Inherent Limitations of Hybrid Transactional Memory

Dan Alistarh! Justin Kopinsky? Petr Kuznetsov? Srivatsan Ravi®* Nir Shavit*:5
"Microsoft Research, Cambridge
2Télécom ParisTech
3TU Berlin
4Massachusetts Institute of Technology
°Tel Aviv University

1 Introduction

Ever since its introduction by Herlihy and Moss [13|, Transactional Memory (TM) has promised
to be an extremely useful tool, with the power to fundamentally change concurrent programming.
It is therefore not surprising that the recently introduced Hardware Transactional Memory (HTM)
implementations [1,17,|18] have been eagerly anticipated and scrutinized by the community.

Early experience with programming HTM, e.g. [2,|7,)8], paints an interesting picture: if used
carefully, HT'M can be an extremely useful construct, and can significantly speed up and simplify
concurrent implementations. At the same time, this powerful tool is not without its limitations:
since they are usually implemented on top of the cache coherence mechanism, hardware transac-
tions have inherent capacity constraints on the number of distinct memory locations that can be
accessed inside a single transaction. Moreover, all current proposals are best-effort, as they may
abort under imprecisely specified conditions. In brief, the programmer should not solely rely on
HTMs.

Several Hybrid Transactional Memory (HyTM) schemes [4,6,|14,|15] have been proposed to
complement the fast, but best-effort nature of HI'M with a slow, reliable software transactional
memory (STM) backup. These proposals have explored a wide range of trade-offs between the
overhead on hardware transactions, concurrent execution of hardware and software, and the pro-
vided progress guarantees.

Early proposals for HyTM implementations [6,/14] shared some interesting features. First,
transactions that do not conflict are expected to run concurrently, regardless of their types (soft-
ware or hardware). This property is referred to as progressiveness |10] and is believed to allow
for increased parallelism. Second, in addition to exchanging the values of transactional objects,
hardware transactions usually employ code instrumentation techniques. Intuitively, instrumen-
tation is used by hardware transactions to detect concurrency scenarios and abort in the case
of contention. The number of instrumentation steps performed by these implementations within
a hardware transaction is usually proportional to the size of the transaction’s data set. Recent
work by Riegel et al. [19] surveyed the various HyTM algorithms to date, focusing on techniques
to reduce instrumentation overheads in the frequently executed hardware fast-path. However, it
is not clear whether there are fundamental limitations when building a HyTM with non-trivial
concurrency between hardware and software transactions.

In particular, what are the inherent instrumentation costs of building a HyTM, and what are
the trade-offs between these costs and the provided concurrency, i.e., the ability of the HyTM
system to run software and hardware transactions in parallel?

To address these questions, we propose the first model for hybrid TM systems which formally
captures the notion of cached accesses provided by hardware transactions, and precisely defines

*Contact author: srivatsan@srivatsan.in, FG INET, MAR 4-4, Marchstr. 23, 10587 Berlin, Germany

instrumentation costs in a quantifiable way.

We model a hardware transaction as a series of memory accesses that operate on locally cached
copies of the variables, followed by a cache-commit operation. In case a concurrent transaction
performs a (read-write or write-write) conflicting access to a cached object, the cached copy is
invalidated and the hardware transaction aborts.

Our model for instrumentation is motivated by recent experimental evidence which suggests
that the overhead on hardware transactions imposed by code which detects concurrent software
transactions is a significant performance bottleneck [16]. In particular, we say that a HyTM im-
plementation imposes a logical partitioning of shared memory into data and metadata locations.
Intuitively, metadata is used by transactions to exchange information about contention and con-
flicts while data locations only store the values read and updated within transactions. We quantify
instrumentation cost by measuring the number of accesses to metadata objects which transactions
perform.

Once this general model is in place, we investigate lower bounds on the cost of implementing
a HyTM. We prove two main results. First, we show that some instrumentation is necessary in a
HyTM implementation even if we only intend to provide sequential progress, where a transaction
is only guaranteed to commit if it runs in the absence of concurrency. Second, we prove that any
progressive HyTM implementation that maintains invisible reads by hardware transactions has
executions in which an arbitrarily long read-only hardware transaction running in the absence of
concurrency must access a number of distinct metadata objects proportional to the size of its data
set. We show that the lower bound is tight by presenting a matching HyTM algorithm which
additionally allows for uninstrumented writes.

The high instrumentation costs of early HyTM designs, which we show to be inherent, stimu-
lated more recent HyTM schemes [4,/15,/16,/19] to sacrifice progressiveness for constant instrumen-
tation cost (i.e., not depending on the size of the transaction). In the past two years, Dalessandro
et al. [4] and Riegel et al. [19] have proposed HyTMs based on the efficient NOrec STM [5]. These
HyTMs schemes do not guarantee any parallelism among transactions; only sequential progress
is ensured. Despite this, they are among the best-performing HyTMs to date due to the limited
instrumentation in the hardware fast-path.

Starting from this observation, we provide a more precise upper bound for low-instrumentation
HyTMs by presenting a Hy'TM algorithm with invisible reads and uninstrumented hardware writes
which guarantees that a hardware transaction accesses at most one metadata object in the course of
its execution. However, transactions are guaranteed to commit only if they do not run concurrently
with an updating software transaction (or exceed capacity). Therefore, the cost of avoiding the
linear lower bound for progressive implementations is that hardware transactions may be aborted
by non-conflicting software transactions.

In sum, this work captures for the first time an inherent trade-off between the degree of
concurrency a HyTM implementation provides between hardware and software transactions and
the amount of instrumentation overhead the implementation must incur.

2 Hybrid transactional memory model

Our baseline model for transactional memory systems is the standard software TM model [11]. In
particular, we assume the transactions export an interface to perform transactional operations (t-
operations) read and write and transactional objects (t-objects). Process execute these operations
by applying primitives (described below) to shared base objects. In this section, we describe
the operation of a Hybrid Transactional Memory (HyTM) implementation, in which conventional
memory accesses are combined with hardware transactions modelled as cached accesses.

Direct accesses and cached accesses. We assume that every base object can be accessed
with two kinds of primitives, direct and cached, each instantiating a generic read-modify-write
(rmw) primitive [9,/12]. A rmw primitive (g, h) applied to a base object atomically updates the
value of the object with a new value, which is a function g(v) of the old value v, and returns a

response h(v). A rmw primitive is trivial if it never affects the value of a base object, otherwise
it is nontrivial.

In a direct access, the rmw primitive operates on the memory state: the direct-access event
atomically reads the value of the object in the shared memory and, if necessary, modifies it.

In a cached access performed by a process ¢, the rmw primitive operates on the cached state
recorded in process i’s tracking set 7; (initially empty). One can think of 7; as the LI cache of
process i. A series of cached rmw primitives performed on 7; followed by a cache-commit primitive
models a hardware transaction.

More precisely, 7; is a set of triples (b,v, m) where b is a base object identifier, v is a value,
and m € {shared, exclusive} is an access mode. The triple (b,v,m) is added to the tracking set
when i performs a cached rmw access of b, where m is set to exclusive if the access is nontrivial,
and to shared otherwise. We assume that there exists some constant 7'S (representing the size of
the L1 cache) such that the condition |7;| < T'S must always hold; this condition will be enforced
by our model. A base object b is present in 7; with mode m if Jv, (b, v, m) € 7.

A trivial (resp. nontrivial) cached primitive (g, h) applied to b by process i first checks the
condition |7;| = T'S and if so, it sets 7, = () and immediately returns L (we call this event a capacity
abort). Otherwise, the process checks whether b is present in exclusive (resp. any) mode in 7; for
any j # i. If so, 7; is set to () and the primitive returns L. Otherwise, the triple (b, v, shared)
(resp. (b, g(v), exclusive)) is added to 7;, where v is the most recent cached value of b in 7; (in case
b was previously accessed by ¢ within the current hardware transaction) or the value of b in the
current memory configuration, and finally h(v) is returned.

A tracking set can be invalidated by a concurrent process as follows. If, in a configuration C'
where (b, v, exclusive) € 1; (resp. (b,v, shared) € 7;), a process j # i applies any primitive (resp.
any nontrivial primitive) to b, then 7; becomes invalid and each subsequent cached primitive
invoked by ¢ returns 1. We refer to this event as a tracking set abort.

Finally, the cache-commit primitive issued by process ¢ with a valid 7; does the following: for
each base object b such that (b, v, ezclusive) € 7;, the value of b in C' is updated to v. Finally, 7;
is set to () and the operation returns commit.

Slow-path and fast-path transactions. In the following, we partition HyTM transactions into
fast-path transactions and slow-path transactions. Practically, two separate algorithms (fast-path
one and slow-path one) are provided for each t-operation.

A fast-path transaction essentially encapsulates a hardware transaction. An event of a fast-
path transaction is either an invocation or response of a t-operation, a cached primitive on a base
object, or a cache-commit: t-read and t-write are only allowed to contain cached primitives, and
tryC consists of invoking cache-commit. Furthermore, we assume that a fast-path transaction T}
returns Ax as soon an underlying cached primitive or cache-commit returns 1.

A slow-path transaction models a regular software transaction. An event of a slow-path trans-
action is either an invocation or response of a t-operation, or a rmw primitive on a base object.

We provide two key observations on this model regarding the interactions of non-committed
fast path transactions with other transactions. Let F be any execution of a HyTM implementation
M in which a fast-path transaction T} is either pending or aborted. Then the sequence of events
E’ derived by removing all events of E|k from E is an execution M. Moreover:

Observation 1. To every slow-path transaction T,, € tzns(E), E is indistinguishable to T, from
E'.

Observation 2. If a fast-path transaction T, € tens(E)\{T;} does not incur a tracking set abort
in B, then E is indistinguishable to T,, from E'.

Intuitively, these observations say that fast-path transactions which are not yet committed are
invisible to slow-path transactions, and can communicate with other fast-path transactions only
via tracking sets.

Instrumentation. We now define code instrumentation in fast-path transactions. We first require
a technical definition, which we give informally here. The precise definition is available in the full

version of this paper [3]. An execution E of a HyTM M appears sequential to a transaction
T}, which participates in F if there exists an execution E’ of M such that there are no pending
transactions in £’ and the execution in which T} runs alone after E’ is indistinguishable to T},
from E.

Given a HyTM implementation M operating on a set of t-objects X, we partition the set
of base objects accessed by M into a set D of data objects and a set M of metadata objects,
where D N M = (). We further partition D into sets Dx associated with each t-object X € X:

D= | Dy, forall X #Y in X, Dx NDy = (), and the following properties hold in every
XeXx
execution E of M:

1. Every transaction T}, € tzns(E) only accesses base objects in M U U Dx.
XGDSEt(Tk)

2. For any execution E and any transaction T}, which participates in E, let £’ be the execution
given by E followed by a single step of Tj. If that step of T} applied a primitive to a base
object in D and E appears sequential to T}, then E’ also appears sequential to T}.

Intuitively, the second condition means that base objects in D may only contain the “values” of
t-objects, so they cannot be used to detect concurrent transactions.

We now define a HyTM to be uninstrumented if transactions cannot access metadata (i.e. base

objects in M) in any execution.

Definition 1. A HyTM implementation M provides uninstrumented writes (resp. reads) if in
every execution E of M, for every write-only (resp. read-only) transaction Ty, all primitives
performed by Ty in E are performed on base objects in D.

We make the following observation about uninstrumented transactions:

Observation 3. Consider any execution E of a HyTM implementation M which provides unin-
strumented reads (resp. writes). For any fast-path read-only (resp. write-only) transaction Ty, that
runs alone after E, the execution E appears sequential to Ty.

3 On the cost of instrumentation and concurrency

The following theorems can be proven using the model presented in the previous section. The
proofs are available in the full version of this paper [3].

Sequential progress. Informally, a HyTM implementation M guarantees sequential TM-
progress for fast-path transactions (and resp. slow-path) if every fast-path transaction (and resp.
slow-path) which runs solo from a quiescent configuration commits. The following results concern
the instrumentation costs of such implementations.

Theorem 1. There does not exist a strictly serializable HyTM implementation that provides
uninstrumented reads and uninstrumented writes, and ensures sequential TM-progress.

Theorem 2. There exists an opaque HyTM implementation M that provides uninstrumented
writes and sequential TM-progress for fast-path transactions such that in every execution E of M,
every fast-path transaction accesses at most one metadata base object.

Progressiveness. Informally, a HyTM implementation M guarantees progressiveness if every
transaction which does not conflict on a t-object with any concurrent transaction commits. The
following theorems show that there is a significant inherent instrumenation cost on progressive
implementations.

Theorem 3. Let M be any progressive, opaque HyTM implementation that provides invisible fast-
path reads. For every m € N, there exists an execution in which a fast-path read-only transaction
Ty, satisfies either (1) |Dset(Ty)| < m and Ty incurs a capacity abort or (2) |Dset(Ty)| = m and
Ty accesses Q(m) distinct metadata base objects.

Theorem 4. There exists an opaque HyTM implementation M that provides uninstrumented
writes, invisible reads and progressiveness such that in every execution E of M, every read-only
fast-path transaction T € tzns(E) accesses O(|Rset(T)|) distinct metadata base objects.

References

1]

2]

Advanced Synchronization Facility Proposed Architectural Specification, March 2009. http:
//developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdfl

D. Alistarh, P. Eugster, M. Herlihy, A. Matveev, and N. Shavit. Stacktrack: An automated
transactional approach to concurrent memory reclamation. In Proceedings of the Ninth Euro-
pean Conference on Computer Systems, FuroSys 14, pages 25:1-25:14, New York, NY, USA,
2014. ACM.

D. Alistarh, J. Kopinsky, P. Kuznetsov, S. Ravi, and N. Shavit. Inherent limitations of hybrid
transactional memory. CoRR, /abs/1405.5689, 2014. http://arxiv.org/abs/1405.5689.

L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott, and M. F. Spear. Hybrid
NOrec: a case study in the effectiveness of best effort hardware transactional memory. In
R. Gupta and T. C. Mowry, editors, ASPLOS, pages 39-52. ACM, 2011.

L. Dalessandro, M. F. Spear, and M. L. Scott. Norec: Streamlining stm by abolishing
ownership records. SIGPLAN Not., 45(5):67-78, Jan. 2010.

P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid trans-
actional memory. SIGPLAN Not., 41(11):336-346, Oct. 2006.

D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commercial hardware
transactional memory implementation. In Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS XIV,
pages 157-168, New York, NY, USA, 2009. ACM.

A. Dragojevié¢, M. Herlihy, Y. Lev, and M. Moir. On the power of hardware transactional
memory to simplify memory management. In Proceedings of the 30th Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, PODC 11, pages 99-108, New
York, NY, USA, 2011. ACM.

F. Ellen, D. Hendler, and N. Shavit. On the inherent sequentiality of concurrent objects.
SIAM J. Comput., 41(3):519-536, 2012.

R. Guerraoui and M. Kapalka. Transactional memory: Glimmer of a theory. In Proceedings
of the 21st International Conference on Computer Aided Verification, CAV 09, pages 1-15,
Berlin, Heidelberg, 2009. Springer-Verlag.

R. Guerraoui and M. Kapalka. Principles of Transactional Memory,Synthesis Lectures on
Distributed Computing Theory. Morgan and Claypool, 2010.

M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):123-149, 1991.

M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for lock-free
data structures. In ISCA, pages 289-300, 1993.

S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid transactional memory.
In Proceedings of the FEleventh ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 06, pages 209-220, New York, NY, USA, 2006. ACM.

http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf
http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf
http://arxiv.org/abs/1405.5689

[15]

[16]

[17]

[18]

Y. Lev, M. Moir, and D. Nussbaum. Phtm: Phased transactional memory. In In Workshop
on Transactional Computing (Transact), 2007. research.sun.com/scalable/pubs/ TRANS-
ACT2007PhTM.pdf.

A. Matveev and N. Shavit. Reduced hardware transactions: a new approach to hybrid trans-
actional memory. In Proceedings of the 25th ACM symposium on Parallelism in algorithms
and architectures, pages 11-22. ACM, 2013.

M. Ohmacht. Memory Speculation of the Blue Gene/Q Compute Chip, 2011. http://wands.
cse.lehigh.edu/IBM_BQC_PACT2011.ppt.

J. Reinders. Transactional Synchronization in Haswell, 2012. http://software.intel.com/
en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/.

T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer. Optimizing hybrid transactional
memory: The importance of nonspeculative operations. In Proceedings of the 23rd ACM
Symposium on Parallelism in Algorithms and Architectures, pages 53—64. ACM, 2011.

http://wands.cse.lehigh.edu/IBM_BQC_PACT2011.ppt
http://wands.cse.lehigh.edu/IBM_BQC_PACT2011.ppt
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/

	Introduction
	Hybrid transactional memory model
	On the cost of instrumentation and concurrency

