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Abstract: Although several automated Parallel Conversion solutions are available, very few have 

attempted, to provide proper estimates of the available Inherent Parallelism and expected Parallel Speedup. 

CALIPER which is the outcome of this research work is a parallel performance estimation technology that 

can fill this void. High level language structures such as Functions, Loops, Conditions, etc which ease 

program development, can be a hindrance for effective performance analysis. We refer to these program 

structures as the Program Shape. As a preparatory step, CALIPER attempts to remove these shape related 

hindrances, an activity we refer to as Program Shape Flattening. Programs are also characterized by 

dependences that exist between different instructions and impose an upper limit on the parallel conversion 

gains. For parallel estimation, we first group instructions that share dependences, and add them to a class 

we refer to as Dependence Class or Parallel Class. While instructions belonging to a class run sequentially, 

the classes themselves run in parallel. Parallel runtime, is now the runtime of the class that runs the 

longest. We report performance estimates of parallel conversion as two metrics. The inherent parallelism in 

the program is reported, as Maximum Available Parallelism (MAP) and the speedup after conversion as 

Speedup After Parallelization (SAP). 
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1. Introduction 

Performance study of a program whether serial or parallel in nature involves one of the 

following methods: through code Analysis, by Profiling or with the help of detailed Simulation. 

Each technique has its pros and cons, and one of them is chosen based on when we need the 

information [1]. 

The universal method, of estimating the performance of a program, is the wall clock method, 

where the time spent by the program, from start to finish, provides the measure. But when 

computers of different speeds are involved, a little more work is needed, in the form of converting, 

run times to normalized cycles, before we can compare. When we need fine grained performance, 

we can use specialized counters, to further our quest. However, empirical studies of program 

performance are biased towards the choice of input samples used, which is an inherent limitation of 

this method. 

As an alternative, study of program characteristics, through static analysis, is encouraged. The 

process seems simple, but tricky, since the cycles, are hidden in program structures, such as 

Procedures, Loops, Recursion and Conditions to name a few. This is even more evident, when we 

undertake performance study, of parallel programs and serial programs that are scheduled for, 

parallel conversion. It is an unfortunate paradox that, the syntax features of an imperative 

language, designed to boost programmer productivity, can be a hindrance to quality analysis and 

performance studies. We are at the mercy of Analysis phases later on in the compilation chain to 
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supply the information for estimation. Many of these phases also perform non trivial program 

transformations to assist the analysis step further, reducing the relevance of an estimation phase. If 

performance estimates are available early, they could be used to determine, the choice of 

transformations to apply. How do we get past this dichotomy? By realizing that syntactic structures 

are the cause, and finding a cure for it. From the perspective of a modern imperative language, this 

means cleaning up syntax through Procedure Expansion or Function In-lining, Loop Unrolling, 

Recursion to Loop Conversion, and Control Predication prior to the analysis and study phase. 

Performance estimation and prediction of code that is free of syntactic structures of high level 

languages are easy. Thus, converting code with these structures to sequential code is the first step in 

our measurement process. We use a process called Program Shape Flattening, to eliminate the 

estimation hurdles. These syntactic structures, their number and placement which add a unique 

character to the program under study together, is referred to as the Program-Shape. 

Next, we use the concept of Equivalence Class to solve the central problem that is addressed in 

the paper namely, the coarse assessment of parallel performance and providing estimation and 

prediction to programmers. We define Equivalence Class as a class that holds objects that share a 

common property. In the current context, it holds program statements that share dependency 

between them. We call such a class as a Parallel Equivalence Class or Parallel Dependence Class. 

Together, the Parallel Equivalence Classes that belong to a program hold all the statements in the 

given program. These Parallel Equivalence Classes can be run in parallel and hence the name. The 

number of Parallel Equivalence Classes and the instructions belonging to each are good indicators, of 

the parallel behaviour of the program. A large number of Parallel Equivalence Classes with less 

number of statements in each indicates that the given program is parallel conversion friendly. 

Finally, we define ready to remember and easy to use parallel performance indicators to aid 

the parallel programmer referred to as, Maximum Available Parallelism which in short-form is 

referred to as MAP and Speedup After Parallel Conversion which is abbreviated as SAP. The 

sections which follow shall provide details of our research activities and their outcomes. 

The paper is organized as follows: Section 2 which follows, examines the state of the art, in the 

domain of performance assessment in general, and parallel measurement in particular. Section 3 

briefly looks at Asterix, our parallel compiler and transformation infrastructure. Section 4 discusses 

in detail, the workings of CALIPER, which is an important piece, in the overall solution, provided 

by Asterix. Section 5 presents CALIPER in action, from the concept of an example program, in a 

higher level, imperative language. Section 6 is dedicated to Competitive Analysis, where CALIPER 

is compared against other state-of-the-art solutions. Finally we conclude the paper, after 

highlighting the contributions of our work, with the research community, in perspective. 

2. Previous Work 

Early Parallel Conversion of programs was entirely a manual activity. Parallel code paths in 

the program were identified and each path was handed out to a task. Tasks were implemented as 

fill fledged Processes or Threads. The latter being the more efficient Counter-part in terms of 

resources consumed [2]. Procedure is error-prone and tedious and so research was carried out to 

seek better techniques. 

The next step in the evolution of Parallel Programming was the advent of special parallel 

languages or existing language constructs, offered as directives to the compiler and parallel 

conversion supervised by the programmer [3-6]. Notable among them are the OpenMP and MPI 

which are also industry-standard technologies [7-10]. 

Automated Parallel Conversion arrived later with static analysis as the basis for generating 

information about the program, such as Flow and Dependence analyses, which provided the 

impetus for transformations. Analysis techniques were algebraic such as Linear or Polyhedral, and 

algorithmic such as Trees and Graphs [11-19]. While translating high-level languages to an 

intermediate representation (IR) and transforming and optimizing the IR is the norm, several 

researchers have tried the source-to-source conversions as a basis for optimizations and parallel 

conversions [20-31]. 
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Researchers encountered irregular programs next which were hard to analyze statically.   

Efforts to augment static with runtime data were started, which was possible through the Sampling 

and Profiling activity [32-39]. This led to a burst in new research projects. However sampled data is 

comparatively biased towards the inputs used and the program coverage accomplished [40-47]. A 

few others used both static and dynamic data for analysis purposes [48-51]. 

Performance estimation and measurement are important from two angles. Measurement done 

early in the compilation cycle can aid the choice of optimization and conversion techniques. 

Measurement done later in the pipeline can be more accurate and can help ascertain the quality and 

accurateness of earlier projections. A lot of research has been expended in the area of performance 

assessment, including parallel performance [52-64]. 

3. Asterix 

Caliper is a parallel measurement, prediction and estimation module. It is part of the 

compilation pipeline, of Asterix our compiler, optimizer and parallel converter. We provide a high-

level view, of each of the Asterix modules next: 

3.1. Paracite 

This module is essentially, the front end of Asterix, where the lexical analysis, syntax analysis 

and semantics analysis occur. The input to this phase is the program in an imperative language, and 

the outcome of the phase, is the equivalent program in ASIF, the Intermediate Representation (IR) in 

Asterix [65]. 

3.2. ASIF 

ASIF is an acronym and stands for Asterix Intermediate Format the language that mainly 

includes an IR instruction set invented for the Asterix compiler suite. It is based on the three-

address instruction format, with explicit Operand followed by the Result, And two Source 

operands. 

3.3. Caliper 

Caliper reads the code in the ASIF format, and does a coarse estimation, of the nascent parallel 

opportunities, that exist in the given program. This provides a starting point, for the users, to 

position their reference performance. The following section discusses exhaustively on the topic. [1]. 

3.4. Graft 

Graft performs the bulk of the analysis work, on the IR code in ASIF format. The result of the 

analysis is represented in the form of several tables and graphs which are consulted, for identifying 

code transformation opportunities, including optimizations and parallel conversions. 

3.5. 3PO 

3PO stands for Parallel Performance Predictor and Oracle. This module is a fine grain, 

performance estimation and prediction module, which reports at the local block level, and also at 

the global program level and uses several mathematical models, one for each transformation 

category, for its operation. The various 3PO sub-models are categorized based on the nature of the 

transformation, or parallel conversion. Accordingly, we have transformations that improve 

instruction counts, transformations that improve cache latency, and transformations that enable 

other transformations including parallel conversions [66]. 

The main performance numbers reported are, Inherent Parallel Potential (IPO) and the Expected 

Speedup from Parallel Conversion (ESP) with obvious connotations for parallel conversion. For 

transformations, the numbers are similar but with slightly different semantics, and they are, 

Inherent Speedup Potential (ISP) and the Expected Speedup from Transformation (EST) using the 

appropriate category model. 
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3.6. Transgraph 

Transgraph module is in charge of generating code transformations that are beneficial, from a 

performance perspective. Some of the transformations are solely concerned, about generating code 

that is parallel friendly. The input and output for the module, is IR in ASIF code, and 

supplementary IR structures data such as graphs and tables. 

3.7. Paragraph 

Paragraph module actually generates the parallel code. The basic unit of parallel code which is 

conceptually a task is called a Prune after morphing the phrase, Parallel IR Unit. Each Prune is 

assigned, to an independent processing element, in a virtual topology and this mapping is 

preserved, for the entire duration, of the application existence. The input for the module is IR code 

and IR supplements, from Transgraph. Output is IR in Prune form. 

3.8. Pigeon 

Pigeon is a word that originates from the phrase, Parallel Code Generator. It is the module that 

converts Prunes, to executable versions of Prunes. These executable Prunes are called Proxies, 

singular is Proxy. The name evolved from the phrase, Parallel Execution Unit, are generated and 

assigned, to respective execution units, in an actual physical topology in a later phase. These 

mappings are subject to change, during the life cycle of the application. 

3.9. AIDE 

AIDE stands for, Asterix Integrated Development Environment, is a graphical tool to display the 

important results, of the compilation process, starting from the source code, to the generation of 

Prunes and Proxies and their interdependence [67]. The various views include, Annotated Source 

and ASIF IR, Caliper Predictions, 3PO Oracles, Prunes, Proxies, their distribution and orchestration. 

3.10. Concerto 

This module as the name suggests is the Distributor, Coordinator and Orchestration Manager 

of the Proxies in action. It chooses the mapping of Proxies to their respective processing elements 

manages their remote executions and also provides synchronization primitives. In a NUMA 

distributed environment, it also decides on how to partition data, between the Proxies, manages 

mapping to processing elements and provides communication primitives for data sharing [68]. 

Actual mapping is handled by a sub module of Concerto called the Topology Mapper, TOPMAP for 

short and offers a choice of, different mapping algorithms. [69-70]. 

 
Figure 1. Phases of ASTERIX Compiler Chain[1]. 

The Figure-1 illustrates the different phases involved in the operation of the Asterix compiler 

in pictorial form and is intuitive for the most part. Readers can correlate the figure with the 

description immediately above. 
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4. CALIPER 

CALIPER module, is responsible for providing the user, with a base expectation of parallel 

performance that is inherent in the program, under consideration. This prediction can help dictate, 

the choice of transformations to apply on the program, including the parallel conversion decisions. 

The higher-level syntactic structures, of an imperative program, offer impedance, to the effective 

computation of, performance estimates, and prediction. Each program is unique, from the 

perspective of the collection of the syntactic structures, constituting the program, which offer 

unique difficulties, for estimation and prediction. We refer to this trait of the program, as the Shape 

of the program. The transformations applied to a program, to strip the Shape of a program as the 

Program-Shape-Flattening. 

Input to the CALIPER module, consists of IR in ASIF format. It performs the following, 

Program-Shape-Flattening transformations such as, Function-Call-Expansion, Loop-Unrolling and 

Control-Predication, which are described individually later. The output from the CALIPER module is 

the performance estimation, in the form of Maximum-Available-Parallelism (MAP), and the 

performance prediction, in the form of Speedup-After-Parallel Conversion (SAP). These two terms, are 

described later. The following paragraphs describe the steps involved in CALIPER operation 

followed by the definitions of Performance Metrics reported by CALIPER. 

4.1. Function Call Expansion 

The purpose of Function-Call-Expansion is to replace, all function calls, with the code, that 

constitutes the function block. It should be noted that, it is a recursive process, and the process stops 

only, after all user defined functions, have been expanded. Library Functions and System Calls are 

normally not considered for call expansion. They are essentially treated as any other instruction, 

which suffices for coarse estimates. A user program that is loaded with library calls and system 

calls may skew the prediction somewhat, but it is usually not the case, with a majority of the real-

world programs. 

4.2. Loop Unrolling 

As a result of Loop-Unrolling, all Loops and Multi-Loops are replaced with their respective code 

blocks, and the instructions making up the Entry, Exit Conditions and the Loop Back Jumps 

removed. 

4.3. Control Predication 

Control Predication is a transformation that replaces Conditional Blocks, with equivalent 

Predicated Blocks. The Conditional Statements are another hindrance, to the correct estimation, of 

performance. However, most of the architectures provide support for Predicated-Execution of 

instructions, with varying degree of support. However all of them support Conditional-Move 

instruction which is a powerful construct when used with predicates, to compute the condition of 

the move, and combined with regular instructions, computing to temporary result variables, offer a 

powerful and compelling solution, to implement Control-Predication. 

4.4. Maximum Available Parallelism 

Maximum-Available-Parallelism (MAP) is a metric that reports the amount of parallelism 

present, in a given program, as a percentage. For instance, a MAP of 33% means that, one third of 

the code is parallel convertible, and the other two thirds of the code, 66% is serial in nature. It 

should be noted, that this number, takes in to consideration, all the dependencies, that exist in the 

program, which includes, both the data, and the control kinds. 

4.5. Speedup After Parallel Conversion 

Speedup-After-Parallel Conversion {SAP}, is a metric that reports the benefits of parallel 

conversion. In the example discussed earlier, since 33% is subject to parallel conversion, the 
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effective run time is determined by the 66% of the serial part, and the expected speedup, would be 

1.52 and reported as a floating point number. 

The Figure-2 illustrates the different steps involved, in the operation of the CALIPER module. 

As you can see, translated IR code in ASIF format is fed to the Inliner module, which carries out the 

expansion of all function calls, and this modified IR is fed to the next module in the chain, which is 

the Unroller. This module unrolls all loops, and its output is sent to the next module in the chain, 

which is the Predicator. The purpose of this module is to convert all conditionals in the IR to 

Predicated statements. The output from this module, is shape sanitized IR that is ready for 

performance estimation. 

 
Figure 2. CALIPER operation[2] 

4.6. Performance Estimation Equations 

Performance estimation and prediction, for both serial and parallel versions, revolve around 

the following parameters, which are defined below, and also given are the equations for computing 

them. 

4.6.1. Serial Execution Cycles 

Since we are measuring performance, in coarse fashion here, we are not accounting, for the 

individual instruction differences. Each instruction counts as one cycle, and we are also not 

considering, the memory hierarchy, into these computations. Fine grained estimations, are for a 

later pass, where they use the 3PO model which has an in built cycle accurate simulator, we call 

Kinetics, for accurate estimates. It includes hardware accurate models of cache, memory and storage 

supporting the simulator. The workings of 3PO and Kinetics, are subject matter of a different paper, 

and we shall not discuss them any further here. The following equation, describes the process, for 

the equation for Serial-Execution-Cycles: 

C_SER = N_INC                                                                                                        (1) 

Here, C_CYC is the count of cycles, to run the serial version of the program, and N_INC is the 

instruction count, for the given program, 

4.6.2. Parallel Execution Cycles 

Computation of the parallel execution cycles, is more involved, and requires a check, for data 

dependence between operands and results, belonging to different instructions. Since we have 

eliminated, control dependencies of all kinds, through Shape-Flattening, this is not an issue any 

more. A later subsection, shall describe the Shape-Flattening algorithm in more detail. Calculating 

Parallel-Execution-Cycles involves, classifying instructions, based on their data dependence, into 

different equivalence classes. Instructions belonging to the same equivalence class are data 

dependent with one another, and so we have to honour, their ordinal order of issue, to maintain 

correctness. However instructions belonging to different classes, have no data dependencies, and 

hence allow concurrent execution between them. Once the equivalence classes, have been finalized, 

the execution time is dictated by, the longest running equivalence class. The algorithm for creating 

equivalent dependence classes shall be given later in a following subsection. 

The equation for computing, the parallel execution cycles, is given below, 

C_PAR = MAX(EQC_1, EQC_2, ..., EQC_n)                                                               (2) 

Where C_PAR is the parallel cycle count, EQC_1, EQC_2,..., EQC_n are the total cycles needed to 

execute the, individual equivalence class instructions in serial fashion. 

The equation to compute Maximum Available Parallelism (MAP) is given on the following line: 

MAP = (C_SER - C_PAR) / C_SER) X 100                                                             (3) 

Where, Maximum Available Parallelism (MAP) is a measure of the inherent parallelism available 

in a program, and is reported as a percent of the total program instructions. C_PAR is the number of 
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cycles required to run the parallel version of the program and C_SER is the cycle count for the serial 

version of the program. 

The equation to compute the Speedup After Parallel Conversion (SAP) is given below: 

SAP = (C_SER / C_PAR)                                                               (4) 

Where, Speedup After Parallel Conversion (SAP) is an estimate of how much faster the program 

will run, after parallel conversion, C_PAR is the number of cycles required to run the parallel version 

of the program and C_SER is the cycle count, for the serial version of the program. 

4.7. Program Shape Flattening 

As mentioned earlier, program syntax structures such as Functions, Loops and Conditionals, 

are a hindrance to effective estimation and predictions of performance. So as a first step, it is 

essential to flatten these high level language structures and then proceed with the estimation. 

In the following paragraphs, we will give brief procedures in algorithmic form to perform 

these preparatory steps towards estimation. 

Algorithm 1. Program Shape Flattening 
1: procedure Flatten_Program 

2:     Inline_Function() 

3:     Unroll_Loop() 

4:     Predicate_Condition() 

5: end procedure 

 

6: procedure Inline_Function 

7:    for Fnc 1 to n do // sweep through function calls in the program 

8:       Get_Function_Definition(Def, Fnc) // fetch code block needed for the call 

9:       Replace_Call_With_Definition(Def, Fnc) // replace call with the code block 

10:  end for 

11: end procedure 

 

12: procedure Unroll_Loop 

13:     for Glp   1; n do // sweep through loops in the program 

14:         Get_Loop_Block(Blk, Glp) // fetch code block for the loop 

15:         Replace_Loop_With_Private_Blocks(Blk, Glp) // duplicate code block for each iteration 

16:     end for 

17: end procedure 

 

18: procedure Predicate_Condition 

19:     for Cnd   1; n do // sweep through conditionals in the program 

20:         Get_Condition_Block(Blk, Cnd) // fetch code block for the conditional 

21:      Replace_Condition_With_Predicates(Blk, Cnd)  // replace condition with the predicated block 

22:     end for 

23: end procedure 

4.8. Parallel Equivalence Classes 

        Parallel Equivalence Classes are a set of items that satisfy a single property. In the context of 

Parallel Conversions, it means sets of instructions that can be executed concurrently. However it 

should be noted that, instructions within a particular class, are to be executed in serial, to satisfy the 

property of an equivalence class. When the instructions of a program, are organized in to 

equivalence classes, the run time of the program, is reduced from the time spent, by all instructions 

of the program executing serially, to the run time of the longest running equivalence class. 

        What follows is the algorithm to create the Equivalence Classes, also referred to as Dependence 

Classes here. Once created, it becomes trivial to assess the run time and predict performance. The 

equivalence class creation algorithm is given below: 

Algorithm 2. Parallel Equivalence Classes Creation 
1: procedure Build Parallel Equivalence Classes 

2:     Build_Equivalence_Classes() 

3:     Merge_Equivalence_Classes() 

4: end procedure 
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5: procedure Build_Equivalence_Classes 

6:     for Ins   1; n do  // sweep through the program's instructions 

7:            Get Result Operand(R, Ins)  // fetch result operand of instruction 

8:         Add Instruction(R, Ins) // add instruction to class R of global parallel equivalence class list 

9:     end for 

10: end procedure 

 

11: procedure Merge Equivalence Classes 

12:     for Ins   1; n do // sweep through the program's instructions 

13:         Get Result Operand(R, Ins) // fetch result operand of instruction 

14:         Get Source1 Operand(S1, Ins) // fetch source1 operand of instruction 

15:         Get Source2 Operand(S2, Ins) // fetch source2 operand of instruction 

16:         Merge(R, S1)  // merge class S1 to class R and update global parallel equiv. class list 

17:         Merge(R, S2) // merge class S2 to class R and update global parallel equiv. class list 

18:     end for 

19: end procedure 

4.9. Long Dependence Sequences 

Certain programs exhibit long dependence sequences which can lead to loss of parallelism and 

produce fewer than optimal number of parallel classes. To prevent this, a heuristic based on the 

concept of Instruction Threshold (IT) is proposed, where IT is the number of instructions in a class 

which would ensure or force the class to become an independent parallel class. For instance IT 

which is a tuneable can be set to 32 instructions, which means that if the class size is less than IT 

proceed with the merger and in the other case skip merger. To implement this at the time of Parallel 

Class mergers a check is made to see if the class lengths meet the IT threshold. If the criterion is met 

then the instruction which acts as the key in both classes is hoisted out of the classes and a unique 

class is made with the instruction. Dependence is set from the new class with the hoisted instruction 

to the existing classes.  New keys for the two existing classes are defined with the result operand 

from the least numbered instruction in both classes. This operation is recursively applied to both 

classes as long as the IT holds. These IT checks are enough to ensure optimum parallelization is 

preserved. While calculating parallel instruction count, care should be taken to add the serial paths 

which precede the parallel classes and add the instruction counts to the sum. 

5. Analysis 

To better understand the working of the internals of Caliper, we study a simple program with 

a function, loop and conditional to see how it gets transformed as it passes through the shape 

flattening exercises and finally analyzes the ASIF-IR program to generate the Caliper report.  

5.1. Input File to Caliper (calfun.c) 

Given below is a simple C program with a function, loop and condition. The program which is 

passed as input to Caliper is self-explanatory. 
1: #include <stdio.h> 

2: #define LOOP_COUNT 8 

3: #define HALF_COUNT LOOP_COUNT/2 

4: double 

5: calfun(int x) { 

6:     if (x < HALF_COUNT) 

7:         return x * x; 

8:     else 

9:         return 2 * x; 

10: } 

11: int 

12: main() { 

13:     int i; 

14:    double z = 0; 

15:    for (i = 0; i < LOOP_COUNT; i++) 

16:        z += calfun(i); 

17:    printf("z = %lf\n", z); 
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18: } 

5.2. Calfun.c after Function In-lining by Caliper (calfun_inl.c) 

The first transformation applied to calfun.c is the function inlining and the program listed 

below is output as a result of that transformation. Lines 6-9 of the program represent the function 

which was inlined. 
1: int 

2: main() { 

3:     int i; 

4:     double z = 0; 

5:     for (i = 0; i < LOOP_COUNT; i++) { 

6:         if (i < HALF_COUNT) 

7:         z += i * i; 

8:     else 

9:         z += 2 * i; 

10: } 

5.3. Calfun_inl.c after Control Predication by Caliper (calfun_pred.c) 

The program below if output by Caliper as a result of the Control Predication transformation 

where the If-conditional block is predicated as seen on line 6. 
1: int 

2: main() { 

3:     int i; 

4:     double z = 0; 

5:     for (i = 0; i < LOOP_COUNT; i++) 

6:         z += (i < HALF_COUNT)? i * i : 2 * i; 

7:      printf("z = %lf\n", z); 

8: } 

5.4. Calfun_pre.c after Loop Unrolling by Caliper (calfun_unl.c) 

The final transform applied by Caliper is the loop unrolling and the following program is 

output as seen on lines 5-20.  
1: int 

2: main() { 

3:     int i; 

4:     double z = 0; 

5:     /* iteration 0 */ 

6:     z += (0 < 4)? 0 * 0 : 2 * 0; 

7:     /* iteration 1 */ 

8:     z += (1 < 4)? 1 * 1 : 2 * 1; 

9:     /* iteration 2 */ 

10:   z += (2 < 4)? 2 * 2 : 2 * 2; 

11:   /* iteration 3 */ 

12:   z += (3 < 4)? 3 * 3 : 2 * 3; 

13:   /* iteration 4 */ 

14:   z += (4 < 4)? 4 * 4 : 2 * 4; 

15:   /* iteration 5 */ 

16:   z += (5 < 4)? 5 * 5 : 2 * 5; 

17:   /* iteration 6 */ 

18:   z += (6 < 4)? 6 * 6 : 2 * 6; 

19:   /* iteration 7 */ 

20:   z += (7 < 4)? 7 * 7 : 2 * 7; 

21:    printf("z = %lf\n", z); 

22: } 

5.4. Calfun_unl.c after ASIF-IR generation by Caliper (calfun.s) 

The following ASIF-IR is the resulting program after all transformations and high level code 

are translated to IR. Lines 5-25 show the results. To save space only iterations 0, 1 and 7 are shown 

with the others snipped. 
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1: main: 

2:     ;DEC i, 4 

3:     ;DEC z, 8 

4:     ; iteration 0 

5:     ; z += (0 < 4)? 0 * 0 : 2 * 0; 

6:     MUL T_0, 0, 0 

7:     MUL T_1, 2, 0 

8:     LTH T_3, 0, 4 

9:     ADE T_4, z, T_0 

10:   ADE T_5, z, T_1 

11:   CMOV z, T_3, T_4 

12:   CMOV z, T_3, T_5 

13:   ; iteration 1 

14:   ;z += (1 < 4)? 1 * 1 : 2 * 1; 

15:   MUL T_6, 1, 1 

16:   MUL T_7, 2, 1 

17:   LTH T_8, 1, 4 

18:   ADE T_9, z, T_6 

19:   ADE T_10, z, T_7 

20:   CMOV z, T_8, T_9 

21:   CMOV z, T_8, T_10 

22:   ; iteration 2 – removed to save space 

23:   ; iteration 3 – removed to save space 

24:   ; iteration 4 – removed to save space 

25:   ; iteration 5 – removed to save space 

26:   ; iteration 6 – removed to save space 

27:   ; iteration 7 

28:   ;z += (7 < 4)? 7 * 7 : 2 * 7; 

29:   MUL T_36, 7, 7 

30:   MUL T_37, 2, 7 

31:   LTH T_38, 7, 4 

32:   ADE T_39, z, T_36 

33:   ADE T_40, z, T_37 

34:   CMOV z, T_38, T_39 

35:   CMOV z, T_38, T_40 

36:   ;printf("z = %lf\n", z); 

5.5. CALIPER Parallel Estimates (calfun.csv) 

After the ASIF-IR code is passed to Caliper it creates the required Equivalence Classes and 

calculates the MAP and SAP metrics, and the output is generated in the form of CSV file as shown 

below: 

(1), Serial Instruction Count, SIN, 58 

(2), Equivalence Class Count, EQC, 9 

(3), Mean Instruction Count, MIN, 6.44 

(4), Parallel Instruction Count, PIN, 33 

(5), Serial Execution Cycles, SEC, 58 

(6), Parallel Execution Cycles, PEC, 33 

(7), Maximum Available Parallelism, MAP, 43.10 

(8), Speedup After Parallelization, SAP, 1.75 

For the given program, Serial Execution Cycles was 58 same as the instruction count and 

Parallel Execution Cycles was 33. From the Maximum Available Parallelism (MAP) value it is 

evident that 43.10% of the given program is parallelizable and the Speedup After Parallelization 

(SAP) is about 1.75. 

6. Competitive Analysis 

Here we compare Asterix/Caliper with other leading compilers both open-sourced and 

proprietary. While LLVM, GCC and Open64 are open source technologies, ICC, PGI and PathScale 

offer proprietary products. 
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As seen from the table, Caliper provides parallel performance estimates which none of the 

other state-of-the-art compilers provide. However all of them provide optimization related 

diagnostics at some basic level. Based on our findings, we have to conclude that Caliper is the only 

working, Parallel Performance Estimation and Prediction Solution available, at this time. 

Table 1. Performance Estimation Support [3] 
No. Compiler Performance 

Estimation 

Availability 

 

Optimization and 

Parallel Diagnostics  

Command line flags or Commands 

Outcome 

1 Asterix/Caliper [1] YES CALIPER/3PO Inherent parallelism (MAP) and 

Expected speedup (SAP) metrics 

are generated 

2 GCC1 NO Several –fdump flags such as –

fdump-ipa-all and –dump-ipa-inline 

Information on in-lined functions 

etc 

3 CLANG/LLVM 2 NO -emit-llvm and –Rpass, -Rpass-

missed and –Rpass-analysis 

Instrumented IR and optimization 

reports 

4 Open64 3 NO -CLIST and –FLIST, 

-LNO:refetch_verbose, -

LNO:simd_verbose  etc 

Prefetch and other optimization 

specific diagnostics 

5 Intel/ICC 4 NO -fverbose-asm and opt-report Generate all optimization related 

activity as a report 

6 PGI 5 NO -Minfo and –Mneginfo flags provide 

diagnostics 

Informative messages such as, 

whether a loop was vectorized or 

not  and rationale 

7 Pathscale 6 NO -CLIST and  -FLIST, options are 

provided for diagnostics 

Information on a specific 

optimization such as Prefetches 

* Estimation capabilities of Modern Compiler Frameworks. 

7. Conclusion  

Caliper was developed to aid the parallel programmer in his endeavours, by providing a yield 

estimate resulting from parallel conversion of a given program. Caliper works on programs in 

ASIF-IR format an internal representation developed as part of our compiler framework. Caliper as 

a preliminary step performs Program Shape Flattening Transformations to ease subsequent steps. It 

performs symbolic analysis of ASIF-IR instructions representing the given program internally, and 

classifies them in to Equivalence Classes based on their dependence behaviour. These classes which 

host dependent instructions are themselves dependence free and are eligible to operate in 

interleaved fashion with other classes. Once arranged in this fashion it becomes easy to compute 

Serial and Parallel runtimes. Serial runtime is the sequential runtime of the instructions making up 

the program and Parallel runtime is the runtime of the class that runs the longest. Based on these 

two numbers two metrics useful to the programmer are reported. Maximum Available Parallelism 

(MAP) points out the inherent parallel potential of a given program. Speedup after Parallelization 

(SAP) complements the earlier metric by reporting the estimated speedup resulting from parallel 

conversion. At the time of writing there are no known technologies comparable to Caliper and we 

conclude that Caliper is a one of its kind parallelization technology. 

References 

[1] Sesha Kalyur and GS Nagaraja, “CALIPER: A coarse grain parallel performance estimator and predictor”, 

In International Conference for Emerging Technologies in Computing, Print ISBN 978-3-030-60035-8, Online 

                                                             
1GNU-compiler-collection. Available: https://gcc.gnu.org/onlinedocs/ (Accessed on Day 28/01/2021). 
2LLVM-compiler-collection. Available: https://clang.llvm.org/docs/UsersManual.html (Accessed on 28/01/2021) 
3Open64-compiler-collection. Available: https://developer.amd.com/x86-open64-compiler-suite/ (Accessed on 28/01/2021) 
4Intel-ICC-compiler-collection. Available: https://software.intel.com/content/www/us/en/develop/documentation/cpp-

compiler-developer-guide-and-reference/top.html (Accessed on 28/01/2021) 
5PGI-compiler-collection. Available: https://www.pgroup.com/resources/docs/19.10/x86/pgi-ref-guide/index.htm (Accessed 

on 28/01/2021) 
6PathScale-compiler-collection. Available: http://www.scc.kit.edu/scc/docs/HP-XC/pathscale/UserGuide.pdf (Accessed on 

28/01/2021) 

https://gcc.gnu.org/onlinedocs/
https://clang.llvm.org/docs/UsersManual.html
https://developer.amd.com/x86-open64-compiler-suite/
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html
https://www.pgroup.com/resources/docs/19.10/x86/pgi-ref-guide/index.htm
http://www.scc.kit.edu/scc/docs/HP-XC/pathscale/UserGuide.pdf


AETiC 2021, Vol. 5, No. 2 73 

www.aetic.theiaer.org 

ISBN 978-3-030-60036-5, pp. 16-39, Springer, 2020, DOI: 10.1007/978-3-030-60036-5_2, Available: 

https://link.springer.com/chapter/10.1007/978-3-030-60036-5_2. 

[2] David Culler, Jaswinder Pal Singh and Anoop Gupta, Parallel computer architecture: a hardware/software 

approach, California, USA: Morgan Kaufmann Publishers, Inc., 1999. 

[3] William Gropp, William D Gropp, Ewing Lusk, Anthony Skjellum and Ewing Lusk, Using MPI: portable 

parallel programming with the message-passing interface, 2nd ed. Cambridge, UK: MIT press, 1999. 

[4] Ran Canetti, L. Paul Fertig, Saul A. Kravitz, Dalia Malki, Ron Y. Pinter, Sara Porat and Avi Teperman, 

“The parallel c (pc) programming language”, IBM Journal of Research and Development, pp. 727-741, Vol. 35, 

No. 5.6, September 1991, DOI: 10.1147/rd.355.0727. 

[5] Alan Kaminsky, “Parallel java: A united api for shared memory and cluster parallel programming in 100% 

java”, In 2007 IEEE International Parallel and Distributed Processing Symposium, Print ISSN: 1530-2075, pp. 1-

8, March 2007, DOI: 10.1109/IPDPS.2007.370421. 

[6] Eduard Ayguade, Nawal Copty, Alejandro Duran, Jay Hoeinger, Yuan Lin et al., “The design of openmp 

tasks”, IEEE Transactions on Parallel and Distributed Systems, Print ISSN: 1045-9219, Electronic ISSN: 1558-

2183, pp. 404-418, Vol. 20, No. 3, March 2009, DOI: 10.1109/TPDS.2008.105,  Available: 

https://ieeexplore.ieee.org/abstract/document/4553700. 

[7] Leonardo Dagum and Ramesh Menon, “Openmp: an industry standard api for shared-memory 

programming”, IEEE computational science and engineering, Print ISSN: 1070-9924, Electronic ISSN: 1558-

190X, pp.46-55, 1998, Vol. 5, No. 1, DOI: 10.1109/99.660313, Available: 

https://ieeexplore.ieee.org/abstract/document/660313. 

[8] Hironori Kasahara, Motoki Obata and Kazuhisa Ishizaka, “Automatic coarse grain task parallel processing 

on smp using openmp”, In International Workshop on Languages and Compilers for Parallel Computing, Print 

ISBN 978-3-540-42862-6, Online ISBN 978-3-540-45574-5, pp. 189-207, Springer, 2000, DOI:10.1007/3-540-

45574-4_13, Available: https://link.springer.com/chapter/10.1007/3-540-45574-4_13. 

[9] Mitsuhisa Sato, “Openmp: parallel programming API for shared memory multiprocessors and on-chip 

multiprocessors”, In Proceedings of the 15th international symposium on System Synthesis, pp. 109-111, 2002, 

DOI: 10.1145/581199.581224, Available: https://dl.acm.org/doi/10.1145/581199.581224. 

[10] Seyong Lee, Seung-Jai Min and Rudolf Eigenmann, “Openmp to gpgpu: a compiler framework for 

automatic translation and optimization”, ACM Sigplan Notices, pp.101-110, Vol. 44, No. 4, 2009, DOI: 

10.1145/1594835.1504194, Available: https://dl.acm.org/doi/abs/10.1145/1594835.1504194. 

[11] Sesha Kalyur and G. S. Nagaraja, “A survey of modeling techniques used in compiler design and 

implementation”, In International Conference on Computation System and Information Technology for 

Sustainable Solutions (CSITSS), pp. 355-358, October 2016, DOI: 10.1109/CSITSS.2016.7779385, Available: 

https://ieeexplore.ieee.org/abstract/document/7779385. 

[12] Uday Bondhugula, Muthu Baskaran, Albert Hartono, Sriram Krishnamoorthy, J. Ramanujam et al., 

“Towards effective automatic parallelization for multicore systems”, In Parallel and Distributed Processing, 3 

2008, IPDPS 2008, IEEE International Symposium on, Print ISBN:978-1-4244-1693-6, Print ISSN: 1530-2075, 

pp. 1-5, April 2008, DOI: 10.1109/IPDPS.2008.4536401. 

[13] Paul Lokuciejewski, Daniel Cordes, Heiko Falk and Peter Marwedel, “A fast and precise static loop 

analysis based on abstract interpretation, program slicing and polytope models”, In Code Generation and 

Optimization, 2009, CGO 2009, International Symposium on, pp. 136-146, March 2009, DOI: 

10.1109/CGO.2009.17, Available: https://dl.acm.org/doi/10.1109/CGO.2009.17. 

[14] Susan Horwitz and Thomas Reps, “The use of program dependence graphs in software engineering”, In 

Proceedings of the 14th international conference on Software engineering, pages 392-411, 1992, DOI: 

10.1145/143062.143156, Available: https://dl.acm.org/doi/abs/10.1145/143062.143156. 

[15] Vivek Sarkar, “Automatic partitioning of a program dependence graph into parallel tasks”, IBM Journal of 

Research and Development, pp. 779-804, Vol. 35, No. 5.6, 1991, DOI: 10.1147/rd.355.0779, Available: 

https://ieeexplore.ieee.org/abstract/document/5389740. 

[16] Angeles Navarro, Emilio Zapata and David Padua, “Compiler techniques for the distribution of data and 

computation”, In Parallel and Distributed Systems, IEEE Transactions on, pp. 545-562, Vol. 14, No. 6, June 

2003, DOI: 10.1109/TPDS.2003.1206503, https://ieeexplore.ieee.org/abstract/document/1206503. 

[17] Roxana E. Diaconescu, Lei Wang, Zachary Mouri and Matt Chu, “A compiler and runtime infrastructure 

for automatic program distribution”, In Parallel and Distributed Processing Symposium, 2005, Proceedings. 

19th IEEE International, ISBN:0-7695-2312-9, Print ISSN: 1530-2075, pp. 52a-52a, April 2005, DOI: 

10.1109/IPDPS.2005.7, https://ieeexplore.ieee.org/abstract/document/1419872. 

[18] Thomas Fahringer, “Using the p3t to guide the parallelization and optimization report under the vienna 

fortran compilation system”, In Scalable High Performance Computing Conference, 1994, Proceedings of the, 

Print ISBN: 0-8186-5680-8, pp. 437-444, May 1994, DOI: 10.1109/SHPCC.1994.296676, Available: 

https://doi.org/10.1109/SHPCC.1994.296676. 

https://link.springer.com/chapter/10.1007/978-3-030-60036-5_2
https://ieeexplore.ieee.org/abstract/document/4553700
https://ieeexplore.ieee.org/abstract/document/660313
https://link.springer.com/chapter/10.1007/3-540-45574-4_13
https://dl.acm.org/doi/10.1145/581199.581224
https://dl.acm.org/doi/abs/10.1145/1594835.1504194
https://ieeexplore.ieee.org/abstract/document/7779385
https://dl.acm.org/doi/10.1109/CGO.2009.17
https://dl.acm.org/doi/abs/10.1145/143062.143156
https://ieeexplore.ieee.org/abstract/document/5389740
https://ieeexplore.ieee.org/abstract/document/1206503
https://ieeexplore.ieee.org/abstract/document/1419872
https://doi.org/10.1109/SHPCC.1994.296676


AETiC 2021, Vol. 5, No. 2 74 

www.aetic.theiaer.org 

[19] Thomas Fahringer, “On estimating the useful work distribution of parallel programs under p3t: A static 

performance estimator”, In Concurrency: Practice and Experience, Wiley Online Library, ,pp. 261-282, Vol. 8, 

No. 4, May 1996, DOI: 10.1002/(SICI)1096-9128(199605)8:4<261::AID-CPE205>3.0.CO;2-6, Available: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.3470&rep=rep1&type=pdf. 

[20] Dan Quinlan, “Rose: Compiler support for object-oriented frameworks”, Parallel Processing Letters, pp.215-

226, Vol. 10, No. 02n03, 2000, DOI: 10.1142/S0129626400000214, Available: 

https://doi.org/10.1142/S0129626400000214. 

[21] Vikram Adve, Guohua Jin, John Mellor-Crummey and Qing Yi, “Design and evaluation of a computation 

partitioning framework for data-parallel compilers”, Technical report, Department of Computer Science, Rice 

University, Tech Rep: CS-TR01-382, 2001. 

[22] Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigenmann et al., “Cetus: A source-to-

source compiler infrastructure for multicores”, IEEE Computer, Print ISSN: 0018-9162, Electronic ISSN: 

1558-0814, pp. 36-42, Vol. 42, No. 12,2009, DOI: 10.1109/MC.2009.385, Available:   

https://ieeexplore.ieee.org/abstract/document/5353460. 

[23] Robert L Bocchino Jr, Vikram S Adve, Sarita V Adve and Marc Snir, “Parallel programming must be 

deterministic by default”, In Proceedings of the First USENIX conference on Hot topics in parallelism, pp. 4-4, 

April 2009. 

[24] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Ignacio Gomez, Christian Tenllado et al., 

“Polyhedral parallel code generation for cuda”, ACM Transactions on Architecture and Code Optimization 

(TACO), pp. 1-23, Vol. 9, No. 4, 2013, DOI: 10.1145/2400682.2400713, Available: 

https://dl.acm.org/doi/abs/10.1145/2400682.2400713. 

[25] Tim A. Wagner, Vance Maverick, Susan L. Graham and Michael A. Harrison, “Accurate static estimators 

for program optimization”, SIGPLAN Notices, pp. 85-96, Vol. 29, No. 6, June 1994, DOI: 

10.1145/178243.178251, Available: https://dl.acm.org/doi/abs/10.1145/178243.178251. 

[26] Vasanth-Balasundaram, Georey Fox, Ken Kennedy and Ulrich Kremer, “A static performance estimator to 

guide data partitioning decisions”, SIGPLAN Notices, pp. 213-223, Vol. 26, No. 7, April 1991, DOI: 

10.1145/109625.109647, Available: https://dl.acm.org/doi/abs/10.1145/109625.109647. 

[27] Thomas Fahringer and Hans P. Zima, “A static parameter based performance prediction tool for parallel 

programs”, In Proceedings of the 7th International Conference on Supercomputing, ICS '93, pp. 207-219, New 

York, NY, USA, 1993, ACM, DOI: 10.1145/165939.165971. 

[28] D. Arapattu and Dennis Gannon, “Building analytical models into an interactive performance prediction 

tool”, In Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, Supercomputing '89, Print ISBN:0-

89791-341-8, pp. 521-530, New York, NY, USA, 1989, ACM, DOI: 10.1145/76263.76321, Available: 

https://ieeexplore.ieee.org/abstract/document/5348984. 

[29] Christophe Dubach, John Cavazos, Bjorn Franke, Grigori Fursin, Michael F.P. O'Boyle et al., “Fast compiler 

optimisation evaluation using code-feature based performance prediction”, In Proceedings of the 4th 

International Conference on Computing Frontiers, CF '07, pp. 131-142, New York, NY, USA, 2007, ACM, DOI: 

10.1145/1242531.1242553, Available: https://dl.acm.org/doi/abs/10.1145/1242531.1242553. 

[30]  Donghwan Jeon, Saturnino Garcia, Chris Louie and Michael Bedford Taylor, “Kismet: Parallel speedup 

estimates for serial programs”, SIGPLAN Notices, pp. 519-536, Vol. 46, No. 10, October 2011, DOI: 

10.1145/2048066.2048108, Available: https://dl.acm.org/doi/abs/10.1145/2048066.2048108. 

[31] Nathan R. Tallent and John M. Mellor-Crummey, “Effective performance measurement and analysis of 

multithreaded applications”, In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice 

of Parallel Programming, PPoPP '09, pp. 229-240, New York, NY, USA, 2009, ACM, DOI: 

10.1145/1504176.1504210, Available: https://dl.acm.org/doi/abs/10.1145/1504176.1504210. 

[32] Aparna Kotha, Kapil Anand, Matthew Smithson, Greeshma Yellareddy and Rajeev Barua, “Automatic 

parallelization in a binary rewriter”, In 2010 43rd Annual IEEE/ACM International Symposium on 

Microarchitecture, Electronic ISSN: 2379-3155, Print ISSN: 1072-4451, pp.  547-557, December 2010, DOI: 

10.1109/MICRO.2010.27, Available: https://ieeexplore.ieee.org/abstract/document/5695565. 

[33] William Blume and Rudolf Eigenmann, “An overview of symbolic analysis techniques needed for the 

effective parallelization of the perfect benchmarks”, In Proceedings of the 1994 International Conference on 

Parallel Processing, Print ISBN:0-8493-2493-9, pp. 233-238, Vol. 02, ICPP '94, Washington, DC, USA, 1994, 

DOI: 10.1109/ICPP.1994.59, Available: https://ieeexplore.ieee.org/abstract/document/5727792. 

[34] Bill Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jaejin Lee et al., “Restructuring programs for 

high-speed computers with Polaris”, In International Conference on Parallel Processing, 1996, Proceedings of 

the 1996 ICPP Workshop on Challenges for, Print ISBN: 0-8186-7623-X, Print ISSN: 1530-2016, pp. 149-161, 

August 1996, DOI: 10.1109/ICPPW.1996.538601. 

[35] Mihai T. Lazarescu and Luciano Lavagno, “Dynamic trace-based data dependency analysis for 

parallelization of c programs”, In Source Code Analysis and Manipulation (SCAM), 2012 IEEE 12th 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.3470&rep=rep1&type=pdf
https://doi.org/10.1142/S0129626400000214
https://ieeexplore.ieee.org/abstract/document/5353460
https://dl.acm.org/doi/abs/10.1145/2400682.2400713
https://dl.acm.org/doi/abs/10.1145/178243.178251
https://dl.acm.org/doi/abs/10.1145/109625.109647
https://ieeexplore.ieee.org/abstract/document/5348984
https://dl.acm.org/doi/abs/10.1145/1242531.1242553
https://dl.acm.org/doi/abs/10.1145/2048066.2048108
https://dl.acm.org/doi/abs/10.1145/1504176.1504210
https://ieeexplore.ieee.org/abstract/document/5695565
https://ieeexplore.ieee.org/abstract/document/5727792


AETiC 2021, Vol. 5, No. 2 75 

www.aetic.theiaer.org 

International Working Conference on, Electronic ISBN:978-0-7695-4783-1, Print ISBN:978-1-4673-2398-7, pp. 

126-131, September 2012, DOI: 10.1109/SCAM.2012.15. 

[36] Clemens Hammacher, Kevin Streit, Sebastian Hack and Andreas Zeller, “Profling java programs for 

parallelism”, In Multicore Software Engineering, 2009, IWMSE '09, ICSE Workshop on, Print ISBN:978-1-4244-

3718-4, pp 49-55, May 2009, DOI: 10.1109/IWMSE.2009.5071383,  Available: 

https://ieeexplore.ieee.org/abstract/document/5071383. 

[37] Saturnino Garcia, Donghwan Jeon, Christopher Louie and Michael B. Taylor, “The kremlin oracle for 

sequential code parallelization”, IEEE Micro, Print ISSN: 0272-1732, Electronic ISSN: 1937-4143, pp.42-53, 

Vol. 32, No. 4, July 2012, DOI: 10.1109/MM.2012.52,   Available: 

https://ieeexplore.ieee.org/abstract/document/6235946. 

[38] Lucian Codrescu and D. Scott Wills, “On dynamic speculative thread partitioning and the mem-slicing 

algorithm”, In Parallel Architectures and Compilation Techniques, 1999, Proceedings. 1999 International 

Conference on, Print ISBN:0-7695-0425-6, Print ISSN: 1089-795X, pp. 40-46, 1999, DOI: 

10.1109/PACT.1999.807404, Available: https://ieeexplore.ieee.org/abstract/document/807404. 

[39] Borys J. Bradel and Tarek S. Abdelrahman, “Automatic trace-based parallelization of java programs”, In 

2007 International Conference on Parallel Processing (ICPP 2007), Print ISSN: 0190-3918, Electronic ISSN: 2332-

5690, pp. 26-26, September 2007, DOI: 10.1109/ICPP.2007.21, Available: 

https://ieeexplore.ieee.org/abstract/document/4343833. 

[40] Calin Cascaval, Luiz De Rose, David A. Padua and Daniel A. Reed, “Compile-time based performance 

prediction”,  In Proceedings of the 12th International Workshop on Languages and Compilers for Parallel 

Computing, LCPC '99, Print ISBN: 978-3-540-67858-8, Online ISBN: 978-3-540-44905-8,  pp. 365-379, Berlin, 

Heidelberg, 2000, Springer-Verlag, DOI: 10.1109/ICPP.2007.21, Available: Available: 

https://link.springer.com/chapter/10.1007/3-540-44905-1_23. 

[41] Pedro C. Diniz, “A compiler approach to performance prediction using empirical-based modeling”, In 

Proceedings of the 2003 International Conference on Computational Science: PartIII, ICCS'03, Print ISBN: 978-3-

540-40196-4, Online ISBN: 978-3-540-44863-1,  pp. 916-925, Berlin, Heidelberg, 2003, Springer-Verlag, DOI: 

10.1007/3-540-44863-2_90, Available: https://link.springer.com/chapter/10.1007/3-540-44863-2_90. 

[42] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk, “Prospector: A dynamic data-dependence profiler to 

help parallel programming”, 2010 Usenix, January 2010, Available: 

https://static.usenix.org/events/hotpar10/final_posters/Kim.pdf. 

[43] Barton P. Miller, Mark D. Callaghan, Jonathon M. Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin et al., 

“The paradyn parallel performance measurement tool”, Computer, Print ISSN: 0018-9162, Electronic ISSN: 

1558-0814, pp. 37-46, Vol. 28, No. 11, November 1995, DOI: 10.1109/2.471178, Available: 

https://ieeexplore.ieee.org/abstract/document/471178. 

[44] Luiz A. de Rose and Daniel A. Reed, “Svpablo: A multi-language architecture-independent performance 

analysis system”, In Proceedings of the 1999 International Conference on Parallel Processing, ICPP '99, 

Print ISBN: 0-7695-0350-0, Print ISSN: 0190-3918, pp. 311-, Washington, DC, USA, 1999, IEEE Computer 

Society, 6, DOI: 10.1109/ICPP.1999.797417. 

[45] J. Zhai, W. Chen, W. Zheng and K. Li, “Performance prediction for largescale parallel applications using 

representative replay”, IEEE Transactions on Computers, Print ISSN: 0018-9340, Electronic ISSN: 1557-9956, 

pp. 2184-2198, Vol. 65, No. 7, July 2016, DOI: 10.1109/TC.2015.2479630, Available: 

https://ieeexplore.ieee.org/abstract/document/7271042. 

[46] Nicholas Nethercote and Julian Seward, “Valgrind: A framework for heavyweight dynamic binary 

instrumentation”, SIGPLAN Notices, pp. 89-100, Vol. 42, No. 6, June 2007, DOI: 10.1145/1273442.1250746, 

Available: https://dl.acm.org/doi/abs/10.1145/1273442.1250746. 

[47] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, et al., “Pin: Building customized 

program analysis tools with dynamic instrumentation”, SIGPLAN Notices, pp. 190-200, Vol. 40, No. 6, June 

2005, DOI: 10.1145/1064978.1065034, Available: https://dl.acm.org/doi/abs/10.1145/1064978.1065034. 

[48] Ko-Yang Wang, “Precise compile-time performance prediction for superscalar-based computers”, In 

Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language Design and Implementation, PLDI 

'94, pp. 73-84, New York, NY, USA, 1994, ACM, DOI: 10.1145/178243.178250, Available: 

https://dl.acm.org/doi/abs/10.1145/178243.178250. 

[49] Gabriel Marin and John Mellor-Crummey, “Cross-architecture performance predictions for scientific 

applications using parameterized models”, In Proceedings of the Joint International Conference on 

Measurement and Modeling of Computer Systems, SIGMETRICS '04/Performance '04, pp.  2-13, New York, NY, 

USA, 2004, ACM, DOI: 10.1145/1005686.1005691. 

[50] Zhonglei Wang, Antonio Sanchez and Andreas Herkersdorf, “Scisim: A software performance estimation 

framework using source code instrumentation”, In Proceedings of the 7th International Workshop on Software 

https://ieeexplore.ieee.org/abstract/document/5071383
https://ieeexplore.ieee.org/abstract/document/6235946
https://ieeexplore.ieee.org/abstract/document/807404
https://ieeexplore.ieee.org/abstract/document/4343833
https://link.springer.com/chapter/10.1007/3-540-44905-1_23
https://link.springer.com/chapter/10.1007/3-540-44863-2_90
https://static.usenix.org/events/hotpar10/final_posters/Kim.pdf
https://ieeexplore.ieee.org/abstract/document/471178
https://ieeexplore.ieee.org/abstract/document/7271042
https://dl.acm.org/doi/abs/10.1145/1273442.1250746
https://dl.acm.org/doi/abs/10.1145/1064978.1065034
https://dl.acm.org/doi/abs/10.1145/178243.178250


AETiC 2021, Vol. 5, No. 2 76 

www.aetic.theiaer.org 

and Performance, WOSP '08, pp. 33-42, New York, NY, USA, 2008, ACM, DOI: 10.1145/1383559.1383565, 

Available: https://dl.acm.org/doi/abs/10.1145/1383559.1383565. 

[51] Ko-Yang Wang, “A performance predication model for parallel compilers”, Department of Computer Science 

Technical Reports, Perdue University, 1990. 

[52] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser et al., “Logp Towards a 

realistic model of parallel computation”, In Proceedings of the fourth ACM SIGPLAN symposium on Principles 

and practice of parallel programming, pp. 1-12, 1993, DOI: 10.1145/155332.155333, Available: 

https://dl.acm.org/doi/abs/10.1145/155332.155333. 

[53] Thomas Fahringer, “Evaluation of benchmark performance estimation for parallel fortran programs on 

massively parallel simd and mimd computers”, In 2nd Euromicro Workshop on Parallel and Distributed 

Processing, pp.  449-456. July 1994. 

[54] Kattamuri Ekanadham, Vijay K Naik and Mark S Squillante, “Pet: A parallel performance estimation tool” 

In Proceedings of the 7th SIAM conference for Parallel Processing for Scientific Computing (PPSC), pp. 826-831. 

Citeseer, 1995. 

[55] Tony Hey, Alistair Dunlop and Emilio Hernandez, “Realistic parallel performance estimation”, Parallel 

Computing, pp. 5-21, Vol. 23, No. 1-2, 1997, DOI: 10.1016/S0167-8191(96)00093-2, Available: 

https://www.sciencedirect.com/science/article/abs/pii/S0167819196000932. 

[56] Lei Hu and Ian Gorton, “Performance evaluation for parallel systems: A survey”, University of New South 

Wales, School of Computer Science and Engineering Reports, 1997, Available: 

https://cgi.cse.unsw.edu.au/~reports/papers/9707.pdf 

[57] Vikram S Adve and Mary K Vernon,“A deterministic model for parallel program performance evaluation” 

ACM Transactions on Computer Systems, 1998, Available: https://scholarship.rice.edu/handle/1911/96503. 

[58] Narasimhan Sreraman and Ramaswamy Govindarajan, “A vectorizing compiler for multimedia 

extensions”, International Journal of Parallel Programming, pp. 363-400, Vol. 28, No. 4, 2000, DOI: 

10.1023/A:1007559022013, Available: https://link.springer.com/article/10.1023/A:1007559022013. 

[59] Ilya Sharapov, Robert Kroeger, Guy Delamarter, Razvan Cheveresan and Matthew Ramsay, “A case study 

in top-down performance estimation for a large-scale parallel application”, In Proceedings of the eleventh 

ACM SIGPLAN symposium on Principles and practice of parallel programming, pp. 81-89, 2006, DOI: 

10.1145/1122971.1122985, Available: https://dl.acm.org/doi/abs/10.1145/1122971.1122985. 

[60] Henry Kasim, Verdi March, Rita Zhang and Simon See, “Survey on parallel programming model”, In IFIP 

International Conference on Network and Parallel Computing, Print ISBN: 978-3-540-88139-1, Online ISBN: 978-

3-540-88140-7, pp. 266-275. Springer, 2008, DOI: 10.1007/978-3-540-88140-7_24, Available: 

https://link.springer.com/chapter/10.1007/978-3-540-88140-7_24. 

[61] Donghwan Jeon, “Parallel speedup estimates for serial programs”, PhD thesis, UC San Diego, 2012, 

Available: https://escholarship.org/uc/item/66h1d17x 

[62] Dustin Feld, Thomas Soddemann, Michael Junger and Sven Mallach, “Hardware-aware automatic code-

transformation to support compilers in exploiting the multi-level parallel potential of modern cpus”, In 

Proceedings of the 2015 International Workshop on Code Optimization for Multi and Many Cores, pp. 1-10, 2015, 

DOI: 10.1145/2723772.2723776,  Available: https://dl.acm.org/doi/abs/10.1145/2723772.2723776. 

[63] Xiaowen Chen, Zhonghai Lu, Axel Jantsch, Shuming Chen, Yang Guo et al., “Performance analysis of 

homogeneous on-chip large-scale parallel computing architectures for data-parallel applications”, Journal 

of Electrical and Computer Engineering, 2015, DOI: 10.1155/2015/902591, Available: 

https://www.hindawi.com/journals/jece/2015/902591/. 

[64]  Kumar Vipin P and Gupta Anshul, "Analyzing Scalability of Parallel Algorithms and Architectures", 

Journal of Parallel and Distributed Computing, Vol. 22, No. 3, Pages 379-391, September 1994, DOI: 

10.1006/jpdc.1994.1099. 

[65] Sesha Kalyur and G. S. Nagaraja, “Paracite: Auto-parallelization of a sequential program using the 

program dependence graph” In 2016 International Conference on Computation System and Information 

Technology for Sustainable Solutions (CSITSS), Electronic ISBN:978-1-5090-1022-6, Print ISBN:978-1-5090-

1020-2, pp. 7-12, October 2016, DOI: 10.1109/CSITSS.2016.7779431, Available: 

https://ieeexplore.ieee.org/abstract/document/7779431. 

[66] Sesha Kalyur and G. S. Nagaraja, “A taxonomy of methods and models used in program transformation 

and parallelization”, In Navin Kumar and R. Venkatesha Prasad, editors, Ubiquitous Communications and 

Network Computing, Print ISBN: 978-3-030-20614-7, Online ISBN: 978-3-030-20615-4, pp. 233-249, Cham, 

2019, Springer International Publishing, DOI: 10.1007/978-3-030-20615-4_18, Available: 

https://link.springer.com/chapter/10.1007/978-3-030-20615-4_18. 

[67] Sesha Kalyur and G. S. Nagaraja, “Aide: An interactive environment for program transformation and 

parallelization”, In 2017 2nd International Conference on Computational Systems and Information Technology for 

https://dl.acm.org/doi/abs/10.1145/1383559.1383565
https://dl.acm.org/doi/abs/10.1145/155332.155333
https://www.sciencedirect.com/science/article/abs/pii/S0167819196000932
https://cgi.cse.unsw.edu.au/~reports/papers/9707.pdf
https://scholarship.rice.edu/handle/1911/96503
https://link.springer.com/article/10.1023/A:1007559022013
https://dl.acm.org/doi/abs/10.1145/1122971.1122985
https://link.springer.com/chapter/10.1007/978-3-540-88140-7_24
https://escholarship.org/uc/item/66h1d17x
https://dl.acm.org/doi/abs/10.1145/2723772.2723776
https://www.hindawi.com/journals/jece/2015/902591/
https://ieeexplore.ieee.org/abstract/document/7779431
https://link.springer.com/chapter/10.1007/978-3-030-20615-4_18


AETiC 2021, Vol. 5, No. 2 77 

www.aetic.theiaer.org 

Sustainable Solution (CSITSS), Electronic ISBN: 978-1-5386-2044-1, ISBN: 978-1-5386-2045-8, pp. 199-203, 

Dec 2017, DOI: 10.1109/CSITSS.2017.8447848. 

[68] Sesha Kalyur and G. S. Nagaraja, “Concerto: A program parallelization, orchestration and distribution 

infrastructure”, In 2017 2nd International Conference on Computational Systems and Information Technology for 

Sustainable Solution (CSITSS), Electronic ISBN: 978-1-5386-2044-1, ISBN: 978-1-5386-2045-8, pp. 204-209, 

Dec 2017, DOI: 10.1109/CSITSS.2017.8447691. 

[69] Sesha Kalyur and G. S. Nagaraja, “Efficient graph algorithms for mapping tasks to processors”, In Navin 

Kumar and R. Venkatesha Prasad, editors, Ubiquitous Communications and Network Computing, Print ISBN: 

978-3-030-47559-8, Online ISBN: 978-3-030-47560-4, pp.467-491, Cham, 2020, Springer International 

Publishing, DOI: 10.1007/978-3-030-47560-4_35, Available: https://link.springer.com/chapter/10.1007/978-3-

030-47560-4_35. 

[70] Sesha Kalyur and G. S. Nagaraja, “Evaluation of graph algorithms for mapping tasks to processors”, In 

Navin Kumar and R. Venkatesha Prasad, editors, Ubiquitous Communications and Network Computing, Print 

ISBN: 978-3-030-47559-8, Online ISBN: 978-3-030-47560-4, pp. 423-448, Cham, 2020, Springer International 

Publishing, DOI:  10.1007/978-3-030-47560-4_33, Available: https://link.springer.com/chapter/10.1007/978-

3-030-47560-4_33. 

© 2021 by the author(s). Published by Annals of Emerging Technologies in Computing 

(AETiC), under the terms and conditions of the Creative Commons Attribution (CC BY) 

license which can be accessed at http://creativecommons.org/licenses/by/4.0. 
 

https://link.springer.com/chapter/10.1007/978-3-030-47560-4_35
https://link.springer.com/chapter/10.1007/978-3-030-47560-4_35
https://link.springer.com/chapter/10.1007/978-3-030-47560-4_33
https://link.springer.com/chapter/10.1007/978-3-030-47560-4_33

