
Annals of Emerging Technologies in Computing (AETiC)

Vol. 5, No. 2, 2021

Sesha Kalyur and Nagaraja G.S, “Inherent Parallelism and Speedup Estimation of Sequential Programs”, Annals of Emerging

Technologies in Computing (AETiC), Print ISSN: 2516-0281, Online ISSN: 2516-029X, pp. 62-77, Vol. 5, No. 2, 1st April 2021,

Published by International Association of Educators and Researchers (IAER), DOI: 10.33166/AETiC.2021.02.006, Available:

http://aetic.theiaer.org/archive/v5/v5n2/p6.html.

Research Article

Inherent Parallelism and Speedup

Estimation of Sequential Programs

 Sesha Kalyur* and Nagaraja G.S

1CSE Dept. R.V. College of Engineering, Bangalore, India
SeshaKalyur@Outlook.Com; nagarajags@rvce.edu.in

*Correspondence: SeshaKalyur@Outlook.Com

Received: 29th January 2021; Accepted: 12th March 2021; Published: 1st April 2021

Abstract: Although several automated Parallel Conversion solutions are available, very few have

attempted, to provide proper estimates of the available Inherent Parallelism and expected Parallel Speedup.

CALIPER which is the outcome of this research work is a parallel performance estimation technology that

can fill this void. High level language structures such as Functions, Loops, Conditions, etc which ease

program development, can be a hindrance for effective performance analysis. We refer to these program

structures as the Program Shape. As a preparatory step, CALIPER attempts to remove these shape related

hindrances, an activity we refer to as Program Shape Flattening. Programs are also characterized by

dependences that exist between different instructions and impose an upper limit on the parallel conversion

gains. For parallel estimation, we first group instructions that share dependences, and add them to a class

we refer to as Dependence Class or Parallel Class. While instructions belonging to a class run sequentially,

the classes themselves run in parallel. Parallel runtime, is now the runtime of the class that runs the

longest. We report performance estimates of parallel conversion as two metrics. The inherent parallelism in

the program is reported, as Maximum Available Parallelism (MAP) and the speedup after conversion as

Speedup After Parallelization (SAP).

Keywords: Estimation; Parallel; Performance; Prediction; MAP; SAP

1. Introduction

Performance study of a program whether serial or parallel in nature involves one of the

following methods: through code Analysis, by Profiling or with the help of detailed Simulation.

Each technique has its pros and cons, and one of them is chosen based on when we need the

information [1].

The universal method, of estimating the performance of a program, is the wall clock method,

where the time spent by the program, from start to finish, provides the measure. But when

computers of different speeds are involved, a little more work is needed, in the form of converting,

run times to normalized cycles, before we can compare. When we need fine grained performance,

we can use specialized counters, to further our quest. However, empirical studies of program

performance are biased towards the choice of input samples used, which is an inherent limitation of

this method.

As an alternative, study of program characteristics, through static analysis, is encouraged. The

process seems simple, but tricky, since the cycles, are hidden in program structures, such as

Procedures, Loops, Recursion and Conditions to name a few. This is even more evident, when we

undertake performance study, of parallel programs and serial programs that are scheduled for,

parallel conversion. It is an unfortunate paradox that, the syntax features of an imperative

language, designed to boost programmer productivity, can be a hindrance to quality analysis and

performance studies. We are at the mercy of Analysis phases later on in the compilation chain to

http://aetic.theiaer.org/
http://aetic.theiaer.org/
http://www.theiaer.org/index.htm
http://aetic.theiaer.org/archive/v5/v5n2/p6.html
mailto:SeshaKalyur@Outlook.Com
mailto:nagarajags@rvce.edu.in
mailto:SeshaKalyur@Outlook.Com

AETiC 2021, Vol. 5, No. 2 63

www.aetic.theiaer.org

supply the information for estimation. Many of these phases also perform non trivial program

transformations to assist the analysis step further, reducing the relevance of an estimation phase. If

performance estimates are available early, they could be used to determine, the choice of

transformations to apply. How do we get past this dichotomy? By realizing that syntactic structures

are the cause, and finding a cure for it. From the perspective of a modern imperative language, this

means cleaning up syntax through Procedure Expansion or Function In-lining, Loop Unrolling,

Recursion to Loop Conversion, and Control Predication prior to the analysis and study phase.

Performance estimation and prediction of code that is free of syntactic structures of high level

languages are easy. Thus, converting code with these structures to sequential code is the first step in

our measurement process. We use a process called Program Shape Flattening, to eliminate the

estimation hurdles. These syntactic structures, their number and placement which add a unique

character to the program under study together, is referred to as the Program-Shape.

Next, we use the concept of Equivalence Class to solve the central problem that is addressed in

the paper namely, the coarse assessment of parallel performance and providing estimation and

prediction to programmers. We define Equivalence Class as a class that holds objects that share a

common property. In the current context, it holds program statements that share dependency

between them. We call such a class as a Parallel Equivalence Class or Parallel Dependence Class.

Together, the Parallel Equivalence Classes that belong to a program hold all the statements in the

given program. These Parallel Equivalence Classes can be run in parallel and hence the name. The

number of Parallel Equivalence Classes and the instructions belonging to each are good indicators, of

the parallel behaviour of the program. A large number of Parallel Equivalence Classes with less

number of statements in each indicates that the given program is parallel conversion friendly.

Finally, we define ready to remember and easy to use parallel performance indicators to aid

the parallel programmer referred to as, Maximum Available Parallelism which in short-form is

referred to as MAP and Speedup After Parallel Conversion which is abbreviated as SAP. The

sections which follow shall provide details of our research activities and their outcomes.

The paper is organized as follows: Section 2 which follows, examines the state of the art, in the

domain of performance assessment in general, and parallel measurement in particular. Section 3

briefly looks at Asterix, our parallel compiler and transformation infrastructure. Section 4 discusses

in detail, the workings of CALIPER, which is an important piece, in the overall solution, provided

by Asterix. Section 5 presents CALIPER in action, from the concept of an example program, in a

higher level, imperative language. Section 6 is dedicated to Competitive Analysis, where CALIPER

is compared against other state-of-the-art solutions. Finally we conclude the paper, after

highlighting the contributions of our work, with the research community, in perspective.

2. Previous Work

Early Parallel Conversion of programs was entirely a manual activity. Parallel code paths in

the program were identified and each path was handed out to a task. Tasks were implemented as

fill fledged Processes or Threads. The latter being the more efficient Counter-part in terms of

resources consumed [2]. Procedure is error-prone and tedious and so research was carried out to

seek better techniques.

The next step in the evolution of Parallel Programming was the advent of special parallel

languages or existing language constructs, offered as directives to the compiler and parallel

conversion supervised by the programmer [3-6]. Notable among them are the OpenMP and MPI

which are also industry-standard technologies [7-10].

Automated Parallel Conversion arrived later with static analysis as the basis for generating

information about the program, such as Flow and Dependence analyses, which provided the

impetus for transformations. Analysis techniques were algebraic such as Linear or Polyhedral, and

algorithmic such as Trees and Graphs [11-19]. While translating high-level languages to an

intermediate representation (IR) and transforming and optimizing the IR is the norm, several

researchers have tried the source-to-source conversions as a basis for optimizations and parallel

conversions [20-31].

AETiC 2021, Vol. 5, No. 2 64

www.aetic.theiaer.org

Researchers encountered irregular programs next which were hard to analyze statically.

Efforts to augment static with runtime data were started, which was possible through the Sampling

and Profiling activity [32-39]. This led to a burst in new research projects. However sampled data is

comparatively biased towards the inputs used and the program coverage accomplished [40-47]. A

few others used both static and dynamic data for analysis purposes [48-51].

Performance estimation and measurement are important from two angles. Measurement done

early in the compilation cycle can aid the choice of optimization and conversion techniques.

Measurement done later in the pipeline can be more accurate and can help ascertain the quality and

accurateness of earlier projections. A lot of research has been expended in the area of performance

assessment, including parallel performance [52-64].

3. Asterix

Caliper is a parallel measurement, prediction and estimation module. It is part of the

compilation pipeline, of Asterix our compiler, optimizer and parallel converter. We provide a high-

level view, of each of the Asterix modules next:

3.1. Paracite

This module is essentially, the front end of Asterix, where the lexical analysis, syntax analysis

and semantics analysis occur. The input to this phase is the program in an imperative language, and

the outcome of the phase, is the equivalent program in ASIF, the Intermediate Representation (IR) in

Asterix [65].

3.2. ASIF

ASIF is an acronym and stands for Asterix Intermediate Format the language that mainly

includes an IR instruction set invented for the Asterix compiler suite. It is based on the three-

address instruction format, with explicit Operand followed by the Result, And two Source

operands.

3.3. Caliper

Caliper reads the code in the ASIF format, and does a coarse estimation, of the nascent parallel

opportunities, that exist in the given program. This provides a starting point, for the users, to

position their reference performance. The following section discusses exhaustively on the topic. [1].

3.4. Graft

Graft performs the bulk of the analysis work, on the IR code in ASIF format. The result of the

analysis is represented in the form of several tables and graphs which are consulted, for identifying

code transformation opportunities, including optimizations and parallel conversions.

3.5. 3PO

3PO stands for Parallel Performance Predictor and Oracle. This module is a fine grain,

performance estimation and prediction module, which reports at the local block level, and also at

the global program level and uses several mathematical models, one for each transformation

category, for its operation. The various 3PO sub-models are categorized based on the nature of the

transformation, or parallel conversion. Accordingly, we have transformations that improve

instruction counts, transformations that improve cache latency, and transformations that enable

other transformations including parallel conversions [66].

The main performance numbers reported are, Inherent Parallel Potential (IPO) and the Expected

Speedup from Parallel Conversion (ESP) with obvious connotations for parallel conversion. For

transformations, the numbers are similar but with slightly different semantics, and they are,

Inherent Speedup Potential (ISP) and the Expected Speedup from Transformation (EST) using the

appropriate category model.

AETiC 2021, Vol. 5, No. 2 65

www.aetic.theiaer.org

3.6. Transgraph

Transgraph module is in charge of generating code transformations that are beneficial, from a

performance perspective. Some of the transformations are solely concerned, about generating code

that is parallel friendly. The input and output for the module, is IR in ASIF code, and

supplementary IR structures data such as graphs and tables.

3.7. Paragraph

Paragraph module actually generates the parallel code. The basic unit of parallel code which is

conceptually a task is called a Prune after morphing the phrase, Parallel IR Unit. Each Prune is

assigned, to an independent processing element, in a virtual topology and this mapping is

preserved, for the entire duration, of the application existence. The input for the module is IR code

and IR supplements, from Transgraph. Output is IR in Prune form.

3.8. Pigeon

Pigeon is a word that originates from the phrase, Parallel Code Generator. It is the module that

converts Prunes, to executable versions of Prunes. These executable Prunes are called Proxies,

singular is Proxy. The name evolved from the phrase, Parallel Execution Unit, are generated and

assigned, to respective execution units, in an actual physical topology in a later phase. These

mappings are subject to change, during the life cycle of the application.

3.9. AIDE

AIDE stands for, Asterix Integrated Development Environment, is a graphical tool to display the

important results, of the compilation process, starting from the source code, to the generation of

Prunes and Proxies and their interdependence [67]. The various views include, Annotated Source

and ASIF IR, Caliper Predictions, 3PO Oracles, Prunes, Proxies, their distribution and orchestration.

3.10. Concerto

This module as the name suggests is the Distributor, Coordinator and Orchestration Manager

of the Proxies in action. It chooses the mapping of Proxies to their respective processing elements

manages their remote executions and also provides synchronization primitives. In a NUMA

distributed environment, it also decides on how to partition data, between the Proxies, manages

mapping to processing elements and provides communication primitives for data sharing [68].

Actual mapping is handled by a sub module of Concerto called the Topology Mapper, TOPMAP for

short and offers a choice of, different mapping algorithms. [69-70].

Figure 1. Phases of ASTERIX Compiler Chain[1].

The Figure-1 illustrates the different phases involved in the operation of the Asterix compiler

in pictorial form and is intuitive for the most part. Readers can correlate the figure with the

description immediately above.

AETiC 2021, Vol. 5, No. 2 66

www.aetic.theiaer.org

4. CALIPER

CALIPER module, is responsible for providing the user, with a base expectation of parallel

performance that is inherent in the program, under consideration. This prediction can help dictate,

the choice of transformations to apply on the program, including the parallel conversion decisions.

The higher-level syntactic structures, of an imperative program, offer impedance, to the effective

computation of, performance estimates, and prediction. Each program is unique, from the

perspective of the collection of the syntactic structures, constituting the program, which offer

unique difficulties, for estimation and prediction. We refer to this trait of the program, as the Shape

of the program. The transformations applied to a program, to strip the Shape of a program as the

Program-Shape-Flattening.

Input to the CALIPER module, consists of IR in ASIF format. It performs the following,

Program-Shape-Flattening transformations such as, Function-Call-Expansion, Loop-Unrolling and

Control-Predication, which are described individually later. The output from the CALIPER module is

the performance estimation, in the form of Maximum-Available-Parallelism (MAP), and the

performance prediction, in the form of Speedup-After-Parallel Conversion (SAP). These two terms, are

described later. The following paragraphs describe the steps involved in CALIPER operation

followed by the definitions of Performance Metrics reported by CALIPER.

4.1. Function Call Expansion

The purpose of Function-Call-Expansion is to replace, all function calls, with the code, that

constitutes the function block. It should be noted that, it is a recursive process, and the process stops

only, after all user defined functions, have been expanded. Library Functions and System Calls are

normally not considered for call expansion. They are essentially treated as any other instruction,

which suffices for coarse estimates. A user program that is loaded with library calls and system

calls may skew the prediction somewhat, but it is usually not the case, with a majority of the real-

world programs.

4.2. Loop Unrolling

As a result of Loop-Unrolling, all Loops and Multi-Loops are replaced with their respective code

blocks, and the instructions making up the Entry, Exit Conditions and the Loop Back Jumps

removed.

4.3. Control Predication

Control Predication is a transformation that replaces Conditional Blocks, with equivalent

Predicated Blocks. The Conditional Statements are another hindrance, to the correct estimation, of

performance. However, most of the architectures provide support for Predicated-Execution of

instructions, with varying degree of support. However all of them support Conditional-Move

instruction which is a powerful construct when used with predicates, to compute the condition of

the move, and combined with regular instructions, computing to temporary result variables, offer a

powerful and compelling solution, to implement Control-Predication.

4.4. Maximum Available Parallelism

Maximum-Available-Parallelism (MAP) is a metric that reports the amount of parallelism

present, in a given program, as a percentage. For instance, a MAP of 33% means that, one third of

the code is parallel convertible, and the other two thirds of the code, 66% is serial in nature. It

should be noted, that this number, takes in to consideration, all the dependencies, that exist in the

program, which includes, both the data, and the control kinds.

4.5. Speedup After Parallel Conversion

Speedup-After-Parallel Conversion {SAP}, is a metric that reports the benefits of parallel

conversion. In the example discussed earlier, since 33% is subject to parallel conversion, the

AETiC 2021, Vol. 5, No. 2 67

www.aetic.theiaer.org

effective run time is determined by the 66% of the serial part, and the expected speedup, would be

1.52 and reported as a floating point number.

The Figure-2 illustrates the different steps involved, in the operation of the CALIPER module.

As you can see, translated IR code in ASIF format is fed to the Inliner module, which carries out the

expansion of all function calls, and this modified IR is fed to the next module in the chain, which is

the Unroller. This module unrolls all loops, and its output is sent to the next module in the chain,

which is the Predicator. The purpose of this module is to convert all conditionals in the IR to

Predicated statements. The output from this module, is shape sanitized IR that is ready for

performance estimation.

Figure 2. CALIPER operation[2]

4.6. Performance Estimation Equations

Performance estimation and prediction, for both serial and parallel versions, revolve around

the following parameters, which are defined below, and also given are the equations for computing

them.

4.6.1. Serial Execution Cycles

Since we are measuring performance, in coarse fashion here, we are not accounting, for the

individual instruction differences. Each instruction counts as one cycle, and we are also not

considering, the memory hierarchy, into these computations. Fine grained estimations, are for a

later pass, where they use the 3PO model which has an in built cycle accurate simulator, we call

Kinetics, for accurate estimates. It includes hardware accurate models of cache, memory and storage

supporting the simulator. The workings of 3PO and Kinetics, are subject matter of a different paper,

and we shall not discuss them any further here. The following equation, describes the process, for

the equation for Serial-Execution-Cycles:

C_SER = N_INC (1)

Here, C_CYC is the count of cycles, to run the serial version of the program, and N_INC is the

instruction count, for the given program,

4.6.2. Parallel Execution Cycles

Computation of the parallel execution cycles, is more involved, and requires a check, for data

dependence between operands and results, belonging to different instructions. Since we have

eliminated, control dependencies of all kinds, through Shape-Flattening, this is not an issue any

more. A later subsection, shall describe the Shape-Flattening algorithm in more detail. Calculating

Parallel-Execution-Cycles involves, classifying instructions, based on their data dependence, into

different equivalence classes. Instructions belonging to the same equivalence class are data

dependent with one another, and so we have to honour, their ordinal order of issue, to maintain

correctness. However instructions belonging to different classes, have no data dependencies, and

hence allow concurrent execution between them. Once the equivalence classes, have been finalized,

the execution time is dictated by, the longest running equivalence class. The algorithm for creating

equivalent dependence classes shall be given later in a following subsection.

The equation for computing, the parallel execution cycles, is given below,

C_PAR = MAX(EQC_1, EQC_2, ..., EQC_n) (2)

Where C_PAR is the parallel cycle count, EQC_1, EQC_2,..., EQC_n are the total cycles needed to

execute the, individual equivalence class instructions in serial fashion.

The equation to compute Maximum Available Parallelism (MAP) is given on the following line:

MAP = (C_SER - C_PAR) / C_SER) X 100 (3)

Where, Maximum Available Parallelism (MAP) is a measure of the inherent parallelism available

in a program, and is reported as a percent of the total program instructions. C_PAR is the number of

AETiC 2021, Vol. 5, No. 2 68

www.aetic.theiaer.org

cycles required to run the parallel version of the program and C_SER is the cycle count for the serial

version of the program.

The equation to compute the Speedup After Parallel Conversion (SAP) is given below:

SAP = (C_SER / C_PAR) (4)

Where, Speedup After Parallel Conversion (SAP) is an estimate of how much faster the program

will run, after parallel conversion, C_PAR is the number of cycles required to run the parallel version

of the program and C_SER is the cycle count, for the serial version of the program.

4.7. Program Shape Flattening

As mentioned earlier, program syntax structures such as Functions, Loops and Conditionals,

are a hindrance to effective estimation and predictions of performance. So as a first step, it is

essential to flatten these high level language structures and then proceed with the estimation.

In the following paragraphs, we will give brief procedures in algorithmic form to perform

these preparatory steps towards estimation.

Algorithm 1. Program Shape Flattening
1: procedure Flatten_Program

2: Inline_Function()

3: Unroll_Loop()

4: Predicate_Condition()

5: end procedure

6: procedure Inline_Function

7: for Fnc 1 to n do // sweep through function calls in the program

8: Get_Function_Definition(Def, Fnc) // fetch code block needed for the call

9: Replace_Call_With_Definition(Def, Fnc) // replace call with the code block

10: end for

11: end procedure

12: procedure Unroll_Loop

13: for Glp 1; n do // sweep through loops in the program

14: Get_Loop_Block(Blk, Glp) // fetch code block for the loop

15: Replace_Loop_With_Private_Blocks(Blk, Glp) // duplicate code block for each iteration

16: end for

17: end procedure

18: procedure Predicate_Condition

19: for Cnd 1; n do // sweep through conditionals in the program

20: Get_Condition_Block(Blk, Cnd) // fetch code block for the conditional

21: Replace_Condition_With_Predicates(Blk, Cnd) // replace condition with the predicated block

22: end for

23: end procedure

4.8. Parallel Equivalence Classes

 Parallel Equivalence Classes are a set of items that satisfy a single property. In the context of

Parallel Conversions, it means sets of instructions that can be executed concurrently. However it

should be noted that, instructions within a particular class, are to be executed in serial, to satisfy the

property of an equivalence class. When the instructions of a program, are organized in to

equivalence classes, the run time of the program, is reduced from the time spent, by all instructions

of the program executing serially, to the run time of the longest running equivalence class.

 What follows is the algorithm to create the Equivalence Classes, also referred to as Dependence

Classes here. Once created, it becomes trivial to assess the run time and predict performance. The

equivalence class creation algorithm is given below:

Algorithm 2. Parallel Equivalence Classes Creation
1: procedure Build Parallel Equivalence Classes

2: Build_Equivalence_Classes()

3: Merge_Equivalence_Classes()

4: end procedure

AETiC 2021, Vol. 5, No. 2 69

www.aetic.theiaer.org

5: procedure Build_Equivalence_Classes

6: for Ins 1; n do // sweep through the program's instructions

7: Get Result Operand(R, Ins) // fetch result operand of instruction

8: Add Instruction(R, Ins) // add instruction to class R of global parallel equivalence class list

9: end for

10: end procedure

11: procedure Merge Equivalence Classes

12: for Ins 1; n do // sweep through the program's instructions

13: Get Result Operand(R, Ins) // fetch result operand of instruction

14: Get Source1 Operand(S1, Ins) // fetch source1 operand of instruction

15: Get Source2 Operand(S2, Ins) // fetch source2 operand of instruction

16: Merge(R, S1) // merge class S1 to class R and update global parallel equiv. class list

17: Merge(R, S2) // merge class S2 to class R and update global parallel equiv. class list

18: end for

19: end procedure

4.9. Long Dependence Sequences

Certain programs exhibit long dependence sequences which can lead to loss of parallelism and

produce fewer than optimal number of parallel classes. To prevent this, a heuristic based on the

concept of Instruction Threshold (IT) is proposed, where IT is the number of instructions in a class

which would ensure or force the class to become an independent parallel class. For instance IT

which is a tuneable can be set to 32 instructions, which means that if the class size is less than IT

proceed with the merger and in the other case skip merger. To implement this at the time of Parallel

Class mergers a check is made to see if the class lengths meet the IT threshold. If the criterion is met

then the instruction which acts as the key in both classes is hoisted out of the classes and a unique

class is made with the instruction. Dependence is set from the new class with the hoisted instruction

to the existing classes. New keys for the two existing classes are defined with the result operand

from the least numbered instruction in both classes. This operation is recursively applied to both

classes as long as the IT holds. These IT checks are enough to ensure optimum parallelization is

preserved. While calculating parallel instruction count, care should be taken to add the serial paths

which precede the parallel classes and add the instruction counts to the sum.

5. Analysis

To better understand the working of the internals of Caliper, we study a simple program with

a function, loop and conditional to see how it gets transformed as it passes through the shape

flattening exercises and finally analyzes the ASIF-IR program to generate the Caliper report.

5.1. Input File to Caliper (calfun.c)

Given below is a simple C program with a function, loop and condition. The program which is

passed as input to Caliper is self-explanatory.
1: #include <stdio.h>

2: #define LOOP_COUNT 8

3: #define HALF_COUNT LOOP_COUNT/2

4: double

5: calfun(int x) {

6: if (x < HALF_COUNT)

7: return x * x;

8: else

9: return 2 * x;

10: }

11: int

12: main() {

13: int i;

14: double z = 0;

15: for (i = 0; i < LOOP_COUNT; i++)

16: z += calfun(i);

17: printf("z = %lf\n", z);

AETiC 2021, Vol. 5, No. 2 70

www.aetic.theiaer.org

18: }

5.2. Calfun.c after Function In-lining by Caliper (calfun_inl.c)

The first transformation applied to calfun.c is the function inlining and the program listed

below is output as a result of that transformation. Lines 6-9 of the program represent the function

which was inlined.
1: int

2: main() {

3: int i;

4: double z = 0;

5: for (i = 0; i < LOOP_COUNT; i++) {

6: if (i < HALF_COUNT)

7: z += i * i;

8: else

9: z += 2 * i;

10: }

5.3. Calfun_inl.c after Control Predication by Caliper (calfun_pred.c)

The program below if output by Caliper as a result of the Control Predication transformation

where the If-conditional block is predicated as seen on line 6.
1: int

2: main() {

3: int i;

4: double z = 0;

5: for (i = 0; i < LOOP_COUNT; i++)

6: z += (i < HALF_COUNT)? i * i : 2 * i;

7: printf("z = %lf\n", z);

8: }

5.4. Calfun_pre.c after Loop Unrolling by Caliper (calfun_unl.c)

The final transform applied by Caliper is the loop unrolling and the following program is

output as seen on lines 5-20.
1: int

2: main() {

3: int i;

4: double z = 0;

5: /* iteration 0 */

6: z += (0 < 4)? 0 * 0 : 2 * 0;

7: /* iteration 1 */

8: z += (1 < 4)? 1 * 1 : 2 * 1;

9: /* iteration 2 */

10: z += (2 < 4)? 2 * 2 : 2 * 2;

11: /* iteration 3 */

12: z += (3 < 4)? 3 * 3 : 2 * 3;

13: /* iteration 4 */

14: z += (4 < 4)? 4 * 4 : 2 * 4;

15: /* iteration 5 */

16: z += (5 < 4)? 5 * 5 : 2 * 5;

17: /* iteration 6 */

18: z += (6 < 4)? 6 * 6 : 2 * 6;

19: /* iteration 7 */

20: z += (7 < 4)? 7 * 7 : 2 * 7;

21: printf("z = %lf\n", z);

22: }

5.4. Calfun_unl.c after ASIF-IR generation by Caliper (calfun.s)

The following ASIF-IR is the resulting program after all transformations and high level code

are translated to IR. Lines 5-25 show the results. To save space only iterations 0, 1 and 7 are shown

with the others snipped.

AETiC 2021, Vol. 5, No. 2 71

www.aetic.theiaer.org

1: main:

2: ;DEC i, 4

3: ;DEC z, 8

4: ; iteration 0

5: ; z += (0 < 4)? 0 * 0 : 2 * 0;

6: MUL T_0, 0, 0

7: MUL T_1, 2, 0

8: LTH T_3, 0, 4

9: ADE T_4, z, T_0

10: ADE T_5, z, T_1

11: CMOV z, T_3, T_4

12: CMOV z, T_3, T_5

13: ; iteration 1

14: ;z += (1 < 4)? 1 * 1 : 2 * 1;

15: MUL T_6, 1, 1

16: MUL T_7, 2, 1

17: LTH T_8, 1, 4

18: ADE T_9, z, T_6

19: ADE T_10, z, T_7

20: CMOV z, T_8, T_9

21: CMOV z, T_8, T_10

22: ; iteration 2 – removed to save space

23: ; iteration 3 – removed to save space

24: ; iteration 4 – removed to save space

25: ; iteration 5 – removed to save space

26: ; iteration 6 – removed to save space

27: ; iteration 7

28: ;z += (7 < 4)? 7 * 7 : 2 * 7;

29: MUL T_36, 7, 7

30: MUL T_37, 2, 7

31: LTH T_38, 7, 4

32: ADE T_39, z, T_36

33: ADE T_40, z, T_37

34: CMOV z, T_38, T_39

35: CMOV z, T_38, T_40

36: ;printf("z = %lf\n", z);

5.5. CALIPER Parallel Estimates (calfun.csv)

After the ASIF-IR code is passed to Caliper it creates the required Equivalence Classes and

calculates the MAP and SAP metrics, and the output is generated in the form of CSV file as shown

below:

(1), Serial Instruction Count, SIN, 58

(2), Equivalence Class Count, EQC, 9

(3), Mean Instruction Count, MIN, 6.44

(4), Parallel Instruction Count, PIN, 33

(5), Serial Execution Cycles, SEC, 58

(6), Parallel Execution Cycles, PEC, 33

(7), Maximum Available Parallelism, MAP, 43.10

(8), Speedup After Parallelization, SAP, 1.75

For the given program, Serial Execution Cycles was 58 same as the instruction count and

Parallel Execution Cycles was 33. From the Maximum Available Parallelism (MAP) value it is

evident that 43.10% of the given program is parallelizable and the Speedup After Parallelization

(SAP) is about 1.75.

6. Competitive Analysis

Here we compare Asterix/Caliper with other leading compilers both open-sourced and

proprietary. While LLVM, GCC and Open64 are open source technologies, ICC, PGI and PathScale

offer proprietary products.

AETiC 2021, Vol. 5, No. 2 72

www.aetic.theiaer.org

As seen from the table, Caliper provides parallel performance estimates which none of the

other state-of-the-art compilers provide. However all of them provide optimization related

diagnostics at some basic level. Based on our findings, we have to conclude that Caliper is the only

working, Parallel Performance Estimation and Prediction Solution available, at this time.

Table 1. Performance Estimation Support [3]
No. Compiler Performance

Estimation

Availability

Optimization and

Parallel Diagnostics

Command line flags or Commands

Outcome

1 Asterix/Caliper [1] YES CALIPER/3PO Inherent parallelism (MAP) and

Expected speedup (SAP) metrics

are generated

2 GCC1 NO Several –fdump flags such as –

fdump-ipa-all and –dump-ipa-inline

Information on in-lined functions

etc

3 CLANG/LLVM 2 NO -emit-llvm and –Rpass, -Rpass-

missed and –Rpass-analysis

Instrumented IR and optimization

reports

4 Open64 3 NO -CLIST and –FLIST,

-LNO:refetch_verbose, -

LNO:simd_verbose etc

Prefetch and other optimization

specific diagnostics

5 Intel/ICC 4 NO -fverbose-asm and opt-report Generate all optimization related

activity as a report

6 PGI 5 NO -Minfo and –Mneginfo flags provide

diagnostics

Informative messages such as,

whether a loop was vectorized or

not and rationale

7 Pathscale 6 NO -CLIST and -FLIST, options are

provided for diagnostics

Information on a specific

optimization such as Prefetches

* Estimation capabilities of Modern Compiler Frameworks.

7. Conclusion

Caliper was developed to aid the parallel programmer in his endeavours, by providing a yield

estimate resulting from parallel conversion of a given program. Caliper works on programs in

ASIF-IR format an internal representation developed as part of our compiler framework. Caliper as

a preliminary step performs Program Shape Flattening Transformations to ease subsequent steps. It

performs symbolic analysis of ASIF-IR instructions representing the given program internally, and

classifies them in to Equivalence Classes based on their dependence behaviour. These classes which

host dependent instructions are themselves dependence free and are eligible to operate in

interleaved fashion with other classes. Once arranged in this fashion it becomes easy to compute

Serial and Parallel runtimes. Serial runtime is the sequential runtime of the instructions making up

the program and Parallel runtime is the runtime of the class that runs the longest. Based on these

two numbers two metrics useful to the programmer are reported. Maximum Available Parallelism

(MAP) points out the inherent parallel potential of a given program. Speedup after Parallelization

(SAP) complements the earlier metric by reporting the estimated speedup resulting from parallel

conversion. At the time of writing there are no known technologies comparable to Caliper and we

conclude that Caliper is a one of its kind parallelization technology.

References

[1] Sesha Kalyur and GS Nagaraja, “CALIPER: A coarse grain parallel performance estimator and predictor”,

In International Conference for Emerging Technologies in Computing, Print ISBN 978-3-030-60035-8, Online

1GNU-compiler-collection. Available: https://gcc.gnu.org/onlinedocs/ (Accessed on Day 28/01/2021).
2LLVM-compiler-collection. Available: https://clang.llvm.org/docs/UsersManual.html (Accessed on 28/01/2021)
3Open64-compiler-collection. Available: https://developer.amd.com/x86-open64-compiler-suite/ (Accessed on 28/01/2021)
4Intel-ICC-compiler-collection. Available: https://software.intel.com/content/www/us/en/develop/documentation/cpp-

compiler-developer-guide-and-reference/top.html (Accessed on 28/01/2021)
5PGI-compiler-collection. Available: https://www.pgroup.com/resources/docs/19.10/x86/pgi-ref-guide/index.htm (Accessed

on 28/01/2021)
6PathScale-compiler-collection. Available: http://www.scc.kit.edu/scc/docs/HP-XC/pathscale/UserGuide.pdf (Accessed on

28/01/2021)

https://gcc.gnu.org/onlinedocs/
https://clang.llvm.org/docs/UsersManual.html
https://developer.amd.com/x86-open64-compiler-suite/
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html
https://www.pgroup.com/resources/docs/19.10/x86/pgi-ref-guide/index.htm
http://www.scc.kit.edu/scc/docs/HP-XC/pathscale/UserGuide.pdf

AETiC 2021, Vol. 5, No. 2 73

www.aetic.theiaer.org

ISBN 978-3-030-60036-5, pp. 16-39, Springer, 2020, DOI: 10.1007/978-3-030-60036-5_2, Available:

https://link.springer.com/chapter/10.1007/978-3-030-60036-5_2.

[2] David Culler, Jaswinder Pal Singh and Anoop Gupta, Parallel computer architecture: a hardware/software

approach, California, USA: Morgan Kaufmann Publishers, Inc., 1999.

[3] William Gropp, William D Gropp, Ewing Lusk, Anthony Skjellum and Ewing Lusk, Using MPI: portable

parallel programming with the message-passing interface, 2nd ed. Cambridge, UK: MIT press, 1999.

[4] Ran Canetti, L. Paul Fertig, Saul A. Kravitz, Dalia Malki, Ron Y. Pinter, Sara Porat and Avi Teperman,

“The parallel c (pc) programming language”, IBM Journal of Research and Development, pp. 727-741, Vol. 35,

No. 5.6, September 1991, DOI: 10.1147/rd.355.0727.

[5] Alan Kaminsky, “Parallel java: A united api for shared memory and cluster parallel programming in 100%

java”, In 2007 IEEE International Parallel and Distributed Processing Symposium, Print ISSN: 1530-2075, pp. 1-

8, March 2007, DOI: 10.1109/IPDPS.2007.370421.

[6] Eduard Ayguade, Nawal Copty, Alejandro Duran, Jay Hoeinger, Yuan Lin et al., “The design of openmp

tasks”, IEEE Transactions on Parallel and Distributed Systems, Print ISSN: 1045-9219, Electronic ISSN: 1558-

2183, pp. 404-418, Vol. 20, No. 3, March 2009, DOI: 10.1109/TPDS.2008.105, Available:

https://ieeexplore.ieee.org/abstract/document/4553700.

[7] Leonardo Dagum and Ramesh Menon, “Openmp: an industry standard api for shared-memory

programming”, IEEE computational science and engineering, Print ISSN: 1070-9924, Electronic ISSN: 1558-

190X, pp.46-55, 1998, Vol. 5, No. 1, DOI: 10.1109/99.660313, Available:

https://ieeexplore.ieee.org/abstract/document/660313.

[8] Hironori Kasahara, Motoki Obata and Kazuhisa Ishizaka, “Automatic coarse grain task parallel processing

on smp using openmp”, In International Workshop on Languages and Compilers for Parallel Computing, Print

ISBN 978-3-540-42862-6, Online ISBN 978-3-540-45574-5, pp. 189-207, Springer, 2000, DOI:10.1007/3-540-

45574-4_13, Available: https://link.springer.com/chapter/10.1007/3-540-45574-4_13.

[9] Mitsuhisa Sato, “Openmp: parallel programming API for shared memory multiprocessors and on-chip

multiprocessors”, In Proceedings of the 15th international symposium on System Synthesis, pp. 109-111, 2002,

DOI: 10.1145/581199.581224, Available: https://dl.acm.org/doi/10.1145/581199.581224.

[10] Seyong Lee, Seung-Jai Min and Rudolf Eigenmann, “Openmp to gpgpu: a compiler framework for

automatic translation and optimization”, ACM Sigplan Notices, pp.101-110, Vol. 44, No. 4, 2009, DOI:

10.1145/1594835.1504194, Available: https://dl.acm.org/doi/abs/10.1145/1594835.1504194.

[11] Sesha Kalyur and G. S. Nagaraja, “A survey of modeling techniques used in compiler design and

implementation”, In International Conference on Computation System and Information Technology for

Sustainable Solutions (CSITSS), pp. 355-358, October 2016, DOI: 10.1109/CSITSS.2016.7779385, Available:

https://ieeexplore.ieee.org/abstract/document/7779385.

[12] Uday Bondhugula, Muthu Baskaran, Albert Hartono, Sriram Krishnamoorthy, J. Ramanujam et al.,

“Towards effective automatic parallelization for multicore systems”, In Parallel and Distributed Processing, 3

2008, IPDPS 2008, IEEE International Symposium on, Print ISBN:978-1-4244-1693-6, Print ISSN: 1530-2075,

pp. 1-5, April 2008, DOI: 10.1109/IPDPS.2008.4536401.

[13] Paul Lokuciejewski, Daniel Cordes, Heiko Falk and Peter Marwedel, “A fast and precise static loop

analysis based on abstract interpretation, program slicing and polytope models”, In Code Generation and

Optimization, 2009, CGO 2009, International Symposium on, pp. 136-146, March 2009, DOI:

10.1109/CGO.2009.17, Available: https://dl.acm.org/doi/10.1109/CGO.2009.17.

[14] Susan Horwitz and Thomas Reps, “The use of program dependence graphs in software engineering”, In

Proceedings of the 14th international conference on Software engineering, pages 392-411, 1992, DOI:

10.1145/143062.143156, Available: https://dl.acm.org/doi/abs/10.1145/143062.143156.

[15] Vivek Sarkar, “Automatic partitioning of a program dependence graph into parallel tasks”, IBM Journal of

Research and Development, pp. 779-804, Vol. 35, No. 5.6, 1991, DOI: 10.1147/rd.355.0779, Available:

https://ieeexplore.ieee.org/abstract/document/5389740.

[16] Angeles Navarro, Emilio Zapata and David Padua, “Compiler techniques for the distribution of data and

computation”, In Parallel and Distributed Systems, IEEE Transactions on, pp. 545-562, Vol. 14, No. 6, June

2003, DOI: 10.1109/TPDS.2003.1206503, https://ieeexplore.ieee.org/abstract/document/1206503.

[17] Roxana E. Diaconescu, Lei Wang, Zachary Mouri and Matt Chu, “A compiler and runtime infrastructure

for automatic program distribution”, In Parallel and Distributed Processing Symposium, 2005, Proceedings.

19th IEEE International, ISBN:0-7695-2312-9, Print ISSN: 1530-2075, pp. 52a-52a, April 2005, DOI:

10.1109/IPDPS.2005.7, https://ieeexplore.ieee.org/abstract/document/1419872.

[18] Thomas Fahringer, “Using the p3t to guide the parallelization and optimization report under the vienna

fortran compilation system”, In Scalable High Performance Computing Conference, 1994, Proceedings of the,

Print ISBN: 0-8186-5680-8, pp. 437-444, May 1994, DOI: 10.1109/SHPCC.1994.296676, Available:

https://doi.org/10.1109/SHPCC.1994.296676.

https://link.springer.com/chapter/10.1007/978-3-030-60036-5_2
https://ieeexplore.ieee.org/abstract/document/4553700
https://ieeexplore.ieee.org/abstract/document/660313
https://link.springer.com/chapter/10.1007/3-540-45574-4_13
https://dl.acm.org/doi/10.1145/581199.581224
https://dl.acm.org/doi/abs/10.1145/1594835.1504194
https://ieeexplore.ieee.org/abstract/document/7779385
https://dl.acm.org/doi/10.1109/CGO.2009.17
https://dl.acm.org/doi/abs/10.1145/143062.143156
https://ieeexplore.ieee.org/abstract/document/5389740
https://ieeexplore.ieee.org/abstract/document/1206503
https://ieeexplore.ieee.org/abstract/document/1419872
https://doi.org/10.1109/SHPCC.1994.296676

AETiC 2021, Vol. 5, No. 2 74

www.aetic.theiaer.org

[19] Thomas Fahringer, “On estimating the useful work distribution of parallel programs under p3t: A static

performance estimator”, In Concurrency: Practice and Experience, Wiley Online Library, ,pp. 261-282, Vol. 8,

No. 4, May 1996, DOI: 10.1002/(SICI)1096-9128(199605)8:4<261::AID-CPE205>3.0.CO;2-6, Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.3470&rep=rep1&type=pdf.

[20] Dan Quinlan, “Rose: Compiler support for object-oriented frameworks”, Parallel Processing Letters, pp.215-

226, Vol. 10, No. 02n03, 2000, DOI: 10.1142/S0129626400000214, Available:

https://doi.org/10.1142/S0129626400000214.

[21] Vikram Adve, Guohua Jin, John Mellor-Crummey and Qing Yi, “Design and evaluation of a computation

partitioning framework for data-parallel compilers”, Technical report, Department of Computer Science, Rice

University, Tech Rep: CS-TR01-382, 2001.

[22] Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigenmann et al., “Cetus: A source-to-

source compiler infrastructure for multicores”, IEEE Computer, Print ISSN: 0018-9162, Electronic ISSN:

1558-0814, pp. 36-42, Vol. 42, No. 12,2009, DOI: 10.1109/MC.2009.385, Available:

https://ieeexplore.ieee.org/abstract/document/5353460.

[23] Robert L Bocchino Jr, Vikram S Adve, Sarita V Adve and Marc Snir, “Parallel programming must be

deterministic by default”, In Proceedings of the First USENIX conference on Hot topics in parallelism, pp. 4-4,

April 2009.

[24] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Ignacio Gomez, Christian Tenllado et al.,

“Polyhedral parallel code generation for cuda”, ACM Transactions on Architecture and Code Optimization

(TACO), pp. 1-23, Vol. 9, No. 4, 2013, DOI: 10.1145/2400682.2400713, Available:

https://dl.acm.org/doi/abs/10.1145/2400682.2400713.

[25] Tim A. Wagner, Vance Maverick, Susan L. Graham and Michael A. Harrison, “Accurate static estimators

for program optimization”, SIGPLAN Notices, pp. 85-96, Vol. 29, No. 6, June 1994, DOI:

10.1145/178243.178251, Available: https://dl.acm.org/doi/abs/10.1145/178243.178251.

[26] Vasanth-Balasundaram, Georey Fox, Ken Kennedy and Ulrich Kremer, “A static performance estimator to

guide data partitioning decisions”, SIGPLAN Notices, pp. 213-223, Vol. 26, No. 7, April 1991, DOI:

10.1145/109625.109647, Available: https://dl.acm.org/doi/abs/10.1145/109625.109647.

[27] Thomas Fahringer and Hans P. Zima, “A static parameter based performance prediction tool for parallel

programs”, In Proceedings of the 7th International Conference on Supercomputing, ICS '93, pp. 207-219, New

York, NY, USA, 1993, ACM, DOI: 10.1145/165939.165971.

[28] D. Arapattu and Dennis Gannon, “Building analytical models into an interactive performance prediction

tool”, In Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, Supercomputing '89, Print ISBN:0-

89791-341-8, pp. 521-530, New York, NY, USA, 1989, ACM, DOI: 10.1145/76263.76321, Available:

https://ieeexplore.ieee.org/abstract/document/5348984.

[29] Christophe Dubach, John Cavazos, Bjorn Franke, Grigori Fursin, Michael F.P. O'Boyle et al., “Fast compiler

optimisation evaluation using code-feature based performance prediction”, In Proceedings of the 4th

International Conference on Computing Frontiers, CF '07, pp. 131-142, New York, NY, USA, 2007, ACM, DOI:

10.1145/1242531.1242553, Available: https://dl.acm.org/doi/abs/10.1145/1242531.1242553.

[30] Donghwan Jeon, Saturnino Garcia, Chris Louie and Michael Bedford Taylor, “Kismet: Parallel speedup

estimates for serial programs”, SIGPLAN Notices, pp. 519-536, Vol. 46, No. 10, October 2011, DOI:

10.1145/2048066.2048108, Available: https://dl.acm.org/doi/abs/10.1145/2048066.2048108.

[31] Nathan R. Tallent and John M. Mellor-Crummey, “Effective performance measurement and analysis of

multithreaded applications”, In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP '09, pp. 229-240, New York, NY, USA, 2009, ACM, DOI:

10.1145/1504176.1504210, Available: https://dl.acm.org/doi/abs/10.1145/1504176.1504210.

[32] Aparna Kotha, Kapil Anand, Matthew Smithson, Greeshma Yellareddy and Rajeev Barua, “Automatic

parallelization in a binary rewriter”, In 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, Electronic ISSN: 2379-3155, Print ISSN: 1072-4451, pp. 547-557, December 2010, DOI:

10.1109/MICRO.2010.27, Available: https://ieeexplore.ieee.org/abstract/document/5695565.

[33] William Blume and Rudolf Eigenmann, “An overview of symbolic analysis techniques needed for the

effective parallelization of the perfect benchmarks”, In Proceedings of the 1994 International Conference on

Parallel Processing, Print ISBN:0-8493-2493-9, pp. 233-238, Vol. 02, ICPP '94, Washington, DC, USA, 1994,

DOI: 10.1109/ICPP.1994.59, Available: https://ieeexplore.ieee.org/abstract/document/5727792.

[34] Bill Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jaejin Lee et al., “Restructuring programs for

high-speed computers with Polaris”, In International Conference on Parallel Processing, 1996, Proceedings of

the 1996 ICPP Workshop on Challenges for, Print ISBN: 0-8186-7623-X, Print ISSN: 1530-2016, pp. 149-161,

August 1996, DOI: 10.1109/ICPPW.1996.538601.

[35] Mihai T. Lazarescu and Luciano Lavagno, “Dynamic trace-based data dependency analysis for

parallelization of c programs”, In Source Code Analysis and Manipulation (SCAM), 2012 IEEE 12th

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.3470&rep=rep1&type=pdf
https://doi.org/10.1142/S0129626400000214
https://ieeexplore.ieee.org/abstract/document/5353460
https://dl.acm.org/doi/abs/10.1145/2400682.2400713
https://dl.acm.org/doi/abs/10.1145/178243.178251
https://dl.acm.org/doi/abs/10.1145/109625.109647
https://ieeexplore.ieee.org/abstract/document/5348984
https://dl.acm.org/doi/abs/10.1145/1242531.1242553
https://dl.acm.org/doi/abs/10.1145/2048066.2048108
https://dl.acm.org/doi/abs/10.1145/1504176.1504210
https://ieeexplore.ieee.org/abstract/document/5695565
https://ieeexplore.ieee.org/abstract/document/5727792

AETiC 2021, Vol. 5, No. 2 75

www.aetic.theiaer.org

International Working Conference on, Electronic ISBN:978-0-7695-4783-1, Print ISBN:978-1-4673-2398-7, pp.

126-131, September 2012, DOI: 10.1109/SCAM.2012.15.

[36] Clemens Hammacher, Kevin Streit, Sebastian Hack and Andreas Zeller, “Profling java programs for

parallelism”, In Multicore Software Engineering, 2009, IWMSE '09, ICSE Workshop on, Print ISBN:978-1-4244-

3718-4, pp 49-55, May 2009, DOI: 10.1109/IWMSE.2009.5071383, Available:

https://ieeexplore.ieee.org/abstract/document/5071383.

[37] Saturnino Garcia, Donghwan Jeon, Christopher Louie and Michael B. Taylor, “The kremlin oracle for

sequential code parallelization”, IEEE Micro, Print ISSN: 0272-1732, Electronic ISSN: 1937-4143, pp.42-53,

Vol. 32, No. 4, July 2012, DOI: 10.1109/MM.2012.52, Available:

https://ieeexplore.ieee.org/abstract/document/6235946.

[38] Lucian Codrescu and D. Scott Wills, “On dynamic speculative thread partitioning and the mem-slicing

algorithm”, In Parallel Architectures and Compilation Techniques, 1999, Proceedings. 1999 International

Conference on, Print ISBN:0-7695-0425-6, Print ISSN: 1089-795X, pp. 40-46, 1999, DOI:

10.1109/PACT.1999.807404, Available: https://ieeexplore.ieee.org/abstract/document/807404.

[39] Borys J. Bradel and Tarek S. Abdelrahman, “Automatic trace-based parallelization of java programs”, In

2007 International Conference on Parallel Processing (ICPP 2007), Print ISSN: 0190-3918, Electronic ISSN: 2332-

5690, pp. 26-26, September 2007, DOI: 10.1109/ICPP.2007.21, Available:

https://ieeexplore.ieee.org/abstract/document/4343833.

[40] Calin Cascaval, Luiz De Rose, David A. Padua and Daniel A. Reed, “Compile-time based performance

prediction”, In Proceedings of the 12th International Workshop on Languages and Compilers for Parallel

Computing, LCPC '99, Print ISBN: 978-3-540-67858-8, Online ISBN: 978-3-540-44905-8, pp. 365-379, Berlin,

Heidelberg, 2000, Springer-Verlag, DOI: 10.1109/ICPP.2007.21, Available: Available:

https://link.springer.com/chapter/10.1007/3-540-44905-1_23.

[41] Pedro C. Diniz, “A compiler approach to performance prediction using empirical-based modeling”, In

Proceedings of the 2003 International Conference on Computational Science: PartIII, ICCS'03, Print ISBN: 978-3-

540-40196-4, Online ISBN: 978-3-540-44863-1, pp. 916-925, Berlin, Heidelberg, 2003, Springer-Verlag, DOI:

10.1007/3-540-44863-2_90, Available: https://link.springer.com/chapter/10.1007/3-540-44863-2_90.

[42] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk, “Prospector: A dynamic data-dependence profiler to

help parallel programming”, 2010 Usenix, January 2010, Available:

https://static.usenix.org/events/hotpar10/final_posters/Kim.pdf.

[43] Barton P. Miller, Mark D. Callaghan, Jonathon M. Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin et al.,

“The paradyn parallel performance measurement tool”, Computer, Print ISSN: 0018-9162, Electronic ISSN:

1558-0814, pp. 37-46, Vol. 28, No. 11, November 1995, DOI: 10.1109/2.471178, Available:

https://ieeexplore.ieee.org/abstract/document/471178.

[44] Luiz A. de Rose and Daniel A. Reed, “Svpablo: A multi-language architecture-independent performance

analysis system”, In Proceedings of the 1999 International Conference on Parallel Processing, ICPP '99,

Print ISBN: 0-7695-0350-0, Print ISSN: 0190-3918, pp. 311-, Washington, DC, USA, 1999, IEEE Computer

Society, 6, DOI: 10.1109/ICPP.1999.797417.

[45] J. Zhai, W. Chen, W. Zheng and K. Li, “Performance prediction for largescale parallel applications using

representative replay”, IEEE Transactions on Computers, Print ISSN: 0018-9340, Electronic ISSN: 1557-9956,

pp. 2184-2198, Vol. 65, No. 7, July 2016, DOI: 10.1109/TC.2015.2479630, Available:

https://ieeexplore.ieee.org/abstract/document/7271042.

[46] Nicholas Nethercote and Julian Seward, “Valgrind: A framework for heavyweight dynamic binary

instrumentation”, SIGPLAN Notices, pp. 89-100, Vol. 42, No. 6, June 2007, DOI: 10.1145/1273442.1250746,

Available: https://dl.acm.org/doi/abs/10.1145/1273442.1250746.

[47] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, et al., “Pin: Building customized

program analysis tools with dynamic instrumentation”, SIGPLAN Notices, pp. 190-200, Vol. 40, No. 6, June

2005, DOI: 10.1145/1064978.1065034, Available: https://dl.acm.org/doi/abs/10.1145/1064978.1065034.

[48] Ko-Yang Wang, “Precise compile-time performance prediction for superscalar-based computers”, In

Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language Design and Implementation, PLDI

'94, pp. 73-84, New York, NY, USA, 1994, ACM, DOI: 10.1145/178243.178250, Available:

https://dl.acm.org/doi/abs/10.1145/178243.178250.

[49] Gabriel Marin and John Mellor-Crummey, “Cross-architecture performance predictions for scientific

applications using parameterized models”, In Proceedings of the Joint International Conference on

Measurement and Modeling of Computer Systems, SIGMETRICS '04/Performance '04, pp. 2-13, New York, NY,

USA, 2004, ACM, DOI: 10.1145/1005686.1005691.

[50] Zhonglei Wang, Antonio Sanchez and Andreas Herkersdorf, “Scisim: A software performance estimation

framework using source code instrumentation”, In Proceedings of the 7th International Workshop on Software

https://ieeexplore.ieee.org/abstract/document/5071383
https://ieeexplore.ieee.org/abstract/document/6235946
https://ieeexplore.ieee.org/abstract/document/807404
https://ieeexplore.ieee.org/abstract/document/4343833
https://link.springer.com/chapter/10.1007/3-540-44905-1_23
https://link.springer.com/chapter/10.1007/3-540-44863-2_90
https://static.usenix.org/events/hotpar10/final_posters/Kim.pdf
https://ieeexplore.ieee.org/abstract/document/471178
https://ieeexplore.ieee.org/abstract/document/7271042
https://dl.acm.org/doi/abs/10.1145/1273442.1250746
https://dl.acm.org/doi/abs/10.1145/1064978.1065034
https://dl.acm.org/doi/abs/10.1145/178243.178250

AETiC 2021, Vol. 5, No. 2 76

www.aetic.theiaer.org

and Performance, WOSP '08, pp. 33-42, New York, NY, USA, 2008, ACM, DOI: 10.1145/1383559.1383565,

Available: https://dl.acm.org/doi/abs/10.1145/1383559.1383565.

[51] Ko-Yang Wang, “A performance predication model for parallel compilers”, Department of Computer Science

Technical Reports, Perdue University, 1990.

[52] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser et al., “Logp Towards a

realistic model of parallel computation”, In Proceedings of the fourth ACM SIGPLAN symposium on Principles

and practice of parallel programming, pp. 1-12, 1993, DOI: 10.1145/155332.155333, Available:

https://dl.acm.org/doi/abs/10.1145/155332.155333.

[53] Thomas Fahringer, “Evaluation of benchmark performance estimation for parallel fortran programs on

massively parallel simd and mimd computers”, In 2nd Euromicro Workshop on Parallel and Distributed

Processing, pp. 449-456. July 1994.

[54] Kattamuri Ekanadham, Vijay K Naik and Mark S Squillante, “Pet: A parallel performance estimation tool”

In Proceedings of the 7th SIAM conference for Parallel Processing for Scientific Computing (PPSC), pp. 826-831.

Citeseer, 1995.

[55] Tony Hey, Alistair Dunlop and Emilio Hernandez, “Realistic parallel performance estimation”, Parallel

Computing, pp. 5-21, Vol. 23, No. 1-2, 1997, DOI: 10.1016/S0167-8191(96)00093-2, Available:

https://www.sciencedirect.com/science/article/abs/pii/S0167819196000932.

[56] Lei Hu and Ian Gorton, “Performance evaluation for parallel systems: A survey”, University of New South

Wales, School of Computer Science and Engineering Reports, 1997, Available:

https://cgi.cse.unsw.edu.au/~reports/papers/9707.pdf

[57] Vikram S Adve and Mary K Vernon,“A deterministic model for parallel program performance evaluation”

ACM Transactions on Computer Systems, 1998, Available: https://scholarship.rice.edu/handle/1911/96503.

[58] Narasimhan Sreraman and Ramaswamy Govindarajan, “A vectorizing compiler for multimedia

extensions”, International Journal of Parallel Programming, pp. 363-400, Vol. 28, No. 4, 2000, DOI:

10.1023/A:1007559022013, Available: https://link.springer.com/article/10.1023/A:1007559022013.

[59] Ilya Sharapov, Robert Kroeger, Guy Delamarter, Razvan Cheveresan and Matthew Ramsay, “A case study

in top-down performance estimation for a large-scale parallel application”, In Proceedings of the eleventh

ACM SIGPLAN symposium on Principles and practice of parallel programming, pp. 81-89, 2006, DOI:

10.1145/1122971.1122985, Available: https://dl.acm.org/doi/abs/10.1145/1122971.1122985.

[60] Henry Kasim, Verdi March, Rita Zhang and Simon See, “Survey on parallel programming model”, In IFIP

International Conference on Network and Parallel Computing, Print ISBN: 978-3-540-88139-1, Online ISBN: 978-

3-540-88140-7, pp. 266-275. Springer, 2008, DOI: 10.1007/978-3-540-88140-7_24, Available:

https://link.springer.com/chapter/10.1007/978-3-540-88140-7_24.

[61] Donghwan Jeon, “Parallel speedup estimates for serial programs”, PhD thesis, UC San Diego, 2012,

Available: https://escholarship.org/uc/item/66h1d17x

[62] Dustin Feld, Thomas Soddemann, Michael Junger and Sven Mallach, “Hardware-aware automatic code-

transformation to support compilers in exploiting the multi-level parallel potential of modern cpus”, In

Proceedings of the 2015 International Workshop on Code Optimization for Multi and Many Cores, pp. 1-10, 2015,

DOI: 10.1145/2723772.2723776, Available: https://dl.acm.org/doi/abs/10.1145/2723772.2723776.

[63] Xiaowen Chen, Zhonghai Lu, Axel Jantsch, Shuming Chen, Yang Guo et al., “Performance analysis of

homogeneous on-chip large-scale parallel computing architectures for data-parallel applications”, Journal

of Electrical and Computer Engineering, 2015, DOI: 10.1155/2015/902591, Available:

https://www.hindawi.com/journals/jece/2015/902591/.

[64] Kumar Vipin P and Gupta Anshul, "Analyzing Scalability of Parallel Algorithms and Architectures",

Journal of Parallel and Distributed Computing, Vol. 22, No. 3, Pages 379-391, September 1994, DOI:

10.1006/jpdc.1994.1099.

[65] Sesha Kalyur and G. S. Nagaraja, “Paracite: Auto-parallelization of a sequential program using the

program dependence graph” In 2016 International Conference on Computation System and Information

Technology for Sustainable Solutions (CSITSS), Electronic ISBN:978-1-5090-1022-6, Print ISBN:978-1-5090-

1020-2, pp. 7-12, October 2016, DOI: 10.1109/CSITSS.2016.7779431, Available:

https://ieeexplore.ieee.org/abstract/document/7779431.

[66] Sesha Kalyur and G. S. Nagaraja, “A taxonomy of methods and models used in program transformation

and parallelization”, In Navin Kumar and R. Venkatesha Prasad, editors, Ubiquitous Communications and

Network Computing, Print ISBN: 978-3-030-20614-7, Online ISBN: 978-3-030-20615-4, pp. 233-249, Cham,

2019, Springer International Publishing, DOI: 10.1007/978-3-030-20615-4_18, Available:

https://link.springer.com/chapter/10.1007/978-3-030-20615-4_18.

[67] Sesha Kalyur and G. S. Nagaraja, “Aide: An interactive environment for program transformation and

parallelization”, In 2017 2nd International Conference on Computational Systems and Information Technology for

https://dl.acm.org/doi/abs/10.1145/1383559.1383565
https://dl.acm.org/doi/abs/10.1145/155332.155333
https://www.sciencedirect.com/science/article/abs/pii/S0167819196000932
https://cgi.cse.unsw.edu.au/~reports/papers/9707.pdf
https://scholarship.rice.edu/handle/1911/96503
https://link.springer.com/article/10.1023/A:1007559022013
https://dl.acm.org/doi/abs/10.1145/1122971.1122985
https://link.springer.com/chapter/10.1007/978-3-540-88140-7_24
https://escholarship.org/uc/item/66h1d17x
https://dl.acm.org/doi/abs/10.1145/2723772.2723776
https://www.hindawi.com/journals/jece/2015/902591/
https://ieeexplore.ieee.org/abstract/document/7779431
https://link.springer.com/chapter/10.1007/978-3-030-20615-4_18

AETiC 2021, Vol. 5, No. 2 77

www.aetic.theiaer.org

Sustainable Solution (CSITSS), Electronic ISBN: 978-1-5386-2044-1, ISBN: 978-1-5386-2045-8, pp. 199-203,

Dec 2017, DOI: 10.1109/CSITSS.2017.8447848.

[68] Sesha Kalyur and G. S. Nagaraja, “Concerto: A program parallelization, orchestration and distribution

infrastructure”, In 2017 2nd International Conference on Computational Systems and Information Technology for

Sustainable Solution (CSITSS), Electronic ISBN: 978-1-5386-2044-1, ISBN: 978-1-5386-2045-8, pp. 204-209,

Dec 2017, DOI: 10.1109/CSITSS.2017.8447691.

[69] Sesha Kalyur and G. S. Nagaraja, “Efficient graph algorithms for mapping tasks to processors”, In Navin

Kumar and R. Venkatesha Prasad, editors, Ubiquitous Communications and Network Computing, Print ISBN:

978-3-030-47559-8, Online ISBN: 978-3-030-47560-4, pp.467-491, Cham, 2020, Springer International

Publishing, DOI: 10.1007/978-3-030-47560-4_35, Available: https://link.springer.com/chapter/10.1007/978-3-

030-47560-4_35.

[70] Sesha Kalyur and G. S. Nagaraja, “Evaluation of graph algorithms for mapping tasks to processors”, In

Navin Kumar and R. Venkatesha Prasad, editors, Ubiquitous Communications and Network Computing, Print

ISBN: 978-3-030-47559-8, Online ISBN: 978-3-030-47560-4, pp. 423-448, Cham, 2020, Springer International

Publishing, DOI: 10.1007/978-3-030-47560-4_33, Available: https://link.springer.com/chapter/10.1007/978-

3-030-47560-4_33.

© 2021 by the author(s). Published by Annals of Emerging Technologies in Computing

(AETiC), under the terms and conditions of the Creative Commons Attribution (CC BY)

license which can be accessed at http://creativecommons.org/licenses/by/4.0.

https://link.springer.com/chapter/10.1007/978-3-030-47560-4_35
https://link.springer.com/chapter/10.1007/978-3-030-47560-4_35
https://link.springer.com/chapter/10.1007/978-3-030-47560-4_33
https://link.springer.com/chapter/10.1007/978-3-030-47560-4_33

