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Inherent Shear-Dilatation Coexistence in Metallic Glass *
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Shear deformation can induce normal stress or hydrostatic stress in metallic glasses [Nature Mater. 2 (2003)

449, Intermetallics 14 (2006) 1033]. We perform the bulk deformation of three-dimensional Cu46Zr54 metallic

glass (MG) and Cu single crystal model systems using molecular dynamics simulation. The results indicate that

hydrostatic stress can incur shear stress in MG, but not in crystal. The resultant pronounced asymmetry between

tension and compression originates from this inherent shear-dilatation coexistence in MG.

PACS: 61. 43. Dq, 62. 20.De, 64. 70. Pe, 81. 05. Kf

Metallic glasses (MGs) display many different me-
chanical properties compared with crystalline cousins,
because of their disordered atomic structure.[1,2] For
example, magnitudes of yield stresses in compression
are usually greater than those in tension, exhibit-
ing a strength-differential (SD) effect.[3,4] Meanwhile,
the fracture angles always deviate from 45∘, i.e. the
maximum shear stress direction,[3−5] implying pres-
sure or normal stress sensitivity. The deviation is also
tension-compression asymmetric.[3−5] Furthermore, it
has been widely found that imposed high pressure will
induce structural change[6−8] and enhance ductility
of MGs.[9] The pressure-sensitivity of mechanical be-
haviour has attracted substantial interest,[10−12] since
it is critical to engineering applications of MGs. The
underlying mechanism is believed to be contributed
to the shear-induced dilatation of randomly close-
packed atoms within MGs.[13] This physical picture
must cover two opposite, but coexistent aspects.[4]

On the one hand, shear deformation induces vol-
ume changing or hydrostatic stress. On the other
hand, the volume/bulk deformation should also pro-
duce shear stress. The former has been confirmed by
a series of experiments and molecular dynamics (MD)
simulations.[11,14,15] However, there is no work in re-
spect of the latter up to now. Since the bulk moduli
of MGs are often large,[13] a little change in volume
needs very great hydrostatic stress. In addition, a pure
bulk loading without inducing any shear deformation
is also very difficult for a real experiment. Note that
Knuyt et al. has successfully simulated the bulk defor-
mation of an amorphous metal to calculate its elastic
constants by using MD method.[16] In this Letter, we
rely on MD computer simulations on a Cu46Zr54 MG
to investigate whether the pure bulk deformation can
induce shear stress or not. For comparison, the bulk
deformation of a Cu single crystal is also performed,

the simulation details and other results will be pre-
sented elsewhere.

In our MD simulations, we take a three-
dimensional binary MG system in which Cu46Zr54
containing 27436 atoms is used. Atoms interact via a
modified Lennard-Jones 4–8 potential in the form:[17]
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where 𝑟𝑖𝑗 is the distance between the atoms 𝑖 and 𝑗;
𝐴, 𝐵,𝐶 and 𝐷 are constants whose values are available
in Ref. [17]; 𝑟𝑡 is the truncation distance with the val-
ues of 5.08, 5.58 and 6.00 Å for Cu–Cu, Cu–Zr and Zr–
Zr pairs, respectively. The motion of each atom was
evaluated by integrating the Newtonian equations of
motion using the velocity-Verlet method with a time
step of 1 fs. To form an amorphous structure, the
melt-quench procedure was used. We start the proce-
dure by building an initial structure and set the initial
conditions. The initial structure was created by plac-
ing all atoms into an fcc crystal lattice in a random
order; the initial conditions were applied by using pe-
riodic boundary conditions (PBC) in all three dimen-
sions and setting the initial velocities of all atoms to
zero. After that, we gradually heated the structure
to 2400 K for sufficiently melting, then cooled it down
to 300 K with the cooling rate of 10 K/ps. The global
stress tensor of the as-built structure was calculated
based on Eq. (1) using[18]
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where 𝑉 is the volume of the computational cell; 𝑟𝑎
𝑖𝑗

and 𝑟𝑏
𝑖𝑗 represent the separation distances between

atoms 𝑖 and 𝑗 along any two given principle direc-
tions 𝑎 and 𝑏, respectively; 𝑚𝑖 is the mass of atom 𝑖;
𝑣𝑎

𝑖 and 𝑣𝑏
𝑖 denote the velocity components of atom 𝑖

along the directions 𝑎 and 𝑏, respectively. To allow
the initial glassy structure to find a local energy mini-
mum with near-zero stress components, we repeatedly
adjusted their dimensions, and reposition each atom
accordingly. Finally, an MG sample I with the size
of 80× 80× 80 Å3 is guided toward a low-stress state
(the normal stress components were kept at zero and
the shear stress components were maintained below
10 MPa). A 32000-atoms Cu single crystal sample II
with the size of 72 × 72 × 72 Å3 was also created for
comparison. The radial distribution functions (RDF)
of the two samples were examined and displayed in
Figs. 1(a) and 1(b), respectively. The RDF figures
confirm the perfect amorphous structure for sample
I and crystal feature for sample II.[19]

Fig. 1. Radial distribution functions for (a) Cu46Zr54
metallic glass sample and (b) Cu single crystal.

Fig. 2. Stress-loading displacement curves: (a) normal stresses and (b) shear stresses of Cu46Zr54 metallic glass;
(c) normal stresses and (d) shear stresses of Cu single crystal.

To explore the bulk deformation behaviour of MG
sample, we gradually reduced the size of the compu-
tational cell in all three dimensions at a constant rate.
The lengths of the cells decrease 0.1 Å per step, and
the boundaries were held on for 3 ps for relaxation. In
the loading procedure, PBC was still used on all the
boundaries, and the temperature of the sample was
kept at 300 K. Finally, total 110 load steps were ap-
plied, ensuring that the total potential energy is not
greater than zero. Figure 2 shows the evolution of
the six stress components during loading, where the
Cu single crystal case is also presented on the right

hand. From this picture, it can be clearly seen that for
MG sample (see Figs. 2(a) and 2(b)), the hydrostatic
stress (𝜎𝑥𝑥 ≈ 𝜎𝑦𝑦 ≈ 𝜎𝑧𝑧), if it is large enough, can in-
duce gradual increasing in shear stress. However, for
Cu single crystal sample (see Figs. 2(c) and 2(d)), the
three shear stress components always keep constant,
i.e. the initial value of zero, under almost the same
hydrostatic stresses. This difference between them
should be contributed to their distinct atomic struc-
tures. Crystals can deform without changing shape
because the periodicity along the loading directions
provides a uniform compression or tension. A bulk
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deformed portion of an MG material, on the other
hand, does not find a perfect fit; the shear motions
among disordered atoms must take place. Recently,
the nanoscale dimples and periodic corrugations have
been widely observed on the dynamic mode I frac-
ture planes of MGs.[4,20−22] In such a case, the un-
derlying fracture mechanism is the quasi-cleavage via
tension transformation zones (TTZs), during which
the broken of atomic clusters by tension can bring
out the shear motion/flow within the cluster.[4] These
nanoscale patterns are considered as the indicative
of shear flow at atomic level induced by normal ten-
sion stress.[4,20,22] Our simulation result provides an
evidence for energy dissipation underpinning these
brand-new fracture patterns.

Fig. 3. Results of two uniaxial straining simulations us-
ing the same initial structure, one in compression and the
other in tension.

Fig. 4. (a) Dependence of hydrostatic stress increment on
volume change, where the initial slope is calculated to be
about 100GP. (b) Two cycles for the atomic energy as a
function of the cube edge.

Based on our present simulations and previous
works,[4,11,13−15] one can conclude that the shear and

bulk deformations are coexistent inherently in metal-
lic glasses. This characteristic determines most be-
haviour of deformation and failure of MGs,[3−5,20−24]

such as toughness, ductility, fracture patterning, yield
strength and so on. In order to recover this point,
we performed typical uniaxial tension and compres-
sion simulations on the same MG sample, respectively.
Figure 3 shows the relationship between the stress nor-
malized by Young’s Modulus of 65 GPa and the equiv-
alent strain. It is noted that there is indeed an obvious
asymmetry in the plastic mechanical response: the
yield strength in compression is higher than that in
tension, which has been widely observed in many real
experiments.[4,5] The difference of the yield strength
in the value is about 8%, which can be measured by
the method described in Ref. [17].

Finally, this bulk deformation method in our
present work provides a useful tool to calculate the
bulk modulus 𝐾. The usual expression for 𝐾 is given
by

𝐾 = − 𝜕𝑃

𝜕𝑉 /𝑉
, (3)

where 𝑃 = (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧)/3 indicates the pressure
of a sample, and 𝑉 denotes the volume of the sample.
The pressure increment (i.e. 𝜕𝑃 ) varies with the rela-
tive change of the volume (i.e. 𝜕𝑉/𝑉 ) for the MG sam-
ple, as displayed in Fig. 4(a). Thus, the initial slope
of the curve represents its initial bulk modulus. After
calculation, we find that initial bulk modulus of the
metallic glass sample is about 100 GPa, which is very
close to the value tested by experimental method.[25]

From Eq. (3), the alternative expression for 𝐾 can be
derived as[16]
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where 𝑁at is the number of atoms, 𝐸at the mean
atomic energy, and 𝑙min the edge length 𝑙 for which the
total energy is minimum. In practice, 𝐾 is calculated
with the following process. We started from an atomic
configuration very near to the minimum-energy situa-
tion (the initial configuration can be satisfied). Then,
𝑙 was decreased in eighty steps of 0.01 Å; next 𝑙 was in-
creased in the same number of steps until the starting
value was reached. In this way, a small cycle of 𝑙 values
was realized. Two cycles were performed, as shown in
Fig. 4(b). For each step in the cycle, all atoms were
allowed to relax to the minimum energy. 𝐸at for a
certain 𝑙 value was taken as the average between the
four values calculated the two cycles. The 𝐸at(𝑙) de-
pendence was then approximated by a parabola from
its parameters accurate values of 𝑙min and 𝑑2𝐸at/𝑑𝑙2

were determined, so that the bulk modulus was calcu-
lated to be 0.655 eV·Å3 using Eq. (4). This value cor-
responds to about 105GP, which agrees well with that
calculated by Eq. (3). The good agreement between
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our simulations and experimental measurements, in
turn, implies that the present bulk loading procedure
is technically correct and the simulation results are
believable.

In summary, we have performed MD simulations
of a 3D model Cu–Zr metallic glass to investigate
the shear deformation under bulk loading conditions.
The results clearly show that the bulk deformation
can give rise to the increasing in shear stresses in
MGs. However, this phenomenon is not observed
in crystal sample. This coexistent shear-bulk defor-
mation can be considered as an inherent property
of metallic glasses, which is responsible for the re-
sultant tension-compression asymmetry in the plastic
mechanical response. The calculated bulk modulus
using the present bulk loading is shown to compare
favourably with the experimental data, which in turn
validates our simulations.
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