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Abstract— In recent years, the concept of entropy has been 

widely used to measure the dynamic complexity of signals. Since 

the state of complexity of human beings is significantly affected by 

their health state, developing accurate complexity evaluation 

algorithms is a crucial and urgent area of study. This paper 

proposes using inherent fuzzy entropy (Inherent FuzzyEn) and its 

multi-scale version, which employs empirical mode decomposition 

(EMD) and fuzzy membership function (exponential function) to 

address the dynamic complexity in electroencephalogram (EEG) 

data. In the literature, the reliability of entropy-based complexity 

evaluations has been limited by superimposed trends in signals 

and a lack of multiple time scales. Our proposed method 

represents the first attempt to use the inherent fuzzy entropy 

algorithm to increase the reliability of complexity evaluation in 

realistic EEG applications. We recorded the EEG signals of 

several subjects under resting condition, and the EEG complexity 

was evaluated using approximate entropy (ApEn), sample entropy 

(SampEn), fuzzy entropy (FuzzyEn) and Inherent FuzzyEn, 

respectively. The results indicate that Inherent FuzzyEn is 

superior to other competing models regardless of the use of fuzzy 

or non-fuzzy structures, and has the most stable complexity and 

smallest root mean square deviation (RMSD). 

Index Terms— Complexity, EMD, Fuzzy, Entropy, EEG 

I. INTRODUCTION 

N recent times, numerous techniques have been rapidly 

developed for measuring dynamic complexity [1]. The notion 

of complexity is not precisely delineated, yet time series of 

dynamic complexity have been investigated via several 

measures, e.g., approximate entropy [2], sample entropy [3, 4] 

and fuzzy entropy [5]. Approximate entropy (ApEn) was 

presented as a measure of complexity in short and noisy 

recordings [2]. Sample entropy (SampEn) [4] was presented as 
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having the advantage of being less dependent on the time series 

length. Multiscale sample entropy (MSE) [3] was presented as 

taking into account multiple time scales. Since MSE relies on 

the computation of the sample entropy over a range of scales, 

coarse-grained time series that represent the system dynamics 

on different scales are analyzed using the sample entropy 

algorithm. MSE has been used in different fields successfully, 

and is therefore a potential algorithm to quantify the complexity 

of signals. 

Some state-of-the-art fuzzy theory based algorithms have 

been widely used in implementation of physiological signals 

processing [6-9]. To further address reliable complexity, the 

concept of fuzzy sets [10] was proposed to investigate the fuzzy 

entropy (FuzzyEn) measure [5, 11], which relies on fuzzy 

membership functions (smooth and continuous boundary) 

instead of the Heaviside function (hard and discontinuous 

boundary). Since fuzzy entropy measures a fuzzy boundary, it 

corresponds to a stronger relative reliability, therefore provides 

a more accurate complexity than sample entropy [11]. From 

previous theoretical analysis and experimental results [5, 11], 

fuzzy entropy performed an improved evaluation of signal 

complexity and has been powerfully applied to short time series 

contaminated by noise.  

Physiological signals, such as electroencephalogram (EEG), 

usually exhibit complex fluctuations, uncertain disturbance and 

high levels of nonlinearity and non-stationarity, they also 

contain lots of dynamics information [12]. Investigating 

dynamic complexity using the notion of entropy helps us to 

understand complex systems better [5] and has the potential for 

application in clinical solutions [13]. The existence of 

superimposed trends in physiological signals generated by the 

human brain is so common that it is almost unavoidable [14]. 

Patients with Alzheimer's disease have been observed slowing 

of the EEG, reduced complexity of the EEG signals, and 

perturbations in EEG synchrony [15]. These findings suggested 

that dynamic complexity could be a potential bio-signature used 

to monitor a person’s health condition.  

With EEG signals, the high nonlinear and non-stationary 

brainwaves, especially superimposed trends in signals, could 

influence the estimation of entropy-based analysis by 

increasing the standard deviation of the data. Thus, in order to 

eliminate trend oscillations, the inherent functions (called 

intrinsic mode functions or IMFs) extracted from the empirical 
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mode decomposition (EMD) are considered an effective filter 

for reducing superimposed trends in signals [16].  

Therefore, it is for the above reasons that we considered 

EMD-based fuzzy entropy and its multiscale version for EEG 

study over other complexity analysis techniques. This paper 

proposes an inherent fuzzy entropy (Inherent FuzzyEn) 

algorithm and its multiscale version (Multiscale Inherent 

FuzzyEn or MIFE). An important benefit of Inherent FuzzyEn 

is the ability to adapt to EEG signals in time sequences. Since 

EEG complexity can distinguish patients and health controls 

[13], the proposed Inherent FuzzyEn algorithm is promising for 

its application to the healthcare solutions in the real world. 

II. ALGORITHM OF INHERENT FUZZY ENTROPY 

In this section, the algorithm of Inherent Fuzzy Entropy was 

represented as a flowchart (Fig. 1), and three components of 

Inherent Fuzzy Entropy algorithm are described in the 

following parts: A. EMD technology for de-trending process; B. 

FuzzyEn algorithm for complexity evaluation; and C. 

Multiscale procedure. 

 

A. EMD Technique for De-trending Process 

We apply the EMD technique to decompose the original 

signal  into several IMFs, and re-construct the signal . 

The procedures of EMD were showed as follows. 

1) Find all extrema of signal :  

 and Interpolate between  and 

, ending up with some envelope  and . 

2)  Compute the mean: 

                     (1) 

3)  Extract the candidate of inherent functions:  

  IMFs is                           (2)                                 

4) Is an IMF? –  is an IMF that satisfies two 

conditions: first, in the whole data set, the number of extrema 

and the number of zero crossings must either equal or differ at 

most by one. Second, at any point, the mean value of the 

envelope defined by the local maxima and the envelope defined 

by the local minima is zero.  

 If yes, save  and compute the residue 

                            (3)                                             

5)  Do  and treat  as input data. Otherwise, 

treat as input data. Iterate on the residual . 

Continue until the final residue satisfies stopping criterion: 

when the residue, , becomes a monotonic function from which 

no more IMF can be extracted.  

6) The IMFs components surviving high trends were 

automatically removed by a trend filtering algorithm [17]. The 

remained IMFs were chosen for reconstructing signal  by 

cumulative sums of the remained IMFs: 

                                (4) 

Fig. 1 Flowchart of the Inherent Fuzzy Entropy algorithm: A. EMD; B. 

FuzzyEn; C. Multiscale procedure. 

 

For the parameter in Equation (3) and (4), parameter  is the 

order number of IMFs components, and parameters  and  

are the upper and lower boundary number of selected IMFs 

components, respectively.  

 

B. FuzzyEn Algorithm for Complexity Evaluation 

1) Normalize the EEG signal: 

                        (5)            

2) The FuzzyEn considering the  sample time series 

given m, n, and r, and a vector set sequences 

 is calculated as follows: 

       (6)  

            

Where  and  presents  consecutive  

values, commencing with the th point and generalized by 

removing a baseline: 

                     (7)  

 

3) Given a vector , define the similarity degree  between 

 and by a fuzzy membership function: 

                            (8)      

Where fuzzy membership function is an exponential function: 

                 (9)            

and  is the maximum absolute difference of the 

corresponding scalar components of  and .   

4) Construct the function  as 
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(10)                                                          

Similarly, for , repeat the above steps: 

                

(11) 

If the length of datasets  is finite, the parameter 

 of the sequence  is 

defined as the negative natural logarithm of the deviation of  

from  : 

   (12)                                                                                               

For the parameter choices of FuzzyEn, the first parameter , as 

in ApEn and SampEn, is the length of sequences to be 

compared. The other two parameters  and  determine the 

width and the gradient of the boundary of the fuzzy membership 

function, respectively. 

                                                                                                  

C. Multiscale Version 

Multiscale version considered coarse-graining the signals 

into different time scales. For a given time series, multiple 

coarse-grained time series are constructed by averaging the data 

points within non-overlapping windows of increasing length, τ 
element of the coarse-grained time series,  is calculated 

according to the Equation: 

                            (13)                                                                                                                       

where represents the scale factor and . The 

length of each coarse-grained time series is . For scale 1, 

the coarse-grained time series is simply the original time series. 

Choosing the appropriate scales (e.g., τ=10) before calculating 

FuzzyEn algorithm (Section II. B.), multiscale Inherent 

FuzzyEn was performed in the Fig. 1C.  

III. EXPERIMENTAL ANALYSIS  

A. EEG Data Collection

Twelve healthy young adults (5 men and 7 women, mean±std 

age: 31.5±2.3 years) participated in the resting-state 

experiment. It was requested that all the participants had no 

history of neurological, psychiatric, or addictive disorders 

according to self-reports. No participant had taken 

antipsychotic or other relevant psychoactive drugs in the two 

preceding weeks. This study was approved by the Institutional 

Review Board of the Veterans General Hospital, Taipei, 

Taiwan. All the participants were asked to read and sign an 

informed consent form before participating in the EEG 

experiment. 

In the first 5 minutes, subjects were instructed to take several 

deep breathings to adapt to the environment. Then subjects 

were instructed to open their eyes for 1 minute and close their 

eyes for 1 minute three times (epochs) in total (as shown in Fig. 

2), meanwhile EEG signals were recorded using Ag/AgCl 

electrodes by a 32-channel Quik-Cap (Compumedical 

 
Figure 2. The analytical procedures: EEG recording, EEG processing and 

entropy evaluation. 

 

NeuroScan). Thirty electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, 

FT7, FC3, FCz, FC4, FT8, T3, C3, Cz, C4, TP7, CP3, CPz, 

CP4, TP8, T5, P3, Pz, P4, T6, O1, Oz and O2) were arranged 

according to a modified international 10-20 system, and two 

reference electrodes (A1 and A2) were placed on both mastoid 

bones. The skin under the reference electrodes were abraded 

using Nuprep (Weaver and Co., USA) and disinfected with a 

70% isopropyl alcohol swab before calibration. The impedance 

of the electrodes was calibrated under 5 kΩ using NaCl-based 

conductive gel (Quik-Gel, Neuromedical Supplies®). The EEG 

signals from the electro-cap were amplified using the Scan 

NuAmps Express system (Compumedics Ltd., VIC, Australia) 

and recorded at a sampling rate of 500 Hz with 16 bit 

quantization. 
 

B. EEG Processing 

The general scheme of the EEG analysis is illustrated in Fig. 

2. The acquired EEG data were processed and analyzed using 

EEGLAB (http://www.sccn.ucsd.edu/eeglab/, an open-source 

EEG toolbox for MATLAB) during the EEG processing and 

complexity calculation steps. For the part of EEG processing, 

the raw EEG signals were subjected to a 1-Hz high-pass and 30-

Hz low-pass infinite impulse response filter, and then down-

sampled to 250 Hz from the sample recording rate of 500 Hz. 

For the artifact rejection, apparent eye contaminations in EEG 

signals were manually removed by visual inspection. Then, 

Independent Component Analysis (ICA) was applied to the 

EEG signals and the components responsible for the eye 

movements and blinks were rejected. Finally, the EEG signals 

without these artifact components was reconstructed using the 

back-projection method. The EEG data were segmented into 

eyes-open (EO) and eyes-closed (EC) epochs for further 

complexity analysis. The EEG complexity of EO and EC 

conditions were calculated and compared by the entropy 

evaluation (ApEn, SampEn, FuzzyEn and Inherent FuzzyEn). 
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C. RMSD Evaluation 

Dynamic complexity was evaluated by comparing 4 types of 

entropy-based algorithms (Inherent FuzzyEn, FuzzyEn, 

SampEn and ApEn) using root mean square deviation (RMSD) 

in EO and EC conditions. The formula of RMSD was shown as 

follows: 

                     (14)                                                                                                                      

where  is the mean value of entropy among 3 EO or EC 

epochs, and  = 3.  

 

IV. EXPERIMENTAL RESULTS 

A. EEG Complexity 

In our study, the EEG complexity of 12 participants between 

eyes-open (EO) and eyes-closed (EC) conditions were 

compared using ApEn, SamEn, FuzzyEn, and Inherent 

FuzzyEn algorithms (parameters ,  and  = 10). 

As shown in the Fig. 3, the EEG complexity of each epoch 

(EO1, EC1, EO2, EC2, EO3, and EC3) was the averaged 

entropy value from all participants. 

By comparison of EEG complexity between EO and EC 

conditions, our results showed that the Inherent FuzzyEn 

employs the higher effect sizes than the other shallow models 

(ApEn, SamEn and FuzzyEn). Specifically, the Inherent 

FuzzyEn performed the significantly higher parietal and 

occipital and lower frontal EEG complexity in the EO condition 

(False Discovery Rate-adjusted p < .05), relative to that in the 

EC condition (Statistics: Wilcoxon signed-rank test). 

Moreover, fuzzy-based entropy models have more 

distinguished EEG complexity (EO vs. EC) than non-fuzzy 

entropy models. Furthermore, the Inherent FuzzyEn 

demonstrated less variation than FuzzyEn, SampEn and ApEn 

in 3 EO epochs. 

 

B. RMSD Evaluation 

The feasibility of evaluating dynamic complexity in EO and 

EC conditions was examined by comparing ApEn, SampEn, 

FuzzyEn and Inherent FuzzyEn using RMSD. The 

performances of RMSD for ApEn, SampEn, FuzzyEn and 

Inherent FuzzyEn based on 1-30 channels (Fp1, Fp2, F7, F3, 

Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T3, C3, Cz, C4, TP7, 

CP3, CPz, CP4, TP8, T5, P3, Pz, P4, T6, O1, Oz and O2) are 

described in Fig. 4. The results show that fuzzy-based entropy 

models have less RMSD than non-fuzzy entropy models in EO 

and EC conditions. Most importantly, the Inherent FuzzyEn 

algorithm has the lowest RMSD in all channels relative to 

previous entropy models in EO and EC conditions, which 

suggests the proposed algorithm provides the better reliability 

for complexity evaluation. 

 

 

 

 

 

Figure 3. The EEG dynamic complexity by ApEn, SampEn, FuzzyEn and 

Inherent FuzzyEn evaluations. 

 

 

 

Figure 4. Complexity evaluation using RMSD in EO and EC conditions. The 

dash lines and envelope areas are the mean values and standard deviations, 

respectively. 

 

V. CONCLUSION 

EEG complexity is fundamentally mercurial and varying 

during EEG study. In previous studies, researchers have 

generally ignored the superimposed trends in signals. To 

improve performance in realistic EEG applications, using an 

Inherent FuzzyEn algorithm can be made more effective by 

collecting EEG signals from healthy subjects, which endows 

fuzzy membership function with EMD function. In this paper, 

we compared the EEG results (entropy values and RMSD) 

obtained using fuzzy structures (Inherent FuzzyEn and 

FuzzyEn) and non-fuzzy structures (SampEn and ApEn). Our 

findings showed that systems with fuzzy structures exhibit 

improved performance. Furthermore, the performance of the 

Inherent FuzzyEn algorithm was superior to FuzzyEn, SampEn 

and ApEn models.  

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                     

A
p

E
n

S
a

m
p

E
n

F
u

z
z
y

E
n

In
h

e
r
e
n

t

F
u

z
z
y

E
n

EO1 vs. EC1 EO2 vs. EC 2EO1 EC1

Comparison (p value)

0

0.2

-0.2

EO2 EC2EO3 EC3

Entropy Evaluation

EO3 vs. EC3

 

 

0

0.6

0.3

 



1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2017.2666789, IEEE

Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS 5 

REFERENCES 

[1] A. Humeau-Heurtier, "The multiscale entropy algorithm and its 

variants: A Review," Entropy, vol. 17, pp. 3110-3123, 2015. 

[2] S. M. Pincus, "Approximate entropy as a measure of system 

complexity," Proc. Natl. Acad. Sci. USA, vol. 88, pp. 2297-2301, 

1991. 

[3] M. Costa, A. L. Goldberger, and C.-K. Peng, "Multiscale entropy 

analysis of complex physiologic time series," Phys. Rev. Lett., vol. 

89, p. 068102, 2002. 

[4] J. S. Richman and J. R. Moorman, "Physiological time-series 

analysis using approximate entropy and sample entropy," Am. J. 

Physiol. Heart Circ. Physiol., vol. 278, pp. H2039-H2049, 2000. 

[5] W. Chen, Z. Wang, H. Xie, and W. Yu, "Characterization of surface 

EMG signal based on fuzzy entropy," IEEE Trans. Neural. Syst. 

Rehabil. Eng., vol. 15, pp. 266-272, 2007. 

[6] S.-F. Liang, C.-E. Kuo, F.-Z. Shaw, Y.-H. Chen, C.-H. Hsu, and J.-

Y. Chen, "Combination of expert knowledge and a genetic fuzzy 

inference system for automatic sleep staging," IEEE Trans. Biomed. 

Eng., vol. 63, pp. 2108-2118, 2016. 

[7] C. Yang, Z. Deng, K.-S. Choi, and S. Wang, "Takagi–Sugeno–Kang 

Transfer Learning Fuzzy Logic System for the Adaptive 

Recognition of Epileptic Electroencephalogram Signals," IEEE 

Trans. Fuzzy Syst., vol. 24, pp. 1079-1094, 2016. 

[8] Y.-T. Liu, Y.-Y. Lin, S.-L. Wu, C.-H. Chuang, and C.-T. Lin, "Brain 

dynamics in predicting driving fatigue using a recurrent self-

evolving fuzzy neural network," IEEE Trans. Neural Netw. Learn. 

Syst., vol. 27, pp. 347-360, 2016. 

[9] R. Chai, S. H. Ling, G. P. Hunter, Y. Tran, and H. T. Nguyen, 

"Brain–computer interface classifier for wheelchair commands 

using neural network with fuzzy particle swarm optimization," IEEE 

J. Biomed. Health Inform., vol. 18, pp. 1614-1624, 2014. 

[10] L. Zadeh, "Fuzzy Sets," Inf. Contro., vol. 8, pp. 338-353, 1965. 

[11] W. Chen, J. Zhuang, W. Yu, and Z. Wang, "Measuring complexity 

using fuzzyen, apen, and sampen," Med. Eng. Phys., vol. 31, pp. 61-

68, 2009. 

[12] M. Costa, A. L. Goldberger, and C.-K. Peng, "Multiscale entropy 

analysis of biological signals," Phys. Rev. E, vol. 71, p. 021906, 

2005. 

[13] A. C. Yang, S.-J. Wang, K.-L. Lai, C.-F. Tsai, C.-H. Yang, J.-P. 

Hwang, et al., "Cognitive and neuropsychiatric correlates of EEG 

dynamic complexity in patients with Alzheimer's disease," Prog. 

Neuropsychopharmacol. Biol. Psychiatry, vol. 47, pp. 52-61, 2013. 

[14] K. Hu, P. C. Ivanov, Z. Chen, P. Carpena, and H. E. Stanley, "Effect 

of trends on detrended fluctuation analysis," Phys. Rev. E, vol. 64, 

p. 011114, 2001. 

[15] J. Dauwels, F. Vialatte, and A. Cichocki, "Diagnosis of Alzheimer's 

disease from EEG signals: where are we standing?," Curr. 

Alzheimer. Res., vol. 7, pp. 487-505, 2010. 

[16] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, 

et al., "The empirical mode decomposition and the Hilbert spectrum 

for nonlinear and non-stationary time series analysis," Proc. R. Soc. 

London, Ser. A, 1998, pp. 903-995. 

[17] A. Moghtaderi, P. Flandrin, and P. Borgnat, "Trend filtering via 

empirical mode decompositions," Comput. Stat. Data Anal., vol. 58, 

pp. 114-126, 2013. 

 


