
 Open access Journal Article DOI:10.1007/S00224-010-9304-5

Inherent Limitations on Disjoint-Access Parallel Implementations of Transactional
Memory — Source link

Hagit Attiya, Eshcar Hillel, Alessia Milani

Institutions: Technion – Israel Institute of Technology

Published on: 01 Nov 2011 - Theory of Computing Systems \/ Mathematical Systems Theory (Springer-Verlag)

Topics: Commitment ordering, Serializability, Transactional memory, Snapshot isolation and
Consistency (database systems)

Related papers:

 Disjoint-access-parallel implementations of strong shared memory primitives

 Wait-free synchronization

 Transactional locking II

 On obstruction-free transactions

 Software transactional memory for dynamic-sized data structures

Share this paper:

View more about this paper here: https://typeset.io/papers/inherent-limitations-on-disjoint-access-parallel-
28c1ldd6n4

https://typeset.io/
https://www.doi.org/10.1007/S00224-010-9304-5
https://typeset.io/papers/inherent-limitations-on-disjoint-access-parallel-28c1ldd6n4
https://typeset.io/authors/hagit-attiya-33zzfgbio7
https://typeset.io/authors/eshcar-hillel-3vcojxdcc4
https://typeset.io/authors/alessia-milani-28tsc8n22h
https://typeset.io/institutions/technion-israel-institute-of-technology-3s7bh4fv
https://typeset.io/journals/theory-of-computing-systems-mathematical-systems-theory-2g3lkhpl
https://typeset.io/topics/commitment-ordering-27chucz4
https://typeset.io/topics/serializability-1c2660yu
https://typeset.io/topics/transactional-memory-1idp59n6
https://typeset.io/topics/snapshot-isolation-1u0wnrc9
https://typeset.io/topics/consistency-database-systems-33s2mewn
https://typeset.io/papers/disjoint-access-parallel-implementations-of-strong-shared-39lfbmts32
https://typeset.io/papers/wait-free-synchronization-364u46tm6n
https://typeset.io/papers/transactional-locking-ii-1n416uini4
https://typeset.io/papers/on-obstruction-free-transactions-3ijus7g2bw
https://typeset.io/papers/software-transactional-memory-for-dynamic-sized-data-43df1q0d7l
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/inherent-limitations-on-disjoint-access-parallel-28c1ldd6n4
https://twitter.com/intent/tweet?text=Inherent%20Limitations%20on%20Disjoint-Access%20Parallel%20Implementations%20of%20Transactional%20Memory&url=https://typeset.io/papers/inherent-limitations-on-disjoint-access-parallel-28c1ldd6n4
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/inherent-limitations-on-disjoint-access-parallel-28c1ldd6n4
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/inherent-limitations-on-disjoint-access-parallel-28c1ldd6n4
https://typeset.io/papers/inherent-limitations-on-disjoint-access-parallel-28c1ldd6n4

HAL Id: hal-00992693
https://hal.inria.fr/hal-00992693

Submitted on 19 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inherent limitations on disjoint-access parallel
implementations of transactional memory

Hagit Attiya, Eshcar Hillel, Alessia Milani

To cite this version:
Hagit Attiya, Eshcar Hillel, Alessia Milani. Inherent limitations on disjoint-access parallel imple-
mentations of transactional memory. SPAA, 2009, Unknown, pp.69-78, 10.1145/1583991.1584015.
hal-00992693

https://hal.inria.fr/hal-00992693
https://hal.archives-ouvertes.fr

Inherent Limitations on Disjoint-Access Parallel
Implementations of Transactional Memory

∗

(Preliminary Version)

Hagit Attiya
Department of Computer

Science, Technion
Haifa, Israel

hagit@cs.technion.ac.il

Eshcar Hillel
†

Department of Computer
Science, Technion

Haifa, Israel
eshcar@cs.technion.ac.il

Alessia Milani
‡

Department of Computer
Science, Technion

Haifa, Israel
alessia@cs.technion.ac.il

ABSTRACT

Transactional memory (TM) is a promising approach for
designing concurrent data structures, and it is essential to
develop better understanding of the formal properties that
can be achieved by TM implementations. Two fundamental
properties of TM implementations are disjoint-access paral-
lelism, which is critical for their scalability, and the invisi-
bility of read operations, which reduces memory contention.

This paper proves an inherent tradeoff for implementa-
tions of transactional memories: they cannot be both disjoint-
access parallel and have read-only transactions that are in-
visible and always terminate successfully. In fact, a lower
bound of Ω(t) is proved on the number of writes needed in
order to implement a read-only transaction of t items, which
successfully terminates in a disjoint-access parallel TM im-
plementation. The results assume strict serializability and
thus hold under the assumption of opacity. It is shown how
to extend the results to hold also for weaker consistency
conditions, serializability and snapshot isolation.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming; F.2.2 [Analysis of Algorithms and Problems]:
Nonnumerical algorithms and problems

General Terms

Theory, Algorithms, Design

∗This research is partially supported by the Israel Science
Foundation (grant number 953/06) and Intel Corporation.
†Supported in part by a scholarship from the Israel Ministry
of Science.
‡On leave from Sapienza, Universitá di Roma, Dipartimento
di Informatica e Sistemistica, “Antonio Ruberti”; supported
in part by a fellowship from the Lady Davis Foundation and
by a grant MUR, FIRB Italia-Israele RBIN047MH9

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-606-9/09/08 ...$5.00.

Keywords

Transactional memory, disjoint-access parallelism, partial
snapshots, lower bound, impossibility result

1. INTRODUCTION
Transactional memory is an attractive paradigm for pro-

gramming concurrent applications for multicores. A trans-
action encapsulates a sequence of operations, and it is guar-
anteed that if any operation takes place, they all do, and
that if they do, they appear to other threads to do so atom-
ically, as one indivisible operation. A transactional memory
implementation translates high-level transaction operations
to low-level primitive operations on base objects, containing
the data and the meta-data needed for the implementation.

Transactional memory is seriously considered as part of
software solutions and as a basis for novel hardware designs.
It is therefore imperative to understand inherent tradeoffs
in the design and implementation of transactional memory.

One property that is considered critical for the scalability
of a transactional memory implementation is disjoint-access
parallelism: operations on disconnected data should not in-
terfere. Conceptualizing this notion is best done through
the conflict graph of transactions that overlap in time. In-
formally, the vertices of the conflict graph correspond to data
items, and there is an edge between data items if they are
accessed by the same transaction. Consider, for example,
four concurrent transactions: T1 with the data set {ı1, ı2},
T2, T3, and T4 with the data sets {ı2}, {ı3}, and {ı4}, respec-
tively. Figure 1 depicts the conflict graph of the execution
interval of these four transactions. This conflict graph con-
tains only one edge connecting the two vertices representing
the data items in the data set of T1 (see the formal definition
in Section 2).

Several transactional memories, e.g. [4, 13], guarantee that
transactions access the same base object only if their data
items are connected in the conflict graph. In particular,
there is no concurrent access to the shared memory by trans-
actions that access disjoint parts of the data. In such imple-
mentations, the transactions T1, T3, and T4 in the example
above, do not access the same base object, since no path
connects their data items in the conflict graph.

Another important goal is to optimize read-only transac-
tions, i.e., transactions that access the memory only through
read operations. It is desirable that in their implementa-
tions, read-only transactions do not execute primitive write

operations to the memory, so as to reduce memory con-
tention; implementations of read-only transactions that do
not write to the memory are called invisible. Moreover,
since read-only transactions do not write to data items, it
seems plausible they should eventually be able to obtain a
consistent view of the data, provided previous versions are
kept (as is done in multi-version implementations [20, 22,
23]). Thus, read-only transactions should (eventually) ter-
minate successfully, regardless of concurrent transactions;
such transactions are called wait-free.

None of the existing transactional memory implementa-
tions is both disjoint-access parallel and has invisible, wait-
free read-only transactions. Some are disjoint-access paral-
lel and have invisible but not wait-free read-only transac-
tions [4, 13], while others have invisible, wait-free read-only
transactions but are not disjoint-access parallel [22].

Consider, for example, the four transactions above, and
assume T1 is a read-only transaction, while T2, T3, and T4

all write to their data items. In the algorithm given in [13],
which is disjoint-access parallel and has invisible read-only
transactions, T1 reads ı1 and ı2, then T2 writes to ı2, finally
T1 validates its read set at commit time. The value of ı2
has changed since T1 read it, and T1 aborts. In the algo-
rithm given in [22], which has invisible, wait-free read-only
transactions, T1, T3, and T4 all access a common counter
(T1 reads it, while T3 and T4 write to it), thus violating
disjoint-access parallelism.

This paper shows that there is an inherent tradeoff—no
transactional memory implementation can be disjoint-access
parallel and have invisible, wait-free read-only transactions—
and one of these desirable properties must always be com-
promised. In fact, we prove a stronger result, showing that
in a disjoint-access parallel transactional memory implemen-
tation with wait-free read-only transactions, a transaction
reading t data items must apply non-trivial primitives (e.g.,
writes) to at least t − 1 base objects. Thus, a read-only
transaction must perform one low-level write essentially for
each item in its read set.

The wait-freedom requirement might seem too restrictive
for practical purposes; however, we can prove a similar re-
sult where a read-only transaction repeatedly aborts and
never terminates successfully; see further discussion in Sec-
tion 6. For read-dominated applications, this implies too
much wasted work.

The consistency condition commonly used for transac-
tional memory is opacity [10]; very roughly stated, opacity
requires all transactions to appear to execute sequentially
in an order that agrees with the order of non-overlapping
transactions. This is similar to requiring strict view seri-
alizability [21] applied to all transactions (included aborted

ı1 ı2

ı4ı3

T1

Figure 1: Example of a simple conflict graph: ı1 and
ı2 are the data items of T1; ı2, ı3, and ı4 are the data
items of T2, T3, and T4, respectively.

ones), extended to allow operations other than reads and
writes. Our results only assume strict serializability [21],
and hence hold also under the assumption of opacity. In
fact, the results also hold for weaker consistency conditions,
serializability and snapshot isolation.

The rest of the paper is organized as follows: Section 2
introduces basic definitions and in particular, the notion of
disjoint-access parallelism. Section 3.1 presents an impossi-
bility result showing that in a disjoint-access parallel STM
implementation with invisible read-only transactions, some
read-only transaction may never terminate successfully; this
result is proved using only three processes. Section 3.2
strengthens this result and shows that a read-only trans-
action on t items (in a disjoint-access parallel STM imple-
mentation with wait-free read-only transactions) must ap-
ply non-trivial primitives to t − 1 base objects; this result
requires t + 1 processes. Section 4 extends the results to
hold even with the weaker conditions of serializability and
snapshot isolation. We discuss related work in Section 5,
and conclude in Section 6.

2. PRELIMINARIES
A transaction is a sequence of operations executed by

a single process on a set of data items shared with other
transactions; all data items are initially 0. We assume data
items are accessed by simple read and write operations; our
impossibility results clearly hold for transactional memory
that also supports other operations. A complete interface
of transactional memory also includes commit and abort op-
erations, which we do not model here, since they are not
needed for our impossibility results.

The collection of data items accessed by a transaction is
the transaction’s data set ; in particular, the items written by
the transaction are its write set, and the items read by the
transaction are its read set. A transaction whose write set
is empty, is said to be a read-only transaction. We assume
the transaction’s read set and write set are provided at the
start of the transaction, and do not elaborate further on the
manner a transaction issues its operations; this only makes
our impossibility results stronger.

An implementation of software transactional memory (ab-
breviated STM) provides data representation for transac-
tions and data items using base objects, and algorithms,
specified as primitive operations on the base objects, which
asynchronous processes have to follow in order to execute the
operations of transactions. In addition to ordinary read and
write primitives, we allow arbitrary read-modify-write prim-
itives, even those accessing several locations simultaneously.
In particular, the implementation may use a cas(o, exp, new)
that writes the value new to location o if its value is equal
to exp, and returns a success or failure indication.

A primitive is non-trivial if it may change the value of
the object, e.g., a write or cas; otherwise, it is trivial, e.g., a
read.

An event is a computation step by a process consisting
of local computation and the application of a primitive to
base objects, followed by a change to the process’s state,
according to the results of the primitive. A configuration is
a complete description of the system at some point in time,
i.e., the state of each process and the state of each shared
base object. There is a unique initial configuration in which
every process is in its initial state and every base object
contains its initial value.

An execution interval α is a finite or infinite alternating
sequence C0, φ0, C1, φ1, C2, . . ., where Ck is a configuration,
φk is an event and the application of φk to Ck results in
Ck+1, for every k = 0, 1, An execution is an execution
interval in which C0 is the initial configuration.

Two executions α1 and α2 are indistinguishable to a pro-
cess p, if p goes through the same sequence of state changes
in α1 and in α2; in particular, this implies that it goes
through the same sequence of events.

We point out that the model encompasses two levels of
abstraction: The high level has transactions, each of which
is a sequence of operations accessing data items. At the
low level, these transactions are translated into executions
in which a sequence of events apply primitive operations
(or primitives) to base objects, containing the data and the
meta-data needed for the implementation.

STM Properties. The interval of a transaction T is the ex-
ecution interval that starts at the first event of T and ends
at the last event of T , if there is one, taken by the process
executing the algorithm for T . If T does not have a last
event in the execution, then the interval of T is the (possi-
bly infinite) execution interval starting at the first event of
T . Two transactions overlap if their intervals overlap. A
configuration C is quiescent if no transaction is pending in
C, i.e., it is not inside the interval of any transaction.

An STM is serializable if transactions appear to execute
sequentially, one after the other [21]; we assume that the
serialization preserves the per-process order, i.e., transac-
tions of the same process maintain their order. An STM
is strictly serializable if this order preserves the order of
non-overlapping transactions [21]; this notion is called order-
preserving serializability in [25], and is the analogue of lin-
earizability [15] for transactions. Note that strict serializ-
ability is implied by the opacity correctness condition, re-
cently defined for transactional memory [10].

We assume that a transaction terminates successfully if it
runs alone from a quiescent configuration. This property is
satisfied by obstruction-free STM implementations, in which
a process that eventually runs alone for long enough makes
progress, i.e., transactions terminate successfully when even-
tually executing solo [13]. This property is also satisfied by
STM implementations that are weakly progressive [11], in
which a transaction that does not encounter conflicts has to
terminate successfully; note that blocking STM implemen-
tations like TL2 [6] are weakly progressive.

Memory disjoint-access parallelism. An important prop-
erty STM implementations have to provide is allowing un-
related transactions to progress independently, even if they
are concurrent. Below, we formally define what it means for
two transactions to be unrelated through a conflict graph
that represents the relations between transactions. Then we
define disjoint-access parallelism, a property that captures
the intuition that an implementation should not cause two
transactions, which are unrelated at the high-level, to simul-
taneously access the same low-level shared memory.

The conflict graph of an execution interval I is an undi-
rected graph in which vertices represent data items and
edges connect data items if they are accessed by the same
transaction. If I overlaps the execution interval of a transac-
tion T , and the data items ı1 and ı2 are in the data set of T ,
the graph includes an edge between the vertices representing

ı1 and ı2.
Two transactions T1 and T2 are disjoint-access if there is

no path between an item in the data set of T1 and an item
in the data set of T2, in the conflict graph of the minimal
execution interval containing the intervals of T1 and T2.

Two events contend on a base object o if they both access
o, and at least one of them applies a non-trivial primitive to
o. Two processes concurrently contend on a base object o

if they have pending events at the same configuration that
contend on o.

Definition 1. An STM implementation is weakly disjoint-
access parallel if two processes p1 and p2, executing trans-
actions T1 and T2, concurrently contend on the same base
object, only if T1 and T2 are not disjoint-access.

This definition captures the first condition of the disjoint-
access parallelism property of Israeli and Rappoport [17], in
accordance with most of the literature (cf. [14]). Our defi-
nition is weaker than their definition, as it allows two pro-
cesses to apply a trivial primitive on the same base object,
e.g., read, when executing two transactions even if they are
disjoint-access. Moreover, our definition only prohibits con-
current contending accesses, allowing transactions to con-
tend on a base object o at different points of the execution;
we shall see in Lemma 2 that, under some conditions, these
transactions can be made to concurrently contend on o.

The original definition [17] also restricts the impact of con-
current transactions on the step complexity of a transaction;
our results do not rely on this additional condition, making
them stronger.

3. STRICTLY SERIALIZABLE STMS

3.1 Impossibility of Invisible Read-Only Trans-
actions

A read-only transaction is invisible if its algorithm only
applies trivial primitives to base objects. We prove that in a
disjoint-access parallel STM implementation with invisible
read-only transactions, some read-only transaction will not
terminate successfully in a finite number of steps; this is
formally stated in Theorem 4.

Specifically, we construct an infinite execution of a read-
only transaction. This execution consists of a single read-
only transaction with one complete update transaction be-
tween any pair of consecutive steps by the read-only trans-
action; an update is a transaction with a singleton write set
and an empty read set. We first define a special (finite) ex-
ecution of this form, called flippable, and show that such a
read-only transaction cannot terminate successfully. Then
we show how a flippable execution can be repeatedly ex-
tended to construct successively longer flippable executions.

An execution is called flippable since there are two sim-
ilar executions in which we flip the position of two update
transactions and one of the executions is indistinguishable
from the original execution. One type of flipped execution
is called a forward flip since it moves an update transaction
forward in the execution, while other is called a backward
flip since it defers the execution of an update transaction.
Formally:

Definition 2. A flippable execution of length k with t

updaters is a finite execution Ek = U0s1U1 . . . skUk executed

q : s1 . . . sl−1 sl . . . sk

p0 : U0 . . . Ul−1 . . . Uk

p1 : U1 . . . Ul . . .

(a) Ek.

q : s1 . . . sl−1 sl . . . sk

p0 : U0 . . . Ul−1 . . . Uk

p1 : U1 . . . Ul . . .

(b) Forward flip: Ul is performed before Ul−1sl.

q : s1 . . . sl−1 sl . . . sk

p0 : U0 . . . Ul−1 . . . Uk

p1 : U1 . . . Ul . . .

(c) Backward flip: Ul−1 is performed after slUl.

Figure 2: A flippable execution of length k with two updaters: Figure 2(a) shows a flippable execution
Ek; Figure 2(b) shows the forward flip execution of Ek, where the update transaction Ul by process p1 is
executed before the update transaction Ul−1 by process p0 and before the step sl of the read-only transaction;
Figure 2(c) shows the backward flip execution of Ek, where the update Ul−1 by process p0 is deferred after the
update transaction Ul by process p1 and after the step sl of the read-only transaction.

by processes p0, . . . , pt−1 executing update transactions and
process q executing a read-only transaction, which reads and
returns the value of t data items ı0 . . . ıt−1. The execution
Ek satisfies all the following conditions:

1. for j = 1, . . . , k, sj is a single step by q,

2. for j = 0, . . . , k, Uj is a solo execution of a complete
update transaction, in which process ph ∈ {p0, . . . , pt−1},
writes j + 1 to the data item ıh

3. consecutive updates are executed by different processes,
and

4. for any l, 0 < l ≤ k, the execution

Ek = U0s1U1 . . . sl−1Ul−1slUl . . . skUk

is indistinguishable to all processes from one of the fol-
lowing executions:

←−
F l = U0s1U1 . . . sl−1UlUl−1sl . . . skUk

in which the update transaction Ul is executed before
Ul−1sl instead of after Ul−1sl (forward flip) or

−→
F l = U0s1U1 . . . sl−1slUlUl−1 . . . skUk

in which the update transaction Ul−1 is executed after
slUl instead of before slUl (backward flip).

Figures 2(b) and 2(c) present the forward and the back-
ward flips of the execution in Figure 2(a).

This definition, and the structure of our proof, is similar
to the lower bound of Attiya, Ellen and Fatourou [2] on the
step complexity of update operations in implementations of
atomic snapshot objects. The main difference is that our
definition of a flippable execution has two types of flipped
executions, and t processes executing update transactions
instead of just two.

The next lemma is proved by arguments similar to those
applied in [2], extended to handle the possibility of two kinds
of flips (forward and backward).

Lemma 1. The read-only transaction in a flippable exe-
cution does not terminate successfully.

Proof. Let Ek = U0s1U1 . . . skUk be a flippable execu-
tion. Assume, towards a contradiction, that q successfully
terminates its read-only transaction in Ek, with a result
~v = (v0, . . . , vt−1). Since the update transactions in the
execution Ek do not overlap, they must be serialized in the
order U0, . . . , Ul. Since all steps of the read-only transaction
by q are after U0 and before Uk, it has a unique serialization
point between Ul−1 and Ul, for some l, 1 ≤ l ≤ k. Let ıh be
the item written by Ul−1, and recall that Ul−1 writes l to
ıh; hence vh = l.

The execution Ek is indistinguishable to process q from
Fl, which is either the forward flip

←−
F l = U0s1U1 . . . sl−1UlUl−1slsl+1 . . . Uk

in which update Ul is executed before Ul−1sl instead of after
Ul−1sl; or the backward flip

−→
F l = U0s1U1 . . . sl−1slUlUl−1sl+1 . . . Uk

in which update Ul−1 is executed after slUl instead of before
slUl. Hence, the read-only transaction executed by q in Fl

returns the same result, ~v, as in Ek.
Since the update transactions do not overlap in Fl, they

are serialized in the order U0, . . . , Ul, Ul−1, . . . , Uk, that is,
the same as for Ek, except that Ul−1 and Ul are flipped.
Since two consecutive update transactions are on different
items, the values of {ı0, . . . , ıt−1} are the same after both
update transactions have been executed, no matter which
has been executed first. Hence, at all points in the serializa-
tion of Fl, except between Ul and Ul−1, the value of all items
{ı0, . . . , ıt−1} is the same as its value in the corresponding
points in the serialization of Ek. Thus, the read-only trans-
action of q can only serialized after Ul and before Ul−1 in
Fl. However, since Ul−1 is the first write of l to ıh, the value
of ıh is not l before Ul−1, and hence, the read-only trans-
action executed by q cannot be serialized between Ul and

:

:

Ujh

ph
′

ph
αh

Uj
h
′

φ
h
′

φh

α
h
′

(a) Serial execution of Ujh
and Ujh′

from configuration C

...:

: ...

αh

ph
′

ph
φh

α
h
′ φ

h
′

(b) Overlapping execution of Ujh
and Ujh′

from configura-
tion C

Figure 3: Illustration for the proof of Lemma 2

Ul−1. This contradicts the assumption that the read-only
transaction terminates successfully.

Lemma 3 (below) proves that when read-only transactions
are invisible, we can inductively construct a flippable exe-
cution. The crux of this lemma is quite different from [2],
as it relies on weakly disjoint-access parallelism. A critical
step in the proof is provided by the next lemma, showing
that in a weakly disjoint-access parallel STM, two consecu-
tive updates by different processes on different items cannot
contend on the same base objects.The proof of the lemma
shows that two such consecutive updates can be perturbed
to concurrently contend on the same base object.

Lemma 2. Given a weakly disjoint-access parallel STM
implementation and a quiescent configuration C, consider
the consecutive execution of two update transactions Ujh

Ujh′
,

executed by a process ph on an item ıh and by process ph′ on
an item ıh′ , h 6= h′, respectively, from C. Then ph and ph′

do not contend on the same base object when executing Ujh

and Ujh′
.

Proof. Assume, towards a contradiction, that ph and
ph′ contend on a base object when executing Ujh

Ujh′
from

a quiescent configuration C. If in Ujh
, ph applies a non-

trivial primitive to a base object on which they contend,
let φh be the last event in Ujh

in which ph applies such a
primitive, say, to base object o. Let φh′ be the first event
in Ujh′

that accesses o. Otherwise, ph only applies trivial
primitives in Ujh

to base objects on which it contends with
ph′ in Ujh′

; let φh′ be the first event in Ujh′
in which ph′

applies a non-trivial primitive to some base object, say, o,
on which they contend. Let φh be the last event of ph in Ujh

that accesses o. In both cases, denote by αhφh the prefix of
the execution of Uh from C and by αh′φh′ the prefix of the
execution of Uh′ after Uh (see Figure 3(a)).

We now consider an overlapping execution of the update
transactions Ujh

and Ujh′
, by processes ph and ph′ , from C.

We argue that ph and ph′ perform the same steps up to the
events φh and φh′ , and as shown in Figure 3(b), ph and ph′

concurrently contend on base object o.
In more detail, consider the execution αhαh′ from C, in

which ph executes Ujh
until it is about to perform φh, and

then ph′ executes Ujh′
until it is about to perform φh′ .

Clearly, ph is about to perform φh also after αhαh′ . By

construction, the execution interval αhαh′ from C is indis-
tinguishable to ph′ from the execution interval Ujh

αh′ from
C. Hence, ph′ is about to perform the event φh′ also after
αhαh′ , that is, ph′ and ph concurrently contend on o. How-
ever, the conflict graph of the execution interval αhαh′φh′φh

does not contain a path between the data sets of Ujh
and

Ujh′
, contradicting the assumption that the implementation

is weakly disjoint-access parallel.

Since two consecutive updates do not contend on the same
base object, we can construct an execution where either the
previous update is deferred or the next update is moved
forward in the execution without affecting the single step of
the read-only transaction in between them. This allows us
to inductively construct a flippable execution, in the proof
of the next lemma.

Lemma 3. For every k ≥ 0, every weakly disjoint-access
parallel implementation of an STM with invisible read-only
transactions, has a flippable execution Ek = U0s1U1s2 . . . Uk

with two updaters p0 and p1, which is indistinguishable to p0

and p1 from the execution E′

k = U0U1 . . . Uk in which only
p0 and p1 take steps.

Proof. The proof is by induction on the length k of the
flippable execution Ek executed by a process q and two up-
daters p0 and p1 on two items {ı0, ı1}. In the base case,
k = 0, the lemma holds with a solo execution of U0, an up-
date transaction by p0 that writes 1 to ı0. U0 successfully
terminates since it runs solo from a quiescent configuration.

For the induction step, consider a flippable execution of
length k, Ek = U0s1U1s2 . . . Uk. By Lemma 1, the read-only
transaction does not terminate successfully in Ek. Let sk+1

be the next step by q. Assume Uk is executed by ph′ and
let h = 1 − h′; note that h 6= h′. Let Ek+1 = Eksk+1Uk+1,
where process ph writes k + 2 to ıh in the update transac-
tion Uk+1. Note that Uk+1 terminates successfully, by our
progress condition; although the configuration at the end of
Ek+1 = Eksk+1 is not quiescent, it is indistinguishable from
the quiescent configuration at the end of E′

k.
Since the read-only transaction by q is invisible, Ek+1 is

indistinguishable to p0 and p1 from the execution E′

kUk+1.
It remains to prove that for every l, 0 < l ≤ k + 1, the

execution Ek+1 is indistinguishable to all processes from ei-

ther
←−
F l or

−→
F l. For every l, 0 < l ≤ k, by the inductive

assumption, the execution

Ek = U0s1U1 . . . sl−1Ul−1slUl . . . skUk

is indistinguishable to all processes from the flipped execu-
tion Fl which is either

←−
F l = U0s1U1 . . . sl−1UlUl−1sl . . . Uk

or
−→
F l = U0s1U1 . . . sl−1slUlUl−1 . . . skUk.

In particular, the configurations at the end of the two execu-
tions Ek and Fl are the same. Hence, Ek+1 = Eksk+1Uk+1

and Flsk+1Uk+1 are indistinguishable to all processes.
To prove the condition for l = k + 1, let C′

k−1 be the
configuration at the end of E′

k−1; C′

k−1 is quiescent, and
Lemma 2 implies that ph′ and ph do not contend on the same
base object when executing Uk followed by Uk+1 from C′

k−1,
namely, in the suffix of E′

k+1. By the indistinguishability of
E′

k+1 and Ek+1, ph′ and ph do not contend on the same base

object while executing Uk and Uk+1 also in the execution
Ek+1. Moreover, if q accesses a base object o in sk+1, then
either at least one of the two processes ph or ph′ does not
access o in Uk+1 or Uk, respectively, or they both apply a
trivial primitive to o. In the former case, if ph does not
access o in Uk+1 then

←−
F k+1 = U0s1U1 . . . skUk+1Uksk+1

is indistinguishable to all processes from Ek+1, while if ph′

does not access o in Uk, then

−→
F k+1 = U0s1U1 . . . sksk+1Uk+1Uk

is indistinguishable to all processes from Ek+1. If both ph

and ph′ apply a trivial primitive to o, then both flipped ex-

ecutions,
←−
F k+1 and

−→
F k+1, are indistinguishable to all pro-

cesses from Ek+1.

The impossibility result follows from Lemmas 1 and 3.

Theorem 4. There is no weakly disjoint-access parallel
implementation with invisible read-only transactions of a strictly
serializable STM, in which read-only transactions always ter-
minate successfully.

The impossibility result stated in Theorem 4 holds also for
opaque STMs [10], since opacity implies strict serializability.

3.2 Lower Bound for Read-Only Transactions
The technique of the previous section can be extended to

prove that a read-only transaction of t items in a disjoint-
access parallel STM implementation, which successfully ter-
minates in a finite number of steps, must apply non-trivial
primitives to t− 1 base objects; this assumes that there are
at least t + 1 processes.

The proof of Lemma 1—showing that the read-only trans-
action in a flippable execution cannot terminate successfully—
does not rely on the fact that the read-only transaction is
invisible, and the lemma continues to hold. On the other
hand, we must modify the proof showing the existence of
the flippable execution.

This result relies on a stronger notion of disjoint-access
parallelism, which requires two transactions to be connected
(in the conflict graph) even if they both just apply a trivial
primitive to the same base object. (This is the definition
in [17].) Two processes concurrently access a base object o

if both have a pending access to o at some configuration.

Definition 3. An STM implementation is disjoint-access
parallel if two processes p1, p2 concurrently access the same
base object when executing transactions T1 and T2, respec-
tively, only if T1 and T2 are not disjoint-access.

Since we now put a stronger requirement on disjoint-access
parallel STM implementations, Lemma 2, assuming a weaker
requirement, still holds.

We first show (in Lemma 5) that, in a disjoint-access
parallel STM implementation, two update transactions exe-
cuted by different processes on different items do not access a
common base object when each of them runs solo from a qui-
escent configuration. This is used in Lemma 6 to prove the
existence of a flippable execution, when a read-only transac-
tion of t data items applies non-trivial primitives to at most
t − 2 base objects.

αhph:

Ujh

φh

(a) Solo execution of Ujh
from configuration C

Uj
h
′

ph
′ :

α
h
′ φ

h
′

(b) Solo execution of Ujh′
from configuration C

...

...ph:
αh

ph
′ :

α
h
′

φh

φ
h
′

(c) Overlapping execution of Ujh
and Ujh′

from configura-
tion C

Figure 4: Illustration for the proof of Lemma 5.

Lemma 5. Given a disjoint-access parallel STM imple-
mentation and a quiescent configuration C, consider the ex-
ecution of an update transaction Ujh

to the item ıh by process
ph, and an update transaction Ujh′

to the item ıh′ by process
ph′ , h 6= h′, from C. Then, ph and ph′ do not access a com-
mon base object when executing Ujh

and Ujh′
, respectively.

Proof. Assume, towards a contradiction, that ph and ph′

access the same base object while executing Ujh
and Ujh′

,
respectively, from C. Let o be the first base object accessed
by ph that is also accessed by ph′ . Let αhφh be the prefix
of the execution of Ujh

from C, where φh is the first event
in which ph accesses o (see Figure 4(a)). Let αh′φh′ be the
prefix of the execution of Ujh′

from C, where φh′ is the first
access of ph′ to o (see Figure 4(b)).

Consider the execution αhαh′ from C, where ph executes
Ujh

until it is about to access o, and then ph′ executes Ujh′

until it is about to access o (see Figure 4(c)). By construc-
tion, the execution αhαh′ from C is indistinguishable to ph

and ph′ from the corresponding executions αh and αh′ from
C. Thus, ph′ has the event φh′ pending and ph has the
event φh pending after αhαh′ ; thus, ph′ and ph have concur-
rently pending accesses to o. However, in the conflict graph
of the execution interval αhαh′φh′φh from C, there is no
path between the data sets of Ujh

and Ujh′
, contradicting

the assumption that the implementation is disjoint-access
parallel.

We show that at any point during the execution of the
read-only transaction, there is a process that can write to its
item without accessing any base object to which q applies
non-trivial primitives, thus making the read-only transac-
tion “invisible” to the other processes. Note that, by the
definition of a flippable execution, each process always up-
dates the same item. We prove such a process exists by
applying a “pigeon hole” argument to show that the process
does not access any base object to which the read-only trans-
action applies non-trivial primitives. Since there are t − 1
processes to choose from, each accessing a different item, and
since the read-only transaction applies non-trivial primitives
to at most t−2 base objects, at least two update transactions
by different processes access the same base object, which can
be shown to violate disjoint-access parallelism.

Lemma 6. For every k ≥ 0, a disjoint-access parallel im-
plementation of an STM in which a read-only transaction of
t data items applies non-trivial primitives to at most t − 2
base objects, has a flippable execution Ek = U0s1U1s2 . . . Uk

with t updaters, which is indistinguishable to p0, . . . , pt−1

from the execution E′

k = U0U1 . . . Uk in which only p0, . . . , pt−1

take steps.

Proof. The proof is by induction on the length k of the
flippable execution Ek. The base case is when k = 0. The
lemma holds with a solo execution of an update transac-
tion, U0, by process p0 that writes 1 to ı1. U0 successfully
terminates since it runs solo from a quiescent configuration.

For the induction step, consider a flippable execution of
length k, Ek = U0s1U1s2 . . . Uk, which is indistinguishable
to p0, . . . , pt−1 from the execution E′

k = U0U1 . . . Uk. By
Lemma 1, the read-only transaction does not terminate suc-
cessfully in Ek. Let sk+1 be the next step by q and let Ck+1

denote the configuration at the end of Eksk+1; also, let C′

k+1

be the configuration at the end of E′

k.
The process ph to execute Uk+1 is chosen from p0, . . . , pt−1

such that ph did not execute Uk and a solo execution of
Uk+1 from Ck+1 by ph does not access any base objects to
which q applies non-trivial primitives in Eksk+1. Note that
this transaction must terminate successfully, by our progress
condition; although Ck+1 is not quiescent, it is indistinguish-
able from C′

k+1, which is quiescent.
We claim such a process exists. Assume, towards a con-

tradiction, that for every process phk+1
, hk+1 6= hk, the solo

execution by phk+1
from Ck+1 of the update transaction that

writes k+2 to ıhk+1
accesses a base object to which q applies

a non-trivial primitive in Eksk+1. We consider t−1 possible
processes, each writing to a different item. Since the read-
only transaction applies non-trivial primitives to at most
t−2 base objects, at least two update transactions executed
by different processes ph and ph′ to different items ıh and
ıh′ , starting from configuration Ck+1, access the same base
object in their first access to a base object to which q applies
a non-trivial primitive. Recall that C′

k+1 is quiescent. Since
the execution Eksk+1 is indistinguishable to processes ph

and ph′ from the execution E′

k, they access the same base
object also when executing the update transactions from
C′

k+1, which by Lemma 5, violates the assumption that the
implementation is disjoint-access parallel.

Pick some process phk+1
, hk+1 6= hk, that does not access

any base objects to which q applies non-trivial primitives in
Eksk+1; let Uk+1 be an update by phk+1

that writes k + 2
to ıhk+1

and denote Ek+1 = Eksk+1Uk+1.
Next, we prove that the execution Ek+1 is indistinguish-

able to p0, . . . , pt−1 from the execution E′

k+1. This holds for
processes other than phk+1

by the inductive assumption and
since these processes take no steps in the suffix of this ex-
ecution. For phk+1

, this holds by the inductive assumption
and since the solo execution Uk+1 of an update transaction
by phk+1

does not access base objects to which q applies a
non-trivial primitive in Eksk+1.

It remains to prove that for every l, 0 < l ≤ k + 1, the
execution Ek+1 is indistinguishable to all processes from the

flipped execution Fl which is either
←−
F l or

−→
F l, as defined

in Definition 2. For every l, 0 < l ≤ k, by the inductive
assumption, the execution

Ek = U0s1U1 . . . sl−1Ul−1slUl . . . skUk

is indistinguishable to all processes from the flipped execu-

tion Fl which is either
←−
F l = U0s1U1 . . . sl−1UlUl−1sl . . . Uk

or
−→
F l = U0s1U1 . . . sl−1slUlUl−1 . . . skUk.

In particular, the configurations at the end of the two ex-
ecutions Ek and Fl are the same. Hence, the executions
Ek+1 = Eksk+1Uk+1 and Flsk+1Uk+1 are indistinguishable
to all processes.

For l = k + 1, consider the flipped executions
←−
F k+1 and

−→
F k+1. The configuration C′

k−1 at the end of E′

k−1 is qui-
escent. Any STM implementation which is disjoint-access
parallel is also weakly disjoint-access parallel, hence we can
apply Lemma 2 to deduce that phk

and phk+1
do not con-

tend on, and hence do not access the same base object while
executing Uk and Uk+1 from C′

k−1. The indistinguishability
property implies that phk

and phk+1
do not access the same

base object while executing Uk and Uk+1 also in Ek+1.
Moreover, if q applies a trivial primitive to some base ob-

ject o in sk+1, then either at least one of the two processes
phk+1

and phk
does not access o in Uk+1 and in Uk respec-

tively, or they both apply a trivial primitive to o. In the
former case, if phk+1

does not access in Uk+1 any object
that q accesses in sk+1, then

←−
E k+1 = U0s1U1 . . . skUk+1Uksk+1

is indistinguishable to all processes from Ek+1, while if phk

does not access in Uk any object that q accesses in sk+1,
then

−→
E k+1 = U0s1U1 . . . sksk+1Uk+1Uk

is indistinguishable to all processes from Ek+1. If phk+1
and

phk
apply a trivial primitive to o, then both flipped execu-

tions are indistinguishable to all processes from Ek+1.

The lower bound follows:

Theorem 7. In a strict serializable disjoint-access paral-
lel STM implementation for t + 1 processes, where all read-
only transactions terminate successfully, some read-only trans-
action of t ≥ 2 data items applies non-trivial primitives to
at least t − 1 base objects.

This lower bound holds also for opaque STMs, since opac-
ity implies strict serializability.

4. EXTENDING THE RESULTS TO WEAKER

CONSISTENCY CONDITIONS
In this section, we show that both Theorem 4 and The-

orem 7 hold for weaker consistency conditions, namely, se-
rializability and snapshot isolation. This uses an additional
process.

Recall that an STM is serializable if transactions appear to
execute sequentially, one after the other; we further require
that transactions of the same process preserve their order
(per-process order).

Given a flippable execution Ek = U0s1U1 . . . skUk, we con-
struct an augmented flippable execution

bEk = U0s1S
∗

1U1 . . . skS
∗

kUk ,

where an additional process q′ performs invisible read-only
transactions. For every j ∈ {1, . . . , k}, q′ performs solo a

q : s1 . . . sl−1 sl . . . sk

p0 : U0 . . . Ul−1 . . . Uk

p1 : U1 . . . Ul . . .

q′ : S∗

1 . . . S∗

l−1 S∗

l . . . S∗

k

Figure 5: An augmented flippable execution bEk derived from the flippable execution Ek of Figure 2.

sequence S∗

j of read-only transactions after the event sj by
process q and before the update Uj . Each read-only transac-
tion in S∗

j accesses the items ıfj−1
and ıfj

updated by Uj−1

and Uj . The result of the last read-only transaction in the
sequence S∗

j , denoted Sj , is the value written by Uj−1 to
ıfj−1

and the last value of ıfj
before Uj updates it.

Figure 5 shows the augmented flippable execution ob-
tained by augmenting the flippable execution Ek of Figure 2
with sequences of read-only transactions performed by an
additional process q′.

We apply the per-process ordering of transactions to prove
that the read-only transactions of q′ must eventually read
the latest value written in Uj−1, and thus, S∗

j is finite.

Lemma 8. Consider an augmented flippable execution of

length k ≥ 0, bEk = U0s1S
∗

1U1 . . . skS∗

kUk. In any serializa-

tion of bEk that preserves the per-process order, U0, U1, . . . ,
Uk appear in their order of execution.

Proof. We show, by induction on ℓ, that U0, U1, . . . , Uℓ

appear in their order of execution. The base case is trivial.
For the induction step, consider Uℓ+1. By the induc-

tion assumption, the updates U0, U1, . . . , Uℓ are serialized

by their execution order in bEk. By construction S∗

ℓ+1 ac-
cesses the items ıfℓ

and ıfℓ+1
repeatedly up to a read-only

transaction Sℓ+1, which returns the value written by Uℓ and
the last value of ıfℓ+1

before the one written by Uℓ+1.
S∗

ℓ+1 is finite since the STM is serializable and so, eventu-
ally, some transaction must return the latest values written
to ıfℓ

and ıfℓ+1
, and by the induction assumption, Uℓ is the

last to write to ıfℓ
. Moreover, Sℓ+1 completes before Uℓ+1

starts, so it cannot return the value written by Uℓ+1, since
due to serializability, a read operation can not return a value
not written.

Since each data item is written by a different process, and
due to per-process order, Uℓ+1 can not be serialized before
the last update of ıfℓ+1

preceding Uℓ+1.
Moreover, Uℓ+1 can not be serialized after this update and

before Sℓ+1, since Sℓ+1 does not return the value written by
Uℓ+1. Hence, Uℓ+1 is serialized after Sℓ+1.

We use Lemma 8 to prove the analogue of Lemma 1.

Lemma 9. Consider an augmented flippable execution of

length k ≥ 0 with t updaters, bEk = U0s1S
∗

1U1 . . . skS∗

kUk.
If the read-only transactions by process q′ are invisible, then
the read-only transaction by process q does not terminate
successfully.

Proof. Assume, towards a contradiction, that the read-

only transaction of process q in bEk terminates successfully
and returns a value ~v = (v0, . . . , vt−1), which does not vi-
olate serializability. Let the augmented flippable execution
bEk = U0s1S

∗

1U1 . . . skS∗

kUk correspond to a flippable execu-
tion Ek = U0s1U1 . . . skUk.

By Lemma 8, the updates in bEk are serialized in the order
U0, U1, . . . , Uk. The value ~v determines where q’s read-only
transaction is serialized. In particular, for some l, 0 < l ≤ k,
the read-only transaction of q is serialized after Ul−1 and
before Ul, and for each item ıf in {ı0 . . . ıt−1}, either vf is
zero and no update wrote to ıf before Ul, or the last update
to ıf before Ul wrote vf to ıf . Let S be the serialization of

execution bEk.
Since the read-only transactions executed by process q′

are invisible, bEk and Ek are indistinguishable to p0, . . . , pt−1

and q. Thus, they will execute the same steps in both ex-
ecutions. Note that S is a serialization also for Ek. Since
S preserves the real-time order among transactions, Ek is
a flippable execution where the read-only transaction ter-
minates and strict serializability is preserved, contradicting
Lemma 1.

As discussed before the lemma, the existence of a flippable
execution (guaranteed by Lemma 3) implies there is an aug-
mented flippable execution, and hence, Lemma 9 implies the
following impossibility result:

Theorem 10. There is no weakly disjoint-access parallel
STM implementation with invisible read-only transactions of
a serializable STM, in which read-only transactions always
terminate successfully.

When a read-only transaction of t ≥ 2 data items applies
non-trivial primitives to at most t−2 base objects, the read-
only transactions of q′ in the augmented flippable execution
are, in fact, invisible since their read set contains only two
data items. As discussed before Lemma 9, the existence of a
flippable execution (guaranteed by Lemma 6) implies there
is an augmented flippable execution, and hence, Lemma 9
implies the following lower bound:

Theorem 11. In a serializable disjoint-access parallel STM
implementation for t+2 processes, where all read-only trans-
actions terminate successfully, some read-only transaction of
t ≥ 2 data items applies non-trivial primitives to at least t−1
base objects.

Snapshot isolation [19, 23, 25] decouples the consistency
of the reads and the writes, and guarantees a snapshot of
the read set not older than the start of the transaction. The
proof can be adapted to hold also when the consistency con-
dition of the STM is snapshot isolation.

5. RELATED WORK
Many STM implementations are centralized; in particu-

lar, to determine a unique commit timestamp for transac-
tions, the Lazy Snapshot Algorithm (LSA) [22] relies on a
single shared monotonically increasing counter, while Trans-
actional Locking II (TL2) [6] relies on a global clock. Both

approaches introduce a single hot-spot accessed by all trans-
actions, regardless of their data sets, and are therefore not
disjoint-access parallel.

More recently, two STM implementations without a cen-
tralized hot-spot have been proposed. Avni and Shavit [4]
present a thread-local clock mechanism that provides a de-
centralized solution for maintaining a consistent view. The
key idea is using Lamport clock (scalar causal timestamps)
instead of the real-time global clock. Integrated with TL2,
this mechanism provides an STM supporting invisible read-
only transactions, without a centralized contention point. A
drawback of this algorithm is that transactions that termi-
nated long before the current one may cause it to fail since
the timestamp recorded for them is not current enough.
Thus, read-only transactions are not wait-free. Imbs and
Raynal [16] propose an opaque lock-based STM with no cen-
tralized hot-spot but their solution has visible reads.

Guerraoui and Kapalka [9] prove that obstruction-free im-
plementations of software transactional memory cannot en-
sure strict disjoint-access parallelism. This property re-
quires transactions with disjoint data sets not to access a
common base object. This notion is stronger than the one
originally proposed by Israeli and Rappoport [17], and com-
monly used in the literature [14], where two transactions
with disjoint data sets are allowed to access the same base
objects, provided they are connected via other transactions.
All other transactions have to progress in parallel, even if
they are concurrent. Their definition of strict disjoint-access
parallelism, like our first definition (Definition 1), allows con-
current reads to the same base objects even by transactions
that are not connected in the conflict graph.

Our lower bound applies to the notion of disjoint-access
parallelism as originally defined in [17]. In contrast, the re-
sult of [9] does not hold for this weaker notion. Indeed, Her-
lihy et al. [13] present an obstruction-free and disjoint-access
parallel STM. Obstruction-freedom does not prevent inter-
fering concurrent processes from starving each other and
thus, the implementation presented in [13] does not guaran-
tee that a read-only transaction eventually terminates suc-
cessfully.

Elsewhere, Guerraoui and Kapalka [10] prove a lower bound
on the number of steps a process takes to successfully termi-
nate a transaction, for every implementation that uses invis-
ible reads, is single-version, and never aborts a transaction
unless it conflicts with another live transaction. Our lower
bound allows multi-version implementations, but requires
read-only transactions to terminate successfully, regardless
of overlapping transactions.

Serializability provides a weaker guarantee on the order-
ing of transactions (it does not have to respect the real-time
order of non-overlapping ones). Nevertheless, our impossi-
bility results hold also for serializable STMs that preserve
the per-process order. Indeed, none of the serializable STM
implementations presented in the literature, e.g. [5, 7, 20,
24], provides disjoint-access parallelism and wait-free, invis-
ible read-only transactions. In fact, the impossibility results
hold also for STMs that satisfy the even weaker condition of
snapshot isolation known from the database literature [19,
25] and suggested as an efficient alternative to serializability
for STMs [23].

Riegel et al. [24] proposed an STM implementation that
supports invisible reads and is disjoint-access parallel, but
it provides only causal serializability ; moreover, read-only

transactions may abort infinitely many times. Causal serial-
izability is weaker than serializability since it allows different
processes to have a different view of the system. This leaves
open the question of whether our results holds for causally
serializable STMs, or whether the algorithm of [24] can be
extended to have wait-free read-only transactions.

A read-only transaction can be considered as a partial
scan operation [3]: a partial snapshot objects is an atomic
snapshot object [1], where processes can scan any subset of
the components. In the wait-free algorithm for partial snap-
shot objects [3], scanners announce which components they
are currently attempting to scan, i.e., read-only transactions
are visible.

Our proof techniques draw ideas from the lower bounds
on the step complexity of update operations in snapshot
objects. Israeli and Shirazi [18] prove an Ω(m) lower bound
on the number of steps to update a component in an m-
component single-writer snapshot objects, implemented from
single-writer registers. Attiya, Ellen and Fatourou [2] ex-
tend this lower bound to implementations of m-component
multi-writer objects from base objects of any type.

6. DISCUSSION
This paper shows that no transactional memory imple-

mentation can be disjoint-access parallel and have invisible,
wait-free read-only transactions. There are implementations
that are disjoint-access parallel and have invisible but not
wait-free read-only transactions [4, 13], while others have in-
visible, wait-free read-only transactions but are not disjoint-
access parallel [22]. In principle, the invisibility of read-only
transactions can also be sacrificed in order to keep them
wait-free, and the implementation disjoint-access parallel.
This can be done by treating the read set together with
the write set and adapting a dynamic disjoint-access par-
allel implementation of multi-location synchronization op-
erator, e.g., [12]. (This algorithm is not wait-free, but it
seems that it can be made wait-free without sacrificing the
other properties.) Thus, each of the assumptions made in
our impossibility result is necessary, since removing either
of them admits an implementation with the two remaining
properties.

Our work joins recent efforts to explore the boundaries of
STM implementations, so as to guide algorithm designers
in their attempt to find better and more efficient implemen-
tations. Such boundaries demonstrate which directions are
futile and which might lead to performance gains. It would
be interesting to derive additional quantitative results on
the complexity of transactions, and in particular, read-only
transactions.

Our proof shows that the read-only transaction cannot
terminate successfully, but it is possible to terminate it un-
successfully, by aborting it; however, this abort is not justi-
fied by data conflicts. Moreover, when the read-only trans-
action is retried, it is possible to continue the construc-
tion and force it to abort again. An implementation is
permissive with respect to a safety property [8] if it never
aborts a transaction unless necessary for ensuring correct-
ness. Our proof shows that a disjoint-access parallel imple-
mentation with invisible read-only transactions that always
terminate—however, not always successfully—is not permis-
sive with respect to opacity, strict serializability, serializabil-
ity or snapshot isolation. We would like to further investi-
gate the connections between our results and the study of

unnecessary aborts [7, 8] or wasted work in STM implemen-
tations.

Acknowledgements. We would like to thank Rachid Guer-
raoui, Michal Kapalka and Martin Vechev for helpful com-
ments.

7. REFERENCES
[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt,

and N. Shavit. Atomic snapshots of shared memory.
J. ACM, 40(4):873–890, 1993.

[2] H. Attiya, F. Ellen, and P. Fatourou. The complexity
of updating multi-writer snapshot objects. In
ICDCN ’06, pages 319–330.

[3] H. Attiya, R. Guerraoui, and E. Ruppert. Partial
snapshot objects. In SPAA ’08, pages 336–343.

[4] H. Avni and N. Shavit. Maintaining consistent
transactional states without a global clock. In
SIROCCO ’08, pages 131–140.

[5] U. Aydonat and T. Abdelrahman. Serializability of
transactions in software transactional memory. In
TRANSACT ’08.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional
locking II. In DISC ’06, pages 194–208.

[7] V. Gramoli, D. Harmanci, and P. Felber. Towards a
theory of input acceptance for transactional memories.
In OPODIS ’08, pages 527–533.

[8] R. Guerraoui, T. A. Henzinger, and V. Singh.
Permissiveness in transactional memories. In
DISC ’08.

[9] R. Guerraoui and M. Kapalka. On obstruction-free
transactions. In SPAA ’08, pages 304–313.

[10] R. Guerraoui and M. Kapalka. On the correctness of
transactional memory. In PPoPP ’08, pages 175–184.

[11] R. Guerraoui and M. Kapalka. The semantics of
progress in lock-based transactional memory. In
POPL ’09, pages 404–415.

[12] T. L. Harris, K. Fraser, and I. A. Pratt. A practical
multi-word compare-and-swap operation. In DISC ’02,
pages 265–279.

[13] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer
III. Software transactional memory for dynamic-sized
data structures. In PODC ’03, pages 92–101.

[14] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, 2008.

[15] M. P. Herlihy and J. M. Wing. Linearizability: a
correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[16] D. Imbs and M. Raynal. A lock-based protocol for
software transactional memory. In OPODIS ’08, pages
226–245.

[17] A. Israeli and L. Rappoport. Disjoint-access-parallel
implementations of strong shared memory primitives.
PODC ’94, pages 151–160.

[18] A. Israeli and A. Shirazi. The time complexity of
updating snapshot memories. Inf. Process. Lett.,
65(1):33–40, 1998.

[19] S. Lu, A. Bernstein, and P. Lewis. Correct execution
of transactions at different isolation levels. IEEE
Transactions on Knowledge and Data Engineering,
16(9):1070–1081, 2004.

[20] J. Napper and L. Alvisi. Lock-free serializable
transactions. Technical Report TR-05-04, The
University of Texas at Austin, 2005.

[21] C. H. Papadimitriou. The serializability of concurrent
database updates. J. ACM, 26(4):631–653, 1979.

[22] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot
algorithm with eager validation. In DISC ’06, pages
284–298.

[23] T. Riegel, C. Fetzer, and P. Felber. Snapshot isolation
for software transactional memory. In
TRANSACT ’06.

[24] T. Riegel, C. Fetzer, H. Sturzrehm, and P. Felber.
From causal to z-linearizable transactional memory. In
PODC ’07, pages 340–341.

[25] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of
Concurrency Control and Recovery. Morgan
Kaufmann, 2001.

