
Inherent Signals in Sequencing-Based Chromatin-
ImmunoPrecipitation Control Libraries
Vinsensius B. Vega1*, Edwin Cheung2, Nallasivam Palanisamy3, Wing-Kin Sung1

1 Computational and Mathematical Biology Group, Genome Institute of Singapore, Singapore, Singapore, 2 Cancer Biology and Pharmacology Group, Genome Institute of

Singapore, Singapore, Singapore, 3 Michigan Center for Translational Pathology, University of Michigan Health System, Ann Arbor, Michigan, United States of America

Abstract

Background: The growth of sequencing-based Chromatin Immuno-Precipitation studies call for a more in-depth
understanding of the nature of the technology and of the resultant data to reduce false positives and false negatives.
Control libraries are typically constructed to complement such studies in order to mitigate the effect of systematic biases
that might be present in the data. In this study, we explored multiple control libraries to obtain better understanding of
what they truly represent.

Methodology: First, we analyzed the genome-wide profiles of various sequencing-based libraries at a low resolution of 1 Mbp,
and compared them with each other as well as against aCGH data. We found that copy number plays a major influence in both
ChIP-enriched as well as control libraries. Following that, we inspected the repeat regions to assess the extent of mapping bias.
Next, significantly tag-rich 5 kbp regions were identified and they were associated with various genomic landmarks. For
instance, we discovered that gene boundaries were surprisingly enriched with sequenced tags. Further, profiles between
different cell types were noticeably distinct although the cell types were somewhat related and similar.

Conclusions: We found that control libraries bear traces of systematic biases. The biases can be attributed to genomic copy
number, inherent sequencing bias, plausible mapping ambiguity, and cell-type specific chromatin structure. Our results
suggest careful analysis of control libraries can reveal promising biological insights.

Citation: Vega VB, Cheung E, Palanisamy N, Sung W-K (2009) Inherent Signals in Sequencing-Based Chromatin-ImmunoPrecipitation Control Libraries. PLoS
ONE 4(4): e5241. doi:10.1371/journal.pone.0005241

Editor: I. King Jordan, Georgia Institute of Technology, United States of America

Received October 13, 2008; Accepted December 17, 2008; Published April 15, 2009

Copyright: � 2009 Vega et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by the Biomedical Research Council of the Agency for Science, Technology and Research (A*STAR) of Singapore. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sungk@gis.a-star.edu.sg

Introduction

Sequencing-based Chromatin-Immunoprecipitation (ChIP)

study has been rapidly gaining traction. Introduced around late

2004 with ChIP-SACO [1], it is currently fast becoming the

mainstream and definitive assays for studying transcription factor

binding on a genome-wide scale. Development of next generation

sequencing platforms further enabled researchers to sequence

deeper and to develop various interesting techniques (e.g. ChIP-

SACO [1], ChIP-PET [2], ChIP-STAGE [3], ChIP-Seq [4]). The

goal of sequencing-based ChIP is to identify locations in the

genome where TF-DNA interactions mostly likely occur. Such

locations are expected to be enriched with the sequenced

fragments. This is challenging due to the vast number of unspecific

fragments sequenced along with the ChIP-enriched ones.

Many interesting techniques proposed thus far have been

successfully applied to a host of high-throughput sequencing ChIP

(htsChIP) data. We can loosely classify these techniques into (i)

those that uses single htsChIP library solely (e.g. fragment

clustering [1,2], Monte-Carlo simulations [2], analytical distribu-

tions [3,5], adaptive thresholding [5]) and (ii) those that leverage

their analyses with control (or sometimes called background or

input) libraries [4,6]. Clearly, the presence of a control library

facilitates better approximations of the profile of unspecific

precipitations and thus gives a better filtering of the false positive

enrichments.

Despite the importance of control libraries, they have received

little attention. Their behaviors and characteristics are typically

assumed, without sufficient prior investigation. Control libraries

are primarily used to identify and/or negate systematic biases that

are present in the ChIP library. It is thus important to understand

those biases. We argue that the sources of these biases can be

broadly categorized into four groups: (a) genomic copy number

variations, (b) mapping bias, (c) sequencing bias, and (d) chromatin

and/or experimental bias. This study intends to explore the extent

of these systematic biases.

Results

Low Resolution Profile of Various ChIP Data Reflects the
Underlying Genomic Copy Number

To investigate how much genomic copy number influence the

control library, an in-house array CGH data (unpublished data –

N.P.) of the MCF-7 cells was used as the benchmark for copy

number variations in MCF-7. A whole cell extract library was also

generated from MCF-7 and followed by direct ultra high-

throughput sequencing using Solexa Genome Analyzer platform.

Using Equation (1) and 1 Mbp sliding window (see Materials and
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Methods), we estimated the genome-wide copy number of MCF-7

based on the whole cell extract (WCEseq) library. As a

comparison, we also took ChIP-enriched library (ER ChIP-PET

[7]) and similarly estimated the genome-wide copy number using a

signal-filtering approach and Equation (2). The copy number

estimated from WCEseq library matched the array CGH readout

very well (Pearson’s r = 0.875, Fig. 1a). Interestingly, the estimate

from ER ChIP enriched library agreed with the aCGH reasonably

well too (Pearson’s r = 0.673, see Fig. 1b).

Similar analyses were also performed using three mouse WCEseq

libraries published by Mikkelsen et al. [8] which were generated

from embryonic stem (ES), neural progenitor (NP), and embryonic

fibroblasts (MEF) cells. Although the copy number estimates across

these three libraries are generally similar (Pearson’s r.0.74 for all

pairings, Table 1), some differences were still apparent (Fig. 2). The

correlation between that of ES and NP was unexpectedly high at

almost 0.95, while the correlation between MEF and the other two

libraries was about 0.75 on average. Although the copy numbers of

these three cell types are expected to be very similar, the perceptible

difference could be due to other reasons. One potential explanation

could be due to how the libraries were generated. For example, the

NP cells were derived from the ES, while the MEF was obtained

independently [8,9].

Effect of Tag Mapping Bias
Another likely source for systematic bias lies in the mapping

procedures. For the purpose of assessing this bias, we used the

repeat regions as a surrogate for heavily biased regions. We found

that a number of repeat classes were significantly enriched (p,1e-

3) for WCEseq tags, while some were unexpectedly depleted of

tags (Fig. 3). The depleted region could be ascribed to mapping

ambiguities in these repeats which resulted in the removal of these

multiply mapped tags, as typically only uniquely mapped tags are

retained. Satellite regions were found to be enriched in all the

three WCE libraries. This was not unexpected as satellites have

been previously reported to be unduly enriched in tags from ChIP-

enriched libraries as well [10], marked by conspicuous spikes in

otherwise flat genomic segments.

Fine Resolution Oscillations are Correlated to Genomic
Landmarks

Next, we examined the tag density distribution across the

genome. From this analysis, we noticed that some of the spikes did

not fall into any repeat regions. This led us to ask the following

Figure 1. Whole cell extract sequencing (WCEseq) libraries are biased by genomic copy. The genome-wide copy number of MCF-7
(obtained from array CGH) at 1 Mbp resolution is contrasted to estimations made from (a) a WCEseq library and (b) ER ChIP-enriched library, sorted in
chromosomal order. The high correlation (Pearson’s r = 0.875) between WCEseq estimate and actual aCGH readout indicates coarse-scale profile of
WCEseq library is dominantly shaped by copy number variations. Inherent effect of copy number variations also strongly affect ChIP-enriched library
(Pearson’s r = 0.673).
doi:10.1371/journal.pone.0005241.g001

Table 1. Pairwise correlation of copy number estimates from
three mouse WCEseq libraries.

Correlation ES NPC MEF

ES 1 0.9464359 0.7546334

NPC 0.9464359 1 0.7428463

MEF 0.7546334 0.7428463 1

The genome-wide copy number for each cell type was estimated using the
whole cell extract (WCEseq) library, based on Equation (1). The estimation was
made based on 1 Mbp windows staggered by 500 kbp overlap.
doi:10.1371/journal.pone.0005241.t001

Signals in Control Libraries
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questions: How many significantly deviating spikes are there in a

typical WCEseq library? Could they be all explained by Satellite

or other repeat? Or are they coming from other genomic features?

To answer this, we took the mouse WCEseq libraries and analyzed

them at 5 kbp resolution. For each 5 kbp non-overlapping

window, a p-value was computed for tag enrichment within the

5 kbp window assuming random uniform distribution of tags

found in the overarching 1.5 Mbp region. Even after FDR-

adjustment of multiple hypotheses [11], a considerable number of

5 kbp windows were enriched with tags (see Table 2). As expected,

some of these tag-dense regions were artifacts from Satellite

repeats. Interestingly, however, these tag-dense regions were much

more significantly associated with a number of other genomic

landmarks, namely Transcription Start Sites (TSS), Transcription

End Sites (TES), and intragenic regions.

In all the mouse WCEseq libraries used in this study, the TSS

was correlated with a sharp spike of tag population (Fig. 4),

however, the exact shape of the spike was library dependent. Tags

in the WCEseq of ES and MEF peaked around the TSS, while

tags in the NP WCEseq showed a dip at the TSS followed by a

sharp increase around 500–700 bp downstream of the TSS. The

peak enrichments ranged around 2.5, 2.75, and 4 times in NP, ES,

and MEF WCEseq libraries respectively. In the NP WCEseq

library, the peak was preceded by a steady upward trend upstream

of the TSS followed by a gradual decline after the sharp jump

downstream of TSS (Fig 4, middle left panel). In contrast, the tag

density surrounding TES exhibited a punctuated profile of tags

right at the TES (Fig 4, right panels). In ES WCEseq, the tag

density at TES dropped by around a third of the density in the

TES downstream regions, while both NP and MEF WCEseq

experienced around 25% drop at the TES.

The dense 5 kbp regions were also pervasive among intragenic

regions. Around 88.26% of the significantly dense 5 kbp regions of

the NP WCEseq library were found to be associated with

intragenic regions (Table 2). This observation was recapitulated

in Figure 4 where the tag density at 2500 bp downstream of the

TSS is still roughly 55% higher than that at 2500 bp upstream of

the TSS in the NP WCE. A closer inspection of the density profiles

Figure 2. Comparison of genome-wide copy number from three mouse cell types (ES, NP, and MEF), sorted in chromosomal order.
Although copy number wise, they were highly similar (Pearson’s r.0.74 for all pairings) as expected, the exclusively high correlation (Pearson’s
r = 0.946) between ES and NP reflected their relationship at sample preparation level [8,9].
doi:10.1371/journal.pone.0005241.g002

Signals in Control Libraries
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surrounding the TSS in ES and MEF WCEseq libraries also

revealed that the tag density in downstream regions of TSS, i.e.

within intragenic regions, was more elevated compared to the

promoter region, albeit only by about 12%, suggesting that gene

bodies contain higher tag density. This trend was also observed

around the TES, where the tag density upstream of the TES was

generally higher compared to downstream of the TES, although

only by approximately 8.5%, 12.8%, and 6.6% for ES, NP, and

MEF WCEseq libraries respectively. From these observations, one

might postulate a model where WCE fragments are accumulated

significantly at the start of a gene region, followed by above than

average density in the gene body, suddenly depleted at the end of

the gene, and then leveling off to average density downstream of

the gene (Supplementary Figure S3). Using an approximate of this

model, we found on average 50% to 65% of genes corroborated

this model (Supplementary Table S1).

Tag Densities of Expressed and Non-Expressed Genes are
Distinct

Using the accompanying expression data in [8], genes were

grouped into high expressing and low expressing. We found that

high-expressing genes exhibited a more pronounced profile of tag

Figure 3. Mapping bias was apparent within repeat regions. Tag overabundance and paucity in the three mouse WCEseq libraries across
various repeat classes, illustrating the biases due to mapping problems. Statistically significant deviations from random expectation (p-value,1e-3)
were marked with stars.
doi:10.1371/journal.pone.0005241.g003

Signals in Control Libraries
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density around gene boundaries (Fig. 5), while low-expressing

genes exhibited a more subdued contour, closer to genomic

background. Overall, the TSS of high-expressing genes was

populated by approximately four times more tags than the TSS of

low-expressing genes, while regions around the TES of high-

expressing genes contained ,30% more tags than those of low-

expressing genes.

Effect of Sequencing Bias
It has been reported that the sequencing efficiency of next

generation sequencers is influenced by the nucleic acid composi-

tion of the DNA fragment being sequenced [12,13], where better

sequencing efficiency is correlated with CG-rich sequences. This

bias was generally mild among the three WCEseq libraries and

was of a lesser degree compared to H3K4me3 ChIPseq

(Supplementary Figure S4). Although the CG-bias was mild, we

wondered whether the observed tag density pattern around TSS

and TES could be explained solely by CG-dependent sequencing

bias. The fact that the shape of tag density around TSS from

WCEseq NP was markedly different from those of ES and MEF

suggests that CG-bias could not have generated the observed

patterns (Fig. 4). To investigate this more rigorously, we first

formulated a model of high-throughput sequencing data genera-

tion which takes into account three primary influencing factors: (i)

underlying fragment generation distribution, (ii) CG-dependent

sequencing bias, and (iii) mapping bias (see Equation 3 in

Materials and Methods). Assuming a null hypothesis of uniform

fragment generation across the genome, we normalized the tag

density profiles for CG-dependent sequencing bias (Equation 4).

Since the mm8 genome is generally AT-rich, this null hypothesis

has the effect of over dampening any real signal that happens to be

CG-rich. Even so, we found that gene boundaries were still

marked by distinct density profiles (Supplementary Figure S5) and

high-expressing genes were more enriched with tags than low-

expressing genes (Supplementary Figure S6).

Discussions

A Large Proportion of the Fragments are Noise
Influenced by Genomic Copy Number and Other Biases

We started our analyses by comparing genome-wide profiles of

various libraries at low 1 Mbp resolution. The fact that we could

reasonably estimate the copy number using fragment density at

low 1 Mbp resolution supports the assumption that a significant

proportion of the fragments are random noise from the genome

and that these random noise are predominantly influenced by the

underlying genomic copy number. Consequently, this also

supports the notion that WCEseq library should be able to negate

bias from underlying chromosomal abundance (copy number).

Having said that, though, copy number did not appear to be the

sole component in influencing genome-wide profiles of WCEseq.

When comparing three WCEseq libraries, which are from very

similar and relatively normal genomes, we saw that they were not

extraordinarily correlated even at low resolution. The observation

suggested the presence of other biases. This was further confirmed

by analyses at higher resolution, in which we found that tag-rich

5 kbp regions were non-randomly associated with repeats and

gene boundaries (TSS and TES).

Non-uniformity of Tags at Finer Scale Seems to be Driven
by Chromatin Structure

From our analyses of localized spikes and dips around the TSS

and TES, one might suspect that these features are primarily due

to mapping bias. If this is the case, the three mouse WCEseq

libraries should have roughly the same profile. However, we

instead observed clearly distinct shapes of tag density at the TSS.

Furthermore, the consistent phased profiles of sense and antisense

tags (Fig. 4) suggested presence of well-positioned fragments that

were recurrently sequenced. This phasing was similar to the

phasing that marked well-positioned nucleosome [14]. Such

phasing was not merely artifacts in tag-dense regions, as tag-

dense satellite regions did not exhibit this profile (Supplementary

Figure S1). Therefore, all these patterns are likely due to

chromatin bias, and not mapping biases.

The Signal Contained in WCEseq Appear to be Cell Type
or Experiment Specific

All the evidence gathered thus far strongly suggests that

WCEseq profile is cell-type specific. Since sequencing and

mapping biases are expected to be similar among libraries of the

same species, the cell-type specific signals should be coming from

the other two sources of bias (i.e. copy number or chromatin/

experiment bias); although it has to be noted that the degree of tag

enrichment or scarcity in repeat regions (which are the archetypic

regions with mapping bias) were not completely uniform among

the mouse WCEseq libraries. Obviously, WCEseq profiles will be

different if the different cell types have distinct copy number

profiles. However, chromatin bias was apparent in WCEseq from

ES, NP, and MEF cells, which are expected to be normal and non-

amplified. Tag densities near gene boundaries were distinct in the

three libraries and were correlated to the genes’ expression levels.

For example, only 8.63% of the significantly dense 5 kbp regions

found in NP WCEseq library was also found to be significantly

dense in MEF WCEseq library (Supplementary Figure S2a). Even

Table 2. Distribution of significantly enriched 5 kbp regions.

WCEseq Library Significantly Dense 5 kbp Regions

Total With TSS (Total: 20240) With TES (Total: 21020) Intragenic (Total: 182328)
With Satellite (Total:
3203)

ES 29 2 (6.9%) 2 (6.9%) 12 (41.38%) 11*** (37.93%)

NP 4334 1434*** (33.09%) 367*** (8.47%) 3825*** (88.26%) 55** (1.27%)

MEF 1403 1036*** (73.84%) 179*** (12.76%) 1186*** (84.53%) 38** (2.71%)

The significantly dense (FDR adjusted p-value,1e-4) 5 kbp regions (510,351 regions in total) across three WCEseq libraries were overlapped with gene boundaries
(Transcription Start Sites and Transcription End Sites) annotation based on UCSC knownGene database for mm8 and tested for association using 1-tailed Fisher’s Exact
Test. An overlap with Satellite repeats was also done for comparison. The 5 kbp dense regions are significantly associated to genes and genes boundaries. (Notes:
* = p,1e-3 ; ** = p,1e-5 ; *** = p,1e-16 ).
doi:10.1371/journal.pone.0005241.t002

Signals in Control Libraries
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Figure 4. Chromatin bias in WCEseq library was evident along gene boundaries. Tag density (50 bp average) profiles around transcription
start sites (TSS) and transcription end sites (TES) across three mouse WCEseq libraries. The black and blue curves denote density of tags mapped on
the sense and antisense strands respectively.
doi:10.1371/journal.pone.0005241.g004

Signals in Control Libraries
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among TSS-associated dense regions, only 20.6% of those found

in NP WCEseq were common with those in MEF WCEseq

(Supplementary Figure S2b). Beyond gene boundaries, we

postulate that these tag dense and sparse regions also reflect other

cell-type specific chromatin structures. For example, tag dense

regions might generally correlate with open chromatin, which is in

line with the suggestion in [15] that size-selection and sequencing

might favor fragments from open chromatin regions.

Figure 5. Expression levels of genes were correlated with tag density in WCEseq libraries. Density profiles (50 bp average) of tags
(combined sense- and antisense-mapped) around TSS and TES of highly expressed (red) and lowly expressed (green) genes.
doi:10.1371/journal.pone.0005241.g005

Signals in Control Libraries
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Using primarily the WCE libraries, we have shown some extent

of systematic biases attributed to genomic copy number variations,

sequencing-and-mapping bias, as well as chromatin/experimental

bias. Since the systematic biases present in the control library

would influence the ChIP-enriched libraries as well, it is not

inconceivable that more thorough analyses of the control library

could potentially reduce false positive rate and false negative rate

in binding sites identification, while concurrently provide insights

into the underlying chromatin structure.

Materials and Methods

Datasets
This study made use of four whole cell extract sequencing data,

which we call WCEseq. Three WCEseq libraries (from mouse ES,

NP, and MEF cells) were obtained from a published work [8] and

one (from human MCF-7 cells) was generated in-house. Tags were

mapped into mm8 or hg18 accordingly. Only uniquely mapped tags

were retained. The starting coordinate of the genome alignment

were taken as the coordinate for the tag. Mapped tags were grouped

into those mapped to the forward strand and those mapped to the

reverse strand. Redundant tags in each group, defined as tags

mapped to exactly the same genomic location, were removed. An

additional ChIP-enriched library (ER ChIP-PET library [7] hg17-

mapped) was also analyzed. Mouse ES, NP, and MEF H3K4me3-

ChIPseq libraries [8] were used as a comparison in CG content bias

analysis. Expression data [8] for the three mouse cells were

employed to stratify genes based on expression level.

An array comparative genomic hybridization readout (using

Agilent Human aCGH platform containing approximately 43,000

oligonucleotide features, based on hg17 assembly) was also

obtained to measure the genomic copy number of MCF-7.

Genomic Copy Number Estimation
The following method was used to generate genomic copy

number estimation using WCEseq library. With the assumption

that other biases are minimal and should not greatly affect the

distribution of the tags, the genomic copy number of a given

region can be estimated as:

c~2|
d

wl
ð1Þ

where c is the estimated copy number, d is the number of tag

counts within the region, w is the length of the region, and l is the

expected number of tags per base pair computed as the total

number of tags in the library divided by the total gap-less genome

length.

Genomic copy number estimation from ChIP-PET data

requires two fundamental steps. First, as the library contains both

signal and noise fragments, we need to first be able to extract the

noise part. For this we consider only singleton PETs [5] and

reduce PET cluster into a single pseudo singleton PET. For a given

region, the relationship between the number of composite

singletons (true singletons+pseudo singletons) d and copy number

c can be described using Equation 2 below:

d~2 � clwð Þ|e {clkð Þ ð2Þ

The first term of equation 2 denotes the amount of singletons

expected had there be no overlapping of random PETs in a

region, where l is the expected number of tags per base pair

computed locally for each region being considered. The second

term denotes the fraction of random PETs expected not to overlap

with other fragments [5].

In our analysis, we used sliding windows (1 Mbp in size,

500 kbp step size) to compute the average copy number from

MCF-7 ER ChIP-PET, MCF-7 WCEseq, as well as from the three

mouse WCEseq libraries. The same sliding windows were used in

averaging the copy number readouts from the MCF-7 aCGH

data, which was used as the benchmark in the MCF-7 study.

Pearson’s correlation was employed to assess the signal concor-

dance within these windows among every pair of libraries.

Comparison of MCF-7 aCGH and MCF-7 ER ChIP-PET was

done based on hg17. To compare the aCGH data to WCEseq

estimate, we first converted the aCGH data into hg18 assembly

using the liftOver tool of UCSC Genome Browser.

Tag Density Calculation and Normalization
Tag densities computed in our study were based on 50 bp

averaging and normalized against the total number of regions

inspected. Tags mapped to sense strand and tags mapped to

antisense strand were considered separately in Figure 4. This

allowed us to observe a consistent shift between them, indicating

presence of consistent and well-positioned fragments with respect

to the reference points (i.e. TSS and TES). Such consistent shift

was not observed in the equally tag-rich satellite repeats, where the

middle of repeat instances was used as the reference point

(Supplementary Figure S1). We further grouped the genes based

on their average expression level (Fig. 5). Probes were mapped to

genes based on UCSC Genome Browser database [16]. Genes

associated to the highest 25% expression readouts were classified

as highly expressed and those associated to the lowest 25% were

deemed as lowly expressed genes. Chromosomes X, Y, and M

were ignored in this part of the study.

Assessing Bias in Repeat Regions
As a proxy for mapping bias, we looked for irregularities in the

number of tags mapped to different repeat classes. Repeat

annotations were taken from UCSC Genome Browser database

[16]. For each repeat class, the total number of tags found in its

instances were counted and compared to the expected counts had

the tags been randomly distributed across the genome. Figure 3

shows the enrichment and depletion of tags across repeat classes.

Their significance was assessed using 1-tailed Binomial test. Those

with p-value less than 1e-3 were considered statistically significant.

Identification of Fine Scale Dense Regions
Having observed that copy number variation explains the

coarse-scale profile of WCEseq libraries, we asked whether there

exist finer-scale irregularities beyond what can be explained by

copy number. To do this, we divided the genome into 5 kbp non-

overlapping windows and assessed overabundance of tags while

taking into account the local tag density within 1.5 Mbp window.

For each window, we compute a p-value of tag overabundance

using Poisson distribution as a null hypothesis, with the expected

rate of tags based on the 1.5 Mbp window. After calculating the p-

values for all 5 kbp windows, the p-values were corrected for

multiple hypotheses using the FDR method [11]. Regions with

adjusted p-value,1e-4 were deemed to be enriched. In this study

we placed an emphasis on tag-rich regions and not tag-poor

regions, as scarcity of tags could be affected by numerous other

issues beyond the scope of this study.

The identified tag-rich 5 kbp regions were then associated with

gene regions and boundaries (based on UCSC knownGene

database [15]), as laid out in Table 2. As a positive control,

amount of overlap with satellite repeats was also included.

Signals in Control Libraries
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Significance of association was analyzed using 1-tailed Fisher’s

Exact Test. Interestingly, associations with gene body and

boundaries were much more significant than association with

satellite repeat. Association with TSS was exceptionally high. It in

fact could explain most of the common dense regions found in

both NP and MEF libraries (see Supplementary Figure S2).

Testing the Model of Tag Density around Gene Regions
Detecting rises and drops of tag densities at specific locations in

the genome using the ES, NP, and MEF WCEseq libraries was

challenging, due to the low overall genome coverage of the library.

To test the gene model illustrated in Supplementary Figure S3, we

asked how many genes have higher tag density in the gene body

compared to its upstream and downstream regions. Upstream and

downstream regions of genes were defined as regions 2–5 kbp

upstream of TSS and downstream of TES to avoid reduce signal

overflow from the gene region and to guard for inaccuracies of the

reported positions of TSS and TES. To avoid potential confusions,

double counting, as well as ambiguities associated with long genes,

we took forward-strand mapped genes found in the UCSC

knownGene database, retained genes shorter than 100 kbp, and

removed those that were overlapping with other genes in the

retained list. The result is shown in Supplementary Table S1.

A Generalized Model of Tag Generation
Let x be a position in the genome. Assuming a fixed fragment

length, let sx be the sequence of fragment associated with a tag at

position x and CG sxð Þ be proportion of C/G bases in sx. In this

study we used the expected fragment length of 150 bp for defining

sx. Let us also define binary variables fx,qx,mx,tx, where fx

indicates whether fragments originated at position x are truly

generated by the underlying experiment, qx indicates whether tags

at position x were successfully sequenced (or quantified), mx

indicates whether tags at position x could be uniquely mapped,

and tx indicates whether a tag is actually observed at position x.

Following the above definitions, let Pr txð Þ denotes the

probability of observing a tag at position x in a given library.

Clearly, Pr txð Þ is directly proportional to the probability of

fragments (which the tag represents) generated at position x, or

Pr fxð Þ. Pr txð Þ is also directly proportional to the probability that

the tag being successfully sequenced, which are in turn dependent

on the C/G composition of the fragment. This probability can be

defined as Pr qxð Þ~Pr q CG sxð Þjð Þ. Finally, Pr txð Þ is directly

proportional on whether the tag at position x could be mapped

back with confidence to x, denoted as Pr mxð Þ[ 0,1f g. Taken

together, we can model the tag generation as:

Pr txð Þ*Pr fxð Þ|Pr q CG sxð Þjð Þ|Pr mxð Þ ð3Þ

The first term in the model is precisely the distribution that

experimentalists wish to infer when constructing a sequencing

library, while the second term and third term model the

sequencing and mapping bias.

Evaluating C+G Content Bias
We sought to roughly measure the bias that is correlated with the

CG content. As a null hypothesis, libraries of simulated tags were

constructed for tags of length 26 bp, 27 bp, and 29 bp, through

random sampling of the genome sequences. Tags from H3K4me3

ChIPseq libraries were used as positive control. Comparing the

resultant cumulative distributions, the WCEseq libraries were found

to be relatively closer to the random tags compared to that of the

H3K4me3 libraries (Supplementary Figure S4).

Minimizing CG-dependent Sequencing Bias
One of the key goals of any high-throughput sequencing (hts)

experiment is to infer the first factor, i.e. the underlying fragment

distribution Pr fxð Þ. Part of the intention in generating control

libraries is to use them to minimize the two biases. For this

analysis, however, there was no further ‘‘control’’ for WCEseq

libraries; although arguably non-crosslinked (naked) DNA libraries

could be a good background control for WCEseq. The mapping

bias can be controlled by characterizing the uniqueness of each

genomic location. The CG-dependent sequencing bias is harder to

mitigate and, under our model, is impossible to be normalized

using only a single replicate data. Ideally, CG-dependent

sequencing bias should be assessed through experimental means.

Given a hts library, we can measure the distribution of CG-

content distribution of the DNA fragments associated with the

observed tags, i.e. Pr CG sxð Þ~k txjð Þ. Expanding the term further:

Pr CG sxð Þ~k txjð Þ~

P
CG sxð Þ~k

Pr txð Þ
P
x

Pr txð Þ

Expanding the numerator and defining Pr mxð Þ~1uux~1 :

X

CG sxð Þ~k

Pr txð Þ~
X

CG sxð Þ~k;ux~1

Pr fxð Þ|Pr q CG sxð Þjð Þ

~Pr q CG sxð Þj ~kð Þ|
X

CG sxð Þ~k;ux~1

Pr fxð Þ

If Pr fxð Þ is indeed uniform across the entire genome, we can

compute the CG-content distribution of uniquely mapped

sequences as:

Pr CG sxð Þ~k ux~1jð Þ~

P
CG sxð Þ~k;ux~1

Pr fxð Þ
P

ux~1

Pr fxð Þ

Combining the previous equations:

Pr CG sxð Þ~k txjð Þ~ 1P
x

Pr txð Þ
|Pr q CG sxð Þj ~kð Þ

|Pr CG sxð Þ~k uxj ~1ð Þ|
X

ux~1

Pr fxð Þ

And thus

Pr q CG sxð Þj ~kð Þ* Pr CG sxð Þ~k txjð Þ
Pr CG sxð Þ~k uxj ~1ð Þ

Therefore, if we assume that the fragment generation is uniform

across the entire genome, we can normalize the CG-dependent

sequencing bias as follow:

PrCGnorm txð Þ*Pr txð Þ|
Pr CG sxð Þ~k uxj ~1ð Þ

Pr CG sxð Þ~k txjð Þ ð4Þ

Supporting Information

Table S1 Testing a model of gene profile bas on WCEseq tag

density. A proxy test for tag density model around genes
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(Supplementary Figure S3) was carried out by comparing the tag

density in gene body to the adjacent upstream and downstream

regions. Upstream region was defined as the 2–5 kbp region 59

upstream of TSS and downstream region was defined as the 2–

5 kbp region 39 downstream of TES. To avoid potential

ambiguity, we considered only genes that were mapped to forward

strand and were shorter than 100 kbp. Overlapping genes from

this list were further removed.

Found at: doi:10.1371/journal.pone.0005241.s001 (0.01 MB

PDF)

Table S2 Sequencing depth of the libraries analyzed in this

study

Found at: doi:10.1371/journal.pone.0005241.s002 (0.01 MB

PDF)

Figure S1 Comparative density profiles of tags mapped to

forward strand (black lines) and reverse strand (blue lines) in a

5 kbp window centered around middle of Satellite repeats. As the

enrichment of tags in Satellite repeats were likely to be resulted

from mapping issues and other random noise, no well-positioned

fragment was expected, resulted in closely correlating density

profile of forward tags and reverse tags.

Found at: doi:10.1371/journal.pone.0005241.s003 (0.09 MB

PDF)

Figure S2 Comparison of 5 kbp tag-rich regions across WCEseq

libraries. (a) A Venn diagram showing the tag-rich regions from

the three Wcseq libraries. Regions from ES WCEseq library is

negligible due to its shallow sequencing depth. Only 374 dense

regions were found to be common in NP and MEF sets. It

represented only 8.63% and 26.7% of tag-rich regions from NP

and MEF libraries respectively. (b) Comparison of tag-rich regions

that are associated with TSS. 296 TSS-associated tag rich regions

were common, representing 20.6% and 28.6% of the total TSS-

associated tag-rich regions found in the NP and MEF libraries.

Common tag-rich regions of NP and MEF were mostly (296 of

374, or 79.1%) TSS-associated.

Found at: doi:10.1371/journal.pone.0005241.s004 (0.02 MB

PDF)

Figure S3 A schematic model of WCEseq fragments distribution

across a typical gene, based on observations in Figures 4 and 5.

Gene region is expected to be more fragment-rich than the

immediate upstream and downstream regions, with the TSS

marked with a substantial increase of fragment count and the TES

punctuated with lower fragment count.

Found at: doi:10.1371/journal.pone.0005241.s005 (0.01 MB

PDF)

Figure S4 Cumulative distributions of tags based on their C+G

content. Distributions of WCEseq tags (red curves) were relatively

close to simulated tags (gray curves; based on 26 bp, 27 bp, and

29 bp tag lengths), indicating that sequence composition bias is

relatively mild. As a comparison, similar curves generated from

H3K4me3 ChIPseq tags were also drawn (green curves).

Found at: doi:10.1371/journal.pone.0005241.s006 (0.06 MB

PDF)

Figure S5 Tag density (50 bp average) profiles after CG-content

normalization. The normalization assumed that each tag repre-

sents a 150 bp fragment, taking into account the tag direction.

Each tag was reweighted such that the CG-content distribution of

the fragments matched that of randomly sampled uniquely-

mapped simulated tags. Shown above are profiles around

transcription start sites (TSS) and transcription end sites (TES)

across three mouse WCEseq libraries. The black and blue curves

denote density of tags mapped on the sense and antisense strands

respectively.

Found at: doi:10.1371/journal.pone.0005241.s007 (0.12 MB

PDF)

Figure S6 Expression levels of genes were correlated with CG-

content normalized tag density in WCEseq libraries. Density

profiles (50 bp average) of tags around TSS and TES of highly

expressed (red) and lowly expressed (green) genes. The curves

show combined density of sense- and antisense-mapped tags. Tags

were reweighted based on the CG-content of the corresponding

150 bp fragments.

Found at: doi:10.1371/journal.pone.0005241.s008 (0.13 MB

PDF)
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