points (i.e., judgments not

including cases in which they choose the ‘‘does

not make sense’’ option), as this will prevent us

from properly estimating and thus correcting for

their individual annotation bias (described in the

following section). Finally, we remove p/h pairs

that, after removing all problematic workers and

‘‘does not make sense’’ judgments, are left with

fewer than 15 judgments. In the end, we have

496 p/h pairs with a mean of 39 labels per pair.

Normalization. One confound that results from

collecting annotations on a continuous scale is that

each rater may choose to use the scale differently.

Thus, we apply z-score normalization to each

worker’s labels for each assignment, meaning

each worker’s ratings are rescaled such that the

mean across all labels from a single worker within

a single batch is 0 and the standard deviation

is 1. This normalization is not perfect, as every

batch has a slightly different set of pairs, and

so normalized scores are not comparable across

batches. For example, if, by chance, a batch were

to contain mostly pairs for which the ‘‘true’’ label

was p → h, a score of zero would imply p → h,

whereas if a batch were to include mostly pairs for

with the ‘‘true’’ label was p → ¬h, zero would

correspond to p → ¬h. However, for the purposes

of our analysis, this is not problematic; because

our interest is comparing disagreements between

annotations on each specific p/h pair, it is only

important that two worker’s labels on the same

pair are comparable, not that judgments across

pairs are comparable.6

5Results presented throughout are based on data with

these workers removed. However, rerunning analysis with

these workers included did not affect our overall takeaways.
6On our own manual inspection, it is nearly always the

case that the mean (0) is roughly interpretable as neutral,

with only moderate deviations from one example to the next.

Nonetheless, when interpreting the figures in the following

sections, note that the center of one pair’s distribution is not

necessarily comparable to the center of another’s.

4 Analysis of Human Judgments

4.1 Experimental Design

We aim to establish whether the disagreements

observed between humans’ NLI judgments can be

attributed to ‘‘noise’’ in the annotation process.

We make the assumption that, if the disagreements

are attributable to noise, then the observed human

judgments can be modeled as a simple Gaussian

distribution, where the mean is the true label. This

model can account for the fact that some cases

might be inherently harder than others—this could,

for example, be reflected by higher variance—

but, overall, the labels are nonetheless in ac-

cordance with the assumption that there exists

a fundamentally ‘‘true’’ label for each p/h pair

which we can faithfully represent via a single label

or value, obtainable via aggregation.

For each sentence pair, we randomly split

the collected human labels into train and test.

Specifically, we hold out 10 labels from each

pair to use as our test set. The training data are

composed of the remaining labels, which varies

in number from 5 to 40, depending on how many

labels were left for that pair after preprocessing

(see Section 3.3). The average number of training

labels is 29. For each sentence pair, we use the

training data to fit two models: 1) a single Gaussian

and 2) a Gaussian Mixture Model where the

number of components is chosen during training,7

meaning that the model may still choose to fit

only one component if appropriate. We compute

the log likelihood assigned to the held-out test data

under each model, and observe how often, and to

what extent, the additional components permitted

by the GMM yield a better fit for the held out

judgments.

If the mixture model frequently choses to use

more than one effective component, and if doing so

results in a better fit for the held-out data than the

unimodal Gaussian, we interpret this as evidence

that, for many sentence pairs, human judgments

exhibit reproducibly multimodal distributions.

Thus, for such sentence pairs, the current practice

of aggregating human judgments into a single

label would fail to accurately capture the types

7We use the Variational Bayesian estimation of a Gaussian

mixture provided in SciKit learn, with the maximum number

of components set to be the number of points in the training

data: https://scikit-learn.org/stable/modules/

generated/sklearn.mixture.BayesianGaussian

Mixture.html
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Figure 2: Log likelihood assigned to test data under

the single-component Gaussian (x-axis) vs the k-

component GMM (y-axis). Results show an average

over 10 random train/test splits; error bars not shown

to reduce clutter. Overall, multimodal distributions

generalize better to unseen human judgments than do

single Gaussians.

of semantic inferences that humans might make

about the given p/h pair.

4.2 Results

Are distributions unimodal? Figure 2 shows,

for each sentence pair, the test log likelihood

under the one-component Gaussian model versus

the k-component GMM. If the data were in fact

sampled from an underlying distribution defined

by a single Gaussian, we would expect the points

to be distributed approximately randomly around

the y = x line. That is, most of the time the

GMM would provide no advantage over the sin-

gle Gaussian. What we see instead is that the

majority of points fall on or above the y = x
line, indicating that, when there is a difference,

the additional components deemed necessary in

training tend to generalize to unseen human

judgments. Very few points fall below the y = x
line, indicating that when models choose to fit

multiple components, they are correctly modeling

the true data distribution, rather than overfitting

the training set. We note that the majority of points

fall on y = x, indicating that most examples

do exhibit consensus around one ‘‘true’’ label.8

Figure 3 shows, for each sentence pair, the weights

of the effective components according the the

8We verified that, if forced to fit more than one com-

ponent, the model often overfits, confirming that these

examples are indeed best modeled as unimodal distributions.

Figure 3: Weights of effective components for each

p/h pair. y-axis corresponds to the pairs in our data,

sorted by weight of the second component. The figure

should be interpreted as follows: When the line is all

blue (pair #400), the GMM found a single component

with a weight of 1. When the line contains mixed col-

ors, the model found multiple components with the

depicted weights (e.g., pair #0 has two components of

equal weight).

GMM. We see that for 20% of the sentence

pairs, there is a nontrivial second component

(weight > 0.2), but rarely are there more than

two components with significant weights.

Figure 4 shows several examples of sentences

for which the annotations exhibit clear bimodal

distributions. These examples show the range of

linguistic phenomena9 that can give rise to un-

certainty. In the first example, from SNLI, there

appears to be disagreement about the degree to

which two different descriptions could potentially

refer to the same scenario. In the second example,

from DNC and derived from VerbNet (Chklovski

and Pantel, 2004), there is disagreement about

the manner aspect of ‘‘swat’’, that is, whether

or not ‘‘swatting’’ is necessarily ‘‘forceful’’. In

the third example, from DNC and derived from

the MegaVerdicality dataset (White and Rawlins,

2017), there appears to be disagreement about the

degree to which ‘‘confess that’’ should be treated

as factive.

These examples highlight legitimate disagree-

ments in semantic interpretations, which can be

difficult to control without taking a highly pre-

scriptivist approach to annotation. Doing so,

9By corpus, RTE exhibits the least variation and JOCI

exhibits the most, though all of the corpora are comparable.

We did not see particularly interesting trends when we broke

down the analysis by corpus explicitly, so, for brevity, we

omit the finer-grained analysis.
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Figure 4: Examples of sentence pairs with bi-modal human judgment distributions. Examples are drawn from

SNLI, the VerbNet portion of DNC, and the MegaVerdicality portion of DNC (from left to right). Training

distribution is in blue; test in orange. Dotted black line shows the model fit when using a single component; shaded

gray shows the model learned when allowed to fit k components. Distributions are over z-normalized scores in

which 0 roughly corresponds to neutral (p �→ h) but not precisely (§3.3).

however, would compromise both the ‘‘natural-

ness’’ of the task for annotators and the empiricist

approach to representation learning currently de-

sired in NLP (as discussed in Section 2).

Does context reduce disagreement? One fair

objection to these results is that sentence-level

inferences are problematic due to the lack of

context provided. It is reasonable to believe that

the divergences in judgments stem from the

fact that, when details of the context are left

unspecified, different raters choose to fill in these

details differently. This would inevitably lead to

different inferences, but would not be reflective

of differences in humans’ representations of lin-

guistic ‘‘meaning’’ as it pertains to NLI. We thus

explore whether providing additional context will

yield less-divergent human judgments. To do this,

we construct a small dataset in which we can

collect annotations with varying levels of context,

as described next.

Method. We sample sentences from Wikipedia,

restricting to sentences that are at least four words

long and contain a subject and a verb. We consider

each of these sentences to be a candidate premise

(p), and generate a corresponding hypothesis (h)

by replacing a word w1 from p with a substitute

w2, where w2 has a known lexical semantic re-

lationship to w1. Specifically, we use as set of

300 word pairs: 100 hypernym/hyponym pairs,

100 antonym pairs, and 100 co-hyponym pairs.

We chose these categories in order to ensure that

our analysis consists of meaningful substitutions

and that it covers a variety of types of inference

judgments. Our hypernyms and antonyms are

taken from WordNet (Fellbaum, 1998), with hy-

pernyms limited to first-sense immediate hyper-

nyms. Our co-hyponyms are taken from an internal

database, which we constructed by running Hearst

patterns (Hearst, 1992) over a large text corpus.

The 300 word pairs we used are available for

inspection at https://github.com/epavlick/NLI-

variation-data. After making the substitution, we

score each candidate p and h with a language

model (Józefowicz et al., 2016) and disregard

pairs for which the perplexity of h is more than 5

points above that of p. This threshold was chosen

based on manual inspection of a sample of the

output, and is effective at removing sentences

in which the substitution yielded a meaningless

hypothesis—for example, by replacing a w1 that

was part of a multiword expression.

For each resulting p/h pair, we collect ratings

at three levels: word level, in which p and h are

each a single word; sentence level, in which p
and h are each a sentence; and paragraph level, in

which p is a full paragraph and h is a sentence (as

depicted in Figure 6). We use the same anno-

tation design as described in Section 3.2. To

quantify the level of disagreement in the observed

judgments, we compute two measures: 1) variance

of observed ratings and 2) ∆ log likelihood, that

is, the change in log likelihood of held out data

that results from using a k-component GMM

over a single-component Gaussian (as described

in the previous section). We note that ∆ log

likelihood is a more direct measure of the type

of disagreement in which we are interested in

this paper (i.e., disagreements stemming from

multimodal distributions of judgments that are

683

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/ta

c
l/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
6
2
/ta

c
l_

a
_
0
0
2
9
3
/1

9
2
3
0
1
5
/ta

c
l_

a
_
0
0
2
9
3
.p

d
f b

y
 g

u
e
s
t o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

https://github.com/epavlick/NLI-variation-data
https://github.com/epavlick/NLI-variation-data


Figure 5: Distributions of variances (top) and ∆ log likelihood (bottom) for human ratings resulting from

word, sentence, and paragraph contexts. The average variances of all levels are significantly different at p < 0.05
(word< sentence< paragraph). Average∆LL for words was significantly lower than for sentences and paragraphs,

but there is no significant difference between sentences and paragraphs.

not well summarized by a single label/value).

High variance distributions may correspond to

‘‘difficult’’ cases which are nonetheless still

unimodal.

Results. Figure 5 shows the distribution of

each metric as a function of the level of context

given to raters. The trend is counter to our initial

intuition: Both measures of disagreement actually

increase when raters see more context. On aver-

age, we see a variance of 0.34 ± 0.02 when raters

are shown only words, 0.41 ± 0.02 when raters

are shown sentences, and 0.56 ± 0.02 when rat-

ers are given a full paragraph of context (95% con-

fidence intervals). The trend for ∆ log likelihood

is similar: Disagreement at the word level (0.11 ±
0.02) is significantly lower than at the sentence

(0.21 ± 0.04) and paragraph (0.22 ± 0.03)

level, though there is no significant difference

in ∆ log likelihood between sentence-level and

paragraph-level.

Figure 6 shows an example p/h pair for which

additional context increased the variance among

annotators. In the example shown, humans are

generally in agreement that ‘‘boating’’ may or

may not imply ‘‘picknicking’’, when no additional

context is given. However, when information

is provided which focuses on boating on a

specific canal, emphasizing the activities that the

water itself is used for, people diverge in their

inference judgments, with one group centered

around contradiction and a smaller group centered

around neutral.

We interpret these results as preliminary evi-

dence that disagreement is not necessarily control-

lable by providing additional context surrounding

the annotation (i.e., we do not see evidence that

increasing context helps, and it may in fact hurt).

We hypothesize that, in fact, less context may

result in higher agreement due to the fact that

humans can more readily call on conventional-

ized ‘‘default’’ interpretations. For example, in

the case of single words, people likely default
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Figure 6: In the word case, human judges were shown

only the words (bolded); in the sentence case, judges

were shown pairs of sentences (gray highlight); in

the paragraph case, judges were shown all of the

text. Judges did not see markup (bold/highlight) when

presented the text to judge. Gray bars show distribution

of z-normalized scores, ticks show raw (unnormalized)

scores, bell curves are estimated by the GMM.

to reading them as referring expressions for a

single entity/event, and thus make judgments con-

sistent with the prototypical lexical entailment

relations between these words. Additional con-

text provides increased opportunity for inferences

based on pragmatics and world knowledge (e.g.,

inferences about the question under discussion

and the speaker’s intent), which are less likely to

follow consistent conventions across all raters.

We consider this study exploratory, as there

are some confounds. Most notably, increasing the

amount of context clearly increases cognitive load

on annotators, and thus we would expect to see

increased variance even if there were no increase

in actual interpretive disagreements. However, the

increase in the ∆ log likelihood metric is more

meaningful, because randomly distributed noise

(which we might expect in the case of high cog-

nitive load/low annotator attention) should lead

to higher variance but not multimodality. More

work is needed to explore this trend further, and

to determine whether increasing context would

be a viable and productive means for reducing

disagreements on this task.

5 Analysis of Model Predictions

5.1 Motivation

Another natural question arising from the analysis

presented thus far is whether the phenomenon

under investigation even poses a problem for

NLP systems at all. That is, whether or not hu-

mans’ judgments can be summarized by a single

aggregate label or value might be a moot question,

since state-of-the-art models do not, in practice,

predict a single value but rather a distribution over

values. It may be the case that these predicted

distributions already reflect the distributions

observed in the human judgments and thus that

the models can be viewed as already adequately

capturing the aspects of semantic uncertainty that

cause the observed human disagreements. We

thus measure the extent to which the softmax

distributions produced by a state-of-the-art NLI

model trained on the dataset from which the p/h
pairs were drawn reflects the same distribution as

our observed human judgments.

5.2 Experimental Design

Data. NLI is standardly treated as a classi-

fication task. Thus, in order to interface with

existing NLI models, we discretize10 our collected

human judgments by mapping the raw (un-

normalized) score (which is between −50 and

50) into K evenly sized bins, where K is equal

to the number of classes that were used in the

original dataset from which the p/h pair was

drawn. Specifically, for pairs drawn from

datasets which use the three-way ENTAILMENT/

CONTRADICTION/NEUTRAL labels (i.e., SNLI, MNLI,

and RTE2), we consider human scores less than

−16.7 to be CONTRADICTION, those greater than

16.7 to be ENTAILMENT, and those in between

to be NEUTRAL. For the binary tasks (DNC),

we use the same three-way thresholds, but

consider scores below 16.7 to be NONENTAILMENT

and those above to be ENTAILMENT. After some

experimentation, we ultimately choose to map the

10We experimented with multiple variations on this

mapping, including using the z-normalized (rather than the

raw) human scores, and using bins based on percentiles

rather than evenly spaced over the full range. None of these

variants noticeably affected the results of our analysis or the

conclusions presented in the following section.

685

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/ta

c
l/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
6
2
/ta

c
l_

a
_
0
0
2
9
3
/1

9
2
3
0
1
5
/ta

c
l_

a
_
0
0
2
9
3
.p

d
f b

y
 g

u
e
s
t o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



Orig./ BERT/ BERT/

Ours Orig Ours ∩
SNLI 0.790 0.890 0.830 76

MNLI 0.707 0.818 0.687 62

RTE2 0.690 0.460 0.470 36

DNC 0.780 0.900 0.800 74

JOCI 0.651 0.698 0.581 41

Table 3: Left to right: Agreement between

datasets’ original labels and the majority label

according to our (discretized) re-annotation;

accuracy of BERT NLI model against original

labels; accuracy of BERT against re-annotation

labels; number of p/h pairs (out of 100) on which

all three label sources (original, re-annotation,

model prediction) agree on the most likely label.

Our analysis in §5.3 is performed only over pairs

in ∩.

JOCI scores to a three-way classification scheme

as well, rather than the original five-way scheme,

using 1 = CONTRADICTION, {2,3,4}= NEUTRAL, and

5 = ENTAILMENT. This decision was made after

observing that, although our overall results and

conclusions remained the same regardless of the

way we performed the mapping, the three-way

mapping led to higher levels of agreement between

the original labels and our newly collected labels,

and thus gave the model the best chance of learning

the distribution against which it will be tested.11

Agreement between the original labels (i.e., those

in the published version of the data) and our

discretized newly collected labels are given in the

first column of Table 3. We note that measuring

agreement and model accuracy in terms of these

discrete distributions is not ideal, and it would be

preferable to train the model to directly predict

the full distributions, but because we do not

have sufficient training data to do this (we only

collected full distributions for 100 p/h pairs per

dataset) we must work in terms of the discrete

labels provided by the existing training datasets.

Model. We use pretrained BERT (Devlin et al.,

2019),12 fine-tuned on the training splits of the

datasets from which our test data was drawn. That

is, we fine-tune BERT five times, once on each

dataset, and then test each model on the subset of

our re-annotated p/h pairs that were drawn from

11We also try removing JOCI from our analysis entirely,

since it is the noisiest dataset, and still reach the same

conclusions from our subsequent analysis.
12https://github.com/google-research/bert

the dataset on which it was fine-tuned. We remove

from each training set the 100 p/hpairs that we had

re-annotated (i.e., the data we use for testing). We

use the BERT NLI model off-the-shelf, without

any changes to architecture, hyperparameters, or

training setup.

Table 3 shows the accuracy of each model on

the test set (i.e., our 100 re-annotated sentences)

when judged against 1) the original (discrete) label

for that pair given in the standard version of the

dataset (i.e., the same type of label on which the

model was trained) and 2) our new (discretized)

label derived from our re-annotation. Table 3 also

gives the agreement between the original discrete

labels and the discretized re-annotation labels.

Metrics. We want to quantify how well the

model’s predicted softmax distribution captures

the distribution over possible labels we see when

we solicit judgments from a large sample of

annotators. To do this, we consider the model

softmax to be a basic multinomial distribution, and

compute 1) the probability of the observed human

labels under that multinomial and 2) the cross-

entropy between the softmax and the observed

human distributions. As a point of comparison, we

compute the same metrics for a random sample,

of equal size to the set of observed labels, drawn

from the multinomial defined by the softmax.

We focus only on p/h pairs on which all three

label sources (i.e., the original label provided by

the official dataset, the new label we produce by

taking the majority vote of our newly collected,

discretized human judgments, and the model’s

prediction) agree. That is, because we want to

evaluate whether the model captures the distrib-

ution (not just the majority class that it was trained

to predict) we want to focus only on cases where

it at least gets the majority class right. Because we

want to compare against the full distribution of

discretized human labels we collected, we don’t

want to consider cases where the majority class

according to this distribution disagrees with the

majority class according to the model’s training

data, since this would unfairly penalize the model.

Table 3 shows the number of pairs (out of 100)

on which these three label sources agree, for each

dataset.

5.3 Results

Overall, the softmax is a poor approximation

of the distribution observed across the human
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Cross Ent. Log Prob.

Exp. 0.03 (0.03, 0.03) −1.6 (−1.7, −1.5)

Obs. 0.37 (0.33, 0.42) −21.5 (−22.6, −20.1)

Table 4: Softmax is not a good estimate of the

distribution of human labels. Exp. refers to the sim-

ilarity values we expect due to random variation

(i.e., what we get when we compute against a ran-

dom sample drawn from the multinomial defined

by the softmax). Obs. refers to the similarity values

between the softmax distribution and the human

distribution. Numbers in parentheses give 95%

confidence intervals. Results are effectively the

same for each of individual corpora, so we report

only the aggregate results.

judges. The log probability assigned to the ob-

servations (i.e., the set of human labels) by the

predicted (softmax) multinomial is significantly

and substantially lower than the probability that

we would expect to be assigned if the observations

had been in fact sampled from the predicted

distribution. Similarly, the cross entropy between

the predicted and the observed distribution is

significantly higher than what can be attributed

to random noise (Table 4).

Figure 7 shows some examples of p/h pairs

for which the softmax substantially misrepresents

the nature of the uncertainty that exists among

the human labels, in one case because the model

predicts with certainty when humans find the

judgment ambiguous (due to the need to resolve an

ambiguous co-reference) and in the other because

the model suggests ambiguity when humans are

in clear consensus. Overall, the results indicate

that while softmax allows the model to represent

uncertainty in the NLI task, this uncertainty

does not necessarily mimic the uncertainty that

exists among humans’ perceptions about which

inferences can and cannot be made.

It is worth noting that the softmax distributions

tend to reflect the model’s confidence on the

dataset as a whole, rather than uncertainty on

individual examples. For example, in the RTE2

dataset, the model nearly always splits probability

mass over multiple labels, whereas in SNLI,

the model typically concentrates probability mass

onto a single label. This is not surprising behavior,

but serves to corroborate the claim that modeling

probabilistic entailment via softmax layers does

Figure 7: Examples of p/h pairs on which the model’s

predictions about the distribution (blue) misrepresent

the nature of the uncertainty observed among human

judgments (orange). In the first example (from RTE2)

the model assumes ambiguity when humans consider

the inference to be unambiguous (Cross-Ent = 0.36;

PMF = 2.2e-6). In the second example (from SNLI)

the model is certain when humans are actually in

disagreement (Cross-Ent = 0.43; PMF = 5.9e-18)

not correspond to modeling annotator uncertainty

about inference judgments on specific items.

6 Discussion

The results in Sections 4 and 5 suggest that

1) human NLI judgments are not adequately

captured by a single aggregate score and 2) NLI

systems trained to predict an aggregate score

do not learn human-like models of uncertainty

‘‘for free’’. These takeaways are significant for

work in computational semantics and language

technology in general primarily because NLI

has, historically (Cooper et al., 1996; Dagan

et al., 2006) as well as presently (White et al.,

2017), been proposed as a means for evaluating

a model’s ‘‘intrinsic’’ understanding of language:

As originally framed by Dagan et al. (2006),

NLI was proposed as an intermediate task for

evaluating whether a model will be useful in

applications, and currently, NLI is increasingly

used as a means for ‘‘probing’’ neural models

to assess their knowledge of arbitrary linguistic

phenomena (Dasgupta et al., 2018; Ettinger et al.,

2018; Poliak et al., 2018b; White et al., 2017;

Poliak et al., 2018a; McCoy et al., 2019). In

other words, NLI has largely become an evalu-

ation lingua franca through which we diagnose

what a semantic representation knows. With the

increased interest in ‘‘general-purpose’’, ‘‘task
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independent’’ semantic representations,13,14 it is

particularly important that intrinsic evaluations

are reliable, if comparison of such representations

are to be meaningful.

As discussed, the preference among many in

NLP (the authors included) is to avoid tasks

which take a prescriptivist approach to language

and meaning. Instead, we attempt to design tasks

which capture humans’ linguistic behavior in as

natural a setting as possible (acknowledging that

truly natural annotation is difficult) with the hope

that models trained to perform such tasks will

be the best match for the ‘‘real world’’ settings

in which we hope to deploy them. That is, we

generally prefer to punt on precise definitions, and

instead train our models to ‘‘do what humans do’’.

In this paper, we have shown that defining ‘‘what

humans do’’ is not straightforward, as humans

do not necessarily handle ambiguity or communi-

cate uncertainty in the same way as one another.

Thus, as was the case for pipelined systems

(Zadrozny and Elkan, 2002; Finkel et al., 2006;

Bunescu, 2008) and related discussions of model

calibration (Kuleshov and Liang, 2015), we argue

that the best approach is to propagate uncertainty

downstream, so that end tasks can decide if and

how to handle inferences on which humans are

likely to disagree. From the point of view of

current neural NLI models—and the sentence

encoders on top of which they are built—this

means that a representation should be evaluated in

terms of its ability to predict the full distribution

of human inferences (e.g., by reporting cross-

entropy against a distribution of human ratings),

rather than to predict a single aggregate score

(e.g., by reporting accuracy against a discrete ma-

jority label or correlation with a mean score).

We have shown that models that are trained

to predict an aggregate score do not, by default,

model the same type of uncertainty as that which

is captured by distributions over many human

raters’ judgments. Thus, several challenges would

need to be overcome to switch to the proposed

NLI evaluation. First, NLI evaluation sets would

need to be annotated by sufficiently many raters

such that we can have an accurate estimate of the

distribution against which to evaluate. Although

the data collected for the purposes of this paper

13https://www.clsp.jhu.edu/workshops/18-

workshop/general-purpose-sentence-

representation-learning/
14https://repeval2019.github.io

could serve as a start towards this end, a larger

effort to augment or replace existing evaluation

sets with full distributions of judgments would

be necessary in order to yield a meaningful

redefinition of the NLI task. Second, changes

would be required to enable models to learn to

predict these distributions. One approach could

be to annotate training data, not just evaluation

data, with full distributions, and optimize for

the objective directly. This would clearly incur

additional costs, but could be overcome with more

creative crowdsourcing techniques (Dumitrache

et al., 2013; Poesio et al., 2019). However, re-

quiring direct supervision of full distributions is

arguably an unsatisfying solution: Rarely if ever

do humans witness multiple people responding to

identical stimuli. Rather, more plausibly, we form

generalizations about the linguistic phenomena

that give rise to uncertainty on the basis of a

large number of singly labeled examples. Thus,

ideally, progress can be made by developing new

architectures and/or training objectives that enable

models to learn a notion of uncertainty that is

consistent with the full range of possible human

inferences, despite observing labels from only one

or a few people on any given p/hpair. Overcoming

these challenges, and moving towards models

which can both understand sources of linguistic

uncertainty and anticipate the range of ways that

people might resolve it would be exciting both for

NLI and for representation learning in general.

7 Related Work

Defining Entailment and NLI. As outlined in

Section 2, there has been substantive discussion

about the definition of the NLI task. This debate

can largely be reduced to a debate about sentence

meaning versus speaker meaning. The former

aligns more closely with the goals of formal

semantics and seeks a definition of the NLI task

that precisely circumscribes the ways in which

vague notions of ‘‘world knowledge’’ and ‘‘com-

mon sense’’ can factor into inference (Zaenen

et al., 2005). The latter takes the perspective that

the NLI task should maintain an informal defi-

nition in which p → h as long as h is some-

thing that a human would be ‘‘happy to infer’’

from p, where the humans making the inferences

are assumed to be ‘‘awake, careful, moderately

intelligent and informed . . . but not . . . seman-

ticists or similar academics’’ (Manning, 2006).
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Garoufi (2007) provides an overview of attempts

that have been made to circumscribe the annota-

tion process by providing finer-grained annota-

tion options, in order to bring it more in line with

the sentence-meaning task definition. Westera

and Boleda (2019), in the context of advocating

for distributional models of semantics in general,

makes a case in favor of the speaker-meaning ap-

proach, arguing that issues like entailment, refer-

ence, and truth conditions should not fall within

the purview of sentence meaning at all, despite

being quintessential topics of formal semantic

study. Chatzikyriakidis et al. (2017) overview

NLI datasets, observing that datasets tend to be

designed with one of these perspectives in mind,

and thus all datasets ‘‘fail to capture the wealth of

inferential mechanisms present in NLI and seem

to be driven by the dominant discourse in the field

at the time of their creation.’’

An orthogonal line of discussion about the

definition of entailment focuses on the question

of whether truth-conditional semantics should be

strictly binary (propositions are either true or false)

or rather treated as continuous/probabilistic val-

ues. Currently, at least within computationally

minded work on textual inference, the prevailing

opinion is in favor of the latter (i.e., allowing

semantic judgments to be probabilistic) with few

(if any) advocating that we should build systems

that only support discrete true/false decisions.

Still, significant theoretical and algorithmic work

has gone into making probabilistic logics work in

practice. Such work includes (controversial) for-

malisms such as fuzzy set theory (Zadeh, 1994,

1996), as well as more generally accepted formal-

isms which assume access to boolean ground-

ings, such as probabilistic soft logic (Friedman

et al., 1999; Kimmig et al., 2012; Beltagy et al.,

2014) and Markov logic networks (Richardson

and Domingos, 2006). Also related is work on

collecting and analyzing graded entailment judg-

ments (de Marneffe et al., 2012). We note that

the question of strict vs. graded entailment judg-

ments pertains to modeling of uncertainty within

an individual rater’s judgments. This is indepen-

dent of the question of if/how to model disagree-

ments between raters, which is the our focus in

this work.

Embracing Rater Disagreement. Significant

past work has looked an annotator disagreement in

linguistic annotations, and has advocated that this

disagreement should be taken as signal rather than

noise (Aroyo et al., 2018; Palomaki et al., 2018).

Plank et al. (2014) showed that incorporating

rater uncertainty into the loss function for a

POS tagger improves downstream performance.

Similar approaches have been applied in parsing

(Martı́nez Alonso et al., 2015) and supersense

tagging (Martı́nez Alonso et al., 2016). Specif-

ically relevant to this work is past discussion of

disagreement on semantic annotation tasks, in-

cluding anaphora resolution (Poesio and Artstein,

2005), coreference (Versley, 2008; Recasens

et al., 2011), word sense disambiguation (Erk

and McCarthy, 2009; Passonneau et al., 2012;

Jurgens, 2013), veridicality (Geis and Zwicky,

1971; Karttunen et al., 2014; de Marneffe et al.,

2012), semantic frames (Dumitrache et al., 2019),

and grounding (Reidsma and op den Akker, 2008).
Most of this work focuses on the uncertainty

of individual raters, oftentimes concluding that

such uncertainty can be addressed by shifting

to a graded rather than discrete labeling schema

and/or that uncertainty can be leveraged as a

means for detecting inherently ambiguous items.

In contrast, we do not look at measures of

uncertainty/ambiguity from the point of view

of an individual (though this is a very interest-

ing question); rather, we focus on disagreements

that exist between raters. We agree strongly that

semantic judgments should be treated as graded,

and that ambiguous items should be acknowl-

edged as such. Still, this is independent of the

issue of inter-rater disagreement: Two raters can

disagree when making graded judgments as much

as they can when making discrete judgments, and

they can disagree when they are both uncertain as

much as they can when they are both certain. Thus,

the central question of this work is whether aggre-

gation (via average or majority vote) is a faith-

ful representation of the underlying distribution

of judgments across annotators. Arguably, such

aggregation is a faithful (albeit lossy) representa-

tion of high-variance unimodal distributions, but

not of multi-modal ones.
In this regard, particularly relevant to our work

is de Marneffe et al. (2012) and de Marneffe

et al. (2018), who observed similarly persistent

disagreement in graded judgments of veridicality,

and made a case for attempting to model the full

distribution as opposed to a single aggregate score.

Smith et al. (2013) present related theoretical

work, which proposes specific mechanisms by
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which humans might handle lexical uncertainty in

the context of inference. Their model assumes

pragmatic speakers and listeners who reason

simultaneously about one another’s goals and

about the lexicon itself, and could be used to

explain differing inferences in cases where raters

share different beliefs about the speaker (author)

of p and/or about the lexicon. Schaekermann et al.

(2016) develop a proof-of-concept annotation in-

terface specifically intended to recognize whether

or not inter-rater disagreement is ‘‘resolvable’’

via more annotation, or rather is likely to persist,

although they don’t discuss natural language

semantics directly. Finally, Tanenhaus et al.

(1985) discuss the role of formal semantics and

generative grammar in inference, and specifically

differentiates between work which treats grammar

as a causal process of how inferences occur

versus work which treats grammar as a descriptive

framework of the structure of language. Such dis-

cussion is relevant going forward, as engineers of

NLI systems must determine both how to define

the evaluation task, as well as the role that concepts

from formal semantics should play within such

systems.

8 Conclusion

We provide an in-depth study of disagreements in

human judgments on the NLI task. We show that

many disagreements persist even after increasing

the number of annotators and the amount of

context provided, and that models which represent

these annotations as multimodal distributions gen-

eralize better to held-out data than those which do

not. We evaluate whether a state-of-the-art NLI

model (BERT) captures these disagreements by

virtue of producing softmax distributions over

labels and show that it does not. We argue that, if

NLI is to serve as an adequate intrinsic evaluation

of semantic representations, then models should

be evaluated in terms of their ability to predict the

full expected distribution over all human raters,

rather than a single aggregate score.
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Héctor Martı́nez Alonso, Anders Johannsen, and

Barbara Plank. 2016. Supersense tagging with

inter-annotator disagreement. In Proceedings of

the 10th Linguistic Annotation Workshop held

in conjunction with ACL 2016 (LAW-X 2016),

pages 43–48, Berlin, Germany. Association for

Computational Linguistics.
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