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Abstract

Most studies of turbulence in the solar wind invoke stationarity as a working hypothesis. Unfortunately, this
concept is difficult to verify in practice. To investigate the validity of the weak stationarity assumption we consider
magnetic field measurements made by the WIND satellite and study the properties of the autocorrelation function
(ACF), which is a classical gauge for characteristic times or scales. We find that the ACF suffers from a high
variance, which precludes the routine interpretation of correlation times and scales. In addition, the ACF fails to
converge toward a constant function, even when considering the longest available intervals of either fast or slow
solar wind. The reasons behind this lack of convergence are better understood by considering the power spectral
density (PSD) of the magnetic field and analyzing synthetic data that exhibit the same PSD. Interestingly, we find
evidence for anf−1 scaling at low frequencies in both fast and slow solar winds. These results, together with the
theoretical properties of processes withf−γ scaling all point to the non-stationary behavior of the solar wind, in
particular for scales that correspond to the inertial range. They also impose strong constraints on the applicability of
ACF analysis as a tool for characterizing statistical properties of solar wind turbulence.

Key words: magnetic fields – solar wind – turbulence

1. Introduction

The solar wind is an exceptional natural laboratory for
performing in situ studies of astrophysical plasma turbulence
(Bruno & Carbone 2013). A central issue and frequent
underlying assumption in most of these studies is the
stationarity of the solar wind. Stationarity implies strict
invariance of statistical properties under all and every time
shift (Beran 1994). This assumption is of paramount impor-
tance for properly characterizing finite amounts of noisy
observations since it leads to many simplifications (Bendat &
Piersol 2000). By raising the question of stationarity in the

context of the solar wind our objective is not just to determine
whether the wind is stationary or not (we shall see later that this
is actually an ill-posed question) but rather to understand how
departures from stationarity may affect our physical interpreta-
tion of the solar wind.

Although stationarity is often invoked as a working
hypothesis in solar wind studies, several causes may potentially
lead to its violation. Most are deeply rooted in the underlying
physics. They include self-similarity and fractal properties of
the turbulent cascade that involves a multiplicative process
(Marsch & Tu 1997; Veltri 1999), the presence of coherent or
organized structures such as shocks (Tu & Marsch 1995;
Matthaeus et al. 2015), heavy-tailed distributions that may
result, for example, from self-organized critical processes
(Aschwanden et al. 2016), and the long-range memory
associated with the sources of the solar wind (Nicol et al.
2009). Importantly, the corona, which is the source of the solar
wind is always evolving in time and space, and can be the
cause of non-stationarity. There may also be instrumental
causes, such as the presence of discontinuities or drifting
instruments (Rust et al. 2008).

There are several reasons for which the question of
stationarity of the solar wind matters. First, stationarity is an
essential but often implicit assumption behind most of the
spectral and statistical analysis techniques that are routinely

used in solar wind studies: correlation functions and all
quantities involving moments, the Fourier transform, linear
filters, etc. When this assumption does not hold, many familiar
mathematical results fail to hold and classical techniques may
give results that are biased if not outright wrong. This bias
comes with non-intuitive properties that can be very misleading
as they often require unrealistically large samples to be
properly identified and corrected (Witt et al. 1998; Franzke
et al. 2012). Second, deviations from stationarity have recently
been regarded by some as an untapped source of potential
predictability and may thus serve for risk assessment and
forecasting. A typical example is the presence of extreme
events in the solar wind, which impact the Earth’s magneto-
spheric dynamics (Moloney & Davidsen 2011).
Finally, there is the key question of whether non-stationarity

is inherently part of the turbulent flow or if the solar wind may
rather be considered as a stationary stochastic process with
some large-scale structures that superimposed on it and thereby
make it non-stationary. As we shall see, non-stationarity is
inherently part of the solar wind in the timescales usually
considered for turbulence studies.
Non-stationarity is traditionally illustrated with time series

whose stochastic fluctuations are offset by some slow trend.
This picture is too simplistic as non-stationarity can manifest
itself in many other ways such as the volatility of short-scale
fluctuations with a clustering of extreme values (Moloney &
Davidsen 2014), and even in bounded binary signals. A
considerable amount of work has been devoted to these
different manifestations, which are intimately connected (e.g.,
Witt et al. 1998; Franzke et al. 2015) and may have significant
implications on our physical understanding. Likewise, there are
deep connections with long-range dependence, the Hurst
exponent, and the presence of an f−1 scaling of the power
spectral density (PSD) (Mandelbrot 1999; Gilmore et al. 2002;
Graves et al. 2017). These are well beyond the scope of this
study, in which we focus on the impact of non-stationarity on
statistical studies of the solar wind.
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Some authors have attempted to answer whether the solar
wind is stationary or not. In their pioneering study, Matthaeus
& Goldstein (1982b) concluded that statistical quantities such
as the autocorrelation function (ACF) converge toward a
constant value when considering intervals that are long enough,
typically days to weeks. This would suggest that the solar wind
is approximately stationary in time. Podesta & Roberts (2005)
reached the same conclusion, with special emphasis on the
validity of power spectral estimates. Perri & Balogh (2010)
extended these results to different parameter ranges in the solar
wind and concluded that in the inertial range of turbulence the
assumption of stationarity only holds for fast and uniform solar
wind flows.

These different studies suggest that the quest for the elusive
stationarity of the solar wind remains largely unsolved. Such a
quest should logically start with a succinct and realistic
definition of what stationarity means. Alas, the definition of
stationarity, which we mentioned earlier is a mathematical
concept that applies to populations but is inapplicable to real
data with finite samples. For that reason, most studies
concentrate on weak-sense (wide-sense or second-order)
stationarity, which requires the first- and second-order
moments only to be time invariant rather than all of them
(Priestley 1988). That is, the expected mean x t m tx =[ ( )] ( )

and variance x t m t tx x
2 2 s- =[( ( ) ( )) ] ( ) on any time interval

should both be independent of time, where (·) stands for the
expectation. In addition, the autocovariance function

C t x t m t x t m t, , 1x xt t t= - + - +( ) [( ( ) ( )) ( ( ) ( ))] ( )

should only depend on the time difference τ, so that

C(t, τ)=C(τ). Equivalently, the ACF,
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t
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should also be time-independent, i.e., ACF(t, τ)=ACF(τ).
As Bendat & Piersol (2000) pointed out, these criteria apply

to mathematical expectations (i.e., probability-weighted
averages) and make sense when instantaneous time averages
can be performed, which cannot be realistically done when
working with finite samples that consist of time series from
single-spacecraft observations. Our problem then consists in
determining whether the statistical properties that are estimated
from finite time intervals do not significantly vary in time.

Multiple approaches have been developed for that purpose,
(e.g., Priestley & Rao 1969; Bendat & Piersol 2000; Borgnat &
Flandrin 2009). This is an active field of research that has
received more attention in geophysics and econometrics than in
space sciences, presumably because of its direct economic
impacts. Among these different approaches, the ACF offers
several advantages and has been widely used. First, its
expression directly appears in the definition of weak stationar-
ity. Second, it allows us to check how the integral scales are
affected by the absence of stationarity.

Considerable attention has been paid in solar wind studies to
the estimation of characteristic scales (Bruno & Carbone 2013)
from the ACF. Among these there is the integral scale
(sometimes called correlation length), which is the largest
spatial scale of the inertial range (Batchelor 1953). The integral
scale is related to the size of the largest energy-containing
eddies (Matthaeus et al. 1998; Alexandrova et al. 2013). The
ACF generally decays monotonically and its decay time then
provides an estimate of the largest eddy. Its study is partly

motivated by the constraints in its evolution throughout the
heliosphere may pose on turbulence models (see Bruno &
Carbone 2013, and references therein). In the solar wind,
fluctuating fields are generally advected past the spacecraft in a
shorter time than their characteristic dynamical timescale.
Importantly in the inertial range, where magnetic field
fluctuations dynamically evolve at the Alfvén speed
(VA≈50 km s−1

), while the flow propagates at about
Vflow≈400–500 km s−1; therefore, it is customary to invoke
Taylor’s frozen-in hypothesis and interpret these spatial scales
as durations in the observed time series. Unfortunately, since
the ACF is sensitive to non-stationarity, the outcome of the
above approaches has to be tested for the effect of non-
stationarity.
Many authors have investigated ACFs in the solar wind:

Klein et al. (1992), Tu & Marsch (1995), Richardson &
Paularena (2001), King & Papitashvili (2005), Matthaeus et al.
(2005), Podesta et al. (2008), Wicks et al. (2010), and
Marquette et al. (2018) to cite a few. However, most of them
did not question the effect of non-stationarity on the studied
ACFs, which will precisely be our focus here. There are also
more practical reasons for working with ACFs: solar wind
observations are often plagued by data gaps. It is then easier to
work with the ACF, which can be easily estimated from
incomplete data (Scargle 1989) rather than with Fourier or
wavelet transforms. In what follows, we shall concentrate on
the ACF only and investigate what new insight it gives us into
the presence of non-stationarity at different timescales and in
different regimes of the solar wind.
Let us finally mention that various statistical tests have been

designed for testing the hypothesis of non-stationarity. The
augmented Dickey–Fuller test (Dickey & Fuller 1979) is
one among them. Here, we deliberately focus on the ACF
because of its physical interpretation and its strong connection
to the concept of second-order stationarity.
This article is structured as follows, In Section 2, we present

the solar wind data. Section 3 addresses the results. First we
present the ACF results before considering the PSD and
connecting it to theoretical expressions of the ACF. These are
then compared with synthetic data sets. These results are then
discussed in Section 4, which is followed by the conclusions in
Section 5.

2. Solar Wind Data

In the following we consider magnetic field observations
made between 2006 and 2016 by the fluxgate magnetometer
(Lepping et al. 1995) onboard the WIND satellite. WIND offers
long (>2 days) and uninterrupted records of the solar wind in
fast and slow solar wind regimes, which allows us to collect
large samples from each regime. The time resolution of these
records is 15 s, so we can investigate stationarity on timescales
that range from seconds to days. The range includes the integral
scale, which is typically 1–2 hr, and covers most of the inertial
range. During that period, WIND was positioned in halo orbit
around the L1 Lagrange point, constantly observing the Sun
from the ecliptic plane, at a constant distance of 1 au from
the Sun.
In Figure 1 we illustrate two excerpts taken from the fast and

slow solar wind. Both reveal strong fluctuations at all scales,
which some might already consider as signatures of non-
stationarity.
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Since the origin and the properties of the two regimes of the
solar wind differ, it is important to analyze the statistical
properties separately, similarly to what Perri & Balogh (2010)
did. The periods during which WIND observes pure fast solar
wind were at best a few days long, which sets the upper limit of
the timescales we can reasonably inspect.

In what follows, fast winds are defined by v>600 km s−1

and slow winds by v<400 km s−1. The three components of
the magnetic field are known to give qualitatively similar
results (e.g., Wicks et al. 2010), so we concentrate on the radial
component Bx only. The physically relevant quantities are
spatial scales, not their duration. However, since the ACF is
estimated in the time domain, we shall concentrate on temporal
scales only. Using Taylor’s “frozen-in” hypothesis we can
convert times into lengths simply by multiplying them by the
mean flow velocity. The interpretation of spatial scales will
further be addressed in Section 4.

3. Results

3.1. ACF Analysis

The formal expression of the ACF (Equations (1) and (2))
that enters the definition of weak stationarity applies for
populations only. Therefore, we cannot directly apply them to
finite samples. First, we need to replace expectations by sample
averages (Bendat & Piersol 2000; Papoulis & Pillai 2002)

t
x t m x t m

ACF , 3
x x T

x
2

t
t

s
=
á - + - ñ

( )
( ( ) )( ( ) )

( )

where x(t) is the magnetic field, á ñ stands for sample

averaging over a sample of size T, and mx and x
2s are

respectively the sample mean and the sample variance.
Second, since our observations are discrete functions of time

and not continuous ones, integrals need to be replaced by sums.
Although these two differences are routinely encountered in
data analysis, in the particular context of non-stationarity the
distinction between populations and finite samples is far from
trivial and has far-ranging consequences (see, for example,
Kasdin 1995). In particular, the duration T (or sample size)
comes in as an additional parameter and one needs to
distinguish what part of the observed ACF reflects the
properties of the sample and what part is influenced by the
choice of the estimator. That is, the estimation and the detection
problems are now intimately connected.

Surprisingly, this issue, which is central to the identification

of non-stationarity, is rarely addressed explicitly in the

literature. As Bendat & Piersol (2000) point out, the only

workaround is to relax the initial definition of weak stationarity

and consider a weaker version of it that consists in determining

whether the mean and ACF significantly vary from one time

interval to the other. Since there is no reference value here to

determine what we call significant, it immediately appears why

the formulation of a rigorous statistical test is so difficult.
Let us therefore follow a more exploratory approach and

investigate how the ACF of the solar wind varies with

occurrence time t and sample size T.
The integral timescale of solar wind turbulence is typically

thought to be around 1–2 hr, so we need to observe the solar

wind for at least 10 hr to be able to properly estimate the ACF

for different lags. We selected non-overlapping intervals of

various lengths and estimated the ACF for each of them. In the

fast solar wind we found respectively 420, 163, 51, and 23

intervals with 10, 20, 40, and 60 hr of pure fast wind. In the

slow solar wind we found, respectively, 4409, 2026, 875, and

508 intervals. WIND spends more time in the slow wind

because it is located in the equatorial plane. For durations

longer than 60 hr the number of occurrences drops rapidly and

with it the statistical quality of estimated ACF.
Figure 2 displays the average ACF obtained for both solar

wind regimes for samples of 10 and 60 hr duration only. The

largest lag we explore is set at T/5 to prevent the variance of

the ACF from becoming excessively large (Press et al. 2002).

Also shown is the standard deviation of the ACF, which

quantifies the dispersion of the values. All ACFs decay quasi-

monotonically to zero, which illustrates the gradual loss of

information.
Two outstanding results are the large dispersion of the ACFs,

which implies that its values varies considerably from one

sample to another, and the major difference observed between

ACFs estimated from intervals lasting for 10 and 60 hr. Both

results raise serious concerns about the physical interpretation

of these results.
Many simple solar wind models approximate the solar wind

as a stochastic first-order Markov process whose future state

solely depends on the present state and not on the past history.

Markov processes (more specifically, Ornstein–Uhlenbeck

processes) are characterized by an ACF that decays

Figure 1. Illustration of 10 hr of radial magnetic field observations made in 2007, in the slow wind (left plot) and in the fast wind (right plot).
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exponentially (Papoulis & Pillai 2002)

C

C
eACF

0
. 4tct

t
= = t-( )

( )

( )
( )∣ ∣

The correlation time (tc) is usually estimated by means of the

e-folding technique by considering the time it takes for the

ACF to drop to e
−1 of its maximum value (Matthaeus et al.

1998; Weygand et al. 2013; Ruiz et al. 2014). A more general

definition of the memory or correlation scale is (Frisch 1995)

t
C

C
d

0
. 5c

0
ò

t
t=

¥ ( )

( )
( )

For Markov processes this definition of tc coincides with the

one from Equation (4). In practice, ACFs rarely show a pure

exponential decay, and therefore the estimator based on

Equation (4) is approximate. However, in spite of these

limitations, the e-folding estimator is widely considered and we

shall use it for the mere sake of continuity.
In Figure 2 the e-folding time is given by the intersection

between the ACF and the horizontal dashed line. We find the
correlation time to be longer in the slow than in the fast solar
wind with a value that is of the order of 1–2 hr. These
properties have already been documented by several authors
(Weygand et al. 2013; Isaacs et al. 2015). Because of the large
dispersion in the ACFs there is a large dispersion as well in the
correlation time tc. This is illustrated in Figure 3 by the
histogram of tc, which is calculated using the e-folding method
for 10 hr samples of the fast wind. Such a large dispersion may
be caused either by a lack of stationarity or by the poor
convergence of our estimator of the ACF (Equation (3)), or by
both. At this stage we cannot tell yet.

To further investigate how the duration T affects the ACF,
we plot in Figure 4 the ACF for the two solar wind regimes
with T=10, 20, 40, and 60 hr. A striking result is the
continuous change in the ACF with sample duration with no
apparent evidence for convergence. This behavior is in
contradiction with standard belief, since one would normally
expect the ACF to converge toward a fixed function when the
sample length becomes much longer than the correlation time.
Here, even with 60 hr of observations we see no evidence for
convergence.

Isaacs et al. (2015) in their statistical study observed a
similar lack of saturation; the reason they suggested was the

presence of long-range correlated structures. They suggested to
select a proper sample size of the order of 10–20 hr to avoid
that effect. This, however, goes against one of the major
assumptions of stationarity, which is the invariance versus
translation in time.
One might argue that intervals of 60 hr are still too short to

properly estimate the ACF. For that reason we extended the
analysis to intervals of 300 hr, but in the slow solar wind only,
see Figure 5. This figure shows no evidence for convergence
either. There is a frequent belief that longer records (lasting for
weeks to years) should eventually yield better estimates of the
ACF and a pertinent basis for investigating non-stationarity.
Matthaeus & Goldstein (1982b), for example, considered a
long sample of 2 years. However, unless the satellite is co-
rotating with the Sun, the observations of the solar wind will be
modulated by solar rotation and therefore be approximately
cyclostationary (Gardner et al. 2006), with a period of about 27
days. This property excludes the proper assessment of non-
stationarity in solar wind records that exceed a few days. In
addition, since the fast and slow winds have different properties
the ACF of their mixture will be polluted by transitions
between the these two regimes. Recently, Franzke et al. (2015)
have even shown that in some cases the switching between
different regimes may precisely be the cause for non-stationarity

Figure 2. ACF of slow and fast solar wind along with their dispersion, which is expressed by±1 standard deviation.

Figure 3. Histogram of the correlation time tc estimated from 420 intervals of
10 hr each using the e-folding method, in the fast solar wind.
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and long-range dependence rather than the intrinsic properties of
individual regimes.

At this stage, we conclude that the ACF of the solar wind
cannot be meaningfully estimated for fast or slow solar winds,
even with the longest available time intervals during which the
solar wind remains in one single regime. This disconcerting
result questions the physical meaning of correlation times that
are routinely inferred from the solar wind. The smooth shape of
ACFs that are estimated from individual samples is particularly
misleading since it gives the false impression of a small
uncertainty, which is definitely not the case.

To better understand the origin of these properties and their
connection to stationarity let us now express the properties of
the radial magnetic field in Fourier space and estimate for that
purpose the PSD.

3.2. Power-law Scaling of the PSD

The PSD and the ACF are intimately related through the
Wiener–Khinchin theorem, which states that the PSD is the
Fourier transform of the ACF. The two provide complementary

(but not strictly equivalent) approaches for identifying

characteristic scales (Ghil et al. 2002) and the equivalence

between power laws in the PSD and in the ACF can be

extended to non-stationary processes (Flandrin 1989). Here, we

consider the PSD to better understand how the characteristic

scales of the magnetic field are related to stationarity properties.

As before, we concentrate on the radial component Bx.
To estimate the PSD, we consider Welch’s periodogram

method and divide records into N different segments that

overlap by 50%, apply to each of them a Hanning window,

compute their Fourier transform, and average the squared

magnitude of the latter. We consider the same samples as for

the estimation of the ACF. Occasional small data gaps are

linearly interpolated. Munteanu et al. (2016) have shown that it

is a reasonable approach for estimating the PSD, except for the

highest frequencies, which are not a matter of concern here.
The main result is a familiar double power law P f fµ g-( )

whose spectral index γ approaches 1 at low frequencies and is

closer to 1.7 in the inertial range. Similar power laws have been

observed by many in the solar wind (Bruno & Carbone 2013,

and references therein) and their spectral indices have been

abundantly discussed. Notice the presence of an f−1 scaling at

low frequencies in both slow and fast wind regimes. Such

scalings had been observed before in the fast wind (Bruno &

Carbone 2013). As far as we know, however, this is the first

evidence for an f−1 scaling in the slow wind.
The main message from Figure 6 is the presence of a double

power law, which suggests that there is no characteristic scale

in the magnetic field, except for the scale corresponding to the

spectral break occurring between 10−4 and 10−3 Hz. This

corresponds to a timescale of the order of 30 minutes to 3 hr,

which is often interpreted as the integral scale. The main

advantage of the PSD over the ACF is its lower sensitivity to

non-stationarity, thanks to which the inferred scale lengths are

less affected by the choice of the sample length (or rather, the

window length when using Welch’s method). Comparable

power-law scalings are observed for the two other components

of the magnetic and for observables such as the wind velocity.

Let us therefore relate this property of the PSD to the functional

shape of the ACF.

Figure 4. ACF of the Bx component at 1 au for different sample durations of 10, 20, 40, and 60 hr for slow winds only (a) and for fast winds only (b). The dashed
horizontal line represents the e−1 value.

Figure 5. Same as Figure 4 but for longer samples of the solar wind of up to
300 hr.
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3.3. Connecting the ACF to the PSD

Given the ubiquity of power-law scalings in the PSD of the
solar wind, we now investigate how such a scaling affects the
analytical expression of the ACF. Several authors have studied
the analytical properties of the ACF of a time series whose PSD
is a power law with spectral index γ (Hooge et al. 1981;
Keshner 1982; Kasdin 1995; Hooge & Bobbert 1997).
Following Kasdin (1995) we can show that if the ACF is
calculated over a time interval occurring a long time t?τ
after the transients have vanished (which is a reasonable
assumption for the solar wind), then the autocovariance can be
approximated by: when 0<γ<1,

C t C, . 61t t t= µ g-( ) ( ) ∣ ∣ ( )

When γ=1,

C t t, log 4 log . 7t tµ -( ) ∣ ∣ ( )

When 1<γ<2,

C t t c, , 81 1t tµ -g g- -( ) ∣ ∣ ( )

where c>0 is a constant. These asymptotic results apply to

the autocovariance. To convert them into autocorrelations we

normalize them by C(t, τ=0). The key result is the presence

of an offset depending on t that may be arbitrarily large when

1�γ�2, i.e., for spectral indices that are routinely

encountered in solar wind turbulence. More precisely, the

characteristic scale we infer from the decay of the ACF is

determined both by the underlying physics and by the

observing window and in this sense also by sample length T.
This disconcerting result actually is a simple consequence of

scale invariance in turbulence. Indeed, for a time series f (t)
whose PSD has a power-law scaling with scaling index γ, we
have f t f tHl l=( ) ˆ ( ) where =̂ means that the two time series
have the same finite joint distribution function for any H>0.
There is no such characteristic scale for f (t), which is then
called self-affine. Consequently, when we select an interval of
duration T to estimate the e-folding time, the only timescale
that stands out is the duration T.

These properties already point to the non-stationarity of the
synthetic time series, which we will investigate below in more
detail with a discussion on the impact of a double power law.

There is a second message in Equations (6)–(8). For most
solar wind regimes, the ACF does not decay exponentially as
for a first-order Markov process, but falls off more slowly with
a power-law scaling. Such a behavior is well known to occur in
systems that exhibit long-range correlations (Beran 1994). As a
consequence, the e-folding time is not a proper estimator of the
characteristic timescale. However, since the very concept of
timescale breaks down anyway, and since most autocorrela-
tions exhibit a monotonic decay, the e-folding time remains a
crude but convenient means for quantifying the correla-
tion time.

3.4. Synthetic Solar Wind Data: Single Power Law

To better illustrate the impact of self-affinity on the ACF we
simulated synthetic magnetic field data whose PSD is a power
law with a given spectral index. Let us first consider the case
when the PSD consists of a single power law. The impact of
double power laws will be addressed later.
To generate synthetic data we compute the Fourier transform

of a sequence of white noise, apply the desired spectral index,
and invert the Fourier transform (Kasdin 1995). The length of
the sequences equals that of the solar wind records, namely,
14,400 samples for 60 hr ofWIND data. With this approach, we
generate 1000 records that mimic the properties of 10, 20, 40,
and 60 hr of solar wind, while enabling us to carry out
statistical tests. Our approach could be refined by imposing, for
example, the magnetic field and the synthetic data to have the
same probability distribution function, using the surrogate data
technique (Theiler et al. 1992). However, since we are
concerned with second-order moments only, there is no sound
justification for tuning the probability density function, which
is close to normal anyway.
Figure 7 summarizes the main results by displaying the

average ACF for four different spectral indices: γ=0.5, 1, 5/3
(i.e., for a Kolmogorov model), and 3. For each case, 1000
synthetic time series were generated, and their individual ACFs
averaged. A striking property of the ACFs is their dependence
on the spectral index: the larger γ is, the slower the ACF
decays, and the longer the memory of the system is. The main
result for our purposes, however, is the difference between
ACFs estimated from sequences of T=10, 20, 40, and 60 hr.
The figure confirms what had been observed with real magnetic

Figure 6. PSD of the Bx component, using WIND observations and the periodogram method. The left plot shows the slow wind and the right plot the fast wind. Lines
corresponding to spectral indices (γ) have been drawn to help locate different power laws.
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field data, namely, that there is no apparent convergence to a
fixed shape when increasing the length of the sequences. This
lack of convergence is particularly evident for γ=1 and for
γ=5/3, in agreement with the analytical expressions given in
Equations (6)–(8). The same holds for γ=3, while on the
contrary for γ=0.5 the ACFs seem to collapse on a fixed
shape, regardless of the value of T.

Regarding the dispersion of the ACF we observe the same
behavior as for the solar wind data in Section 3.1, namely, a
large dispersion that precludes the precise determination of the
ACF and its correlation time.

A natural approach to reducing the dispersion of the ACFs
would be to estimate them from longer records. In a somewhat
different context, Kiyani et al. (2009) investigated the weak
stationarity by studying the exponents of the second-order
structure functions of different physical processes. Their study
concluded that if smaller sample sizes are used for the analysis,
depending upon the process, the scaling exponent estimates are
most likely dispersive due to the pseudo-non-stationarity. To
test the method of reducing the dispersion of ACF using longer
records we simulated an ensemble of 1000 self-affine records
with a given spectral index γ and for each of them estimated the
ACF by using intervals of duration T=10, 20, 40, and 60 hr.
We subsequently focus on the lag closest to the e-folding time
and estimate the standard deviation tACF c

s ( ) of the ACFs at that
particular lag.

There are two major conclusions we can draw from these
simulations, whose results are summarized in Figure 8. First,
notice how the standard deviation of the ACFs gradually
increases with the spectral index; its value really takes off when
γ exceeds 1 and then keeps on increasing, eventually exceeding
100% when γ is greater than 2. This result already warns us
about the high uncertainty of the ACF for steep power laws.
Such a high uncertainty would be acceptable if it could be

reduced by further increasing T. Bartlett (1946), working under
the assumption of stationarity, has shown that the standard
deviation should approximately decrease as σACF∝T−1/2. We
consider instead the more generic scaling σACF∝Tβ and
investigate whether β can be closer to zero, which would imply
a slower convergence and therefore be less favorable. Figure 8
indeed shows that the expected scaling with β=−1/2 is
observed only for small spectral indices with γ<1. For
steeper power laws β rapidly approaches zero, which means
that much longer records are required to achieve the same
reduction in uncertainty. This result vividly illustrates why self-
affine processes with spectral indices above 1 are pathological
and require extra care (Beran et al. 2016). Notice that while β
slowly becomes more negative again when γ>2 the
uncertainty still remains prohibitively large.
From this short inspection we conclude that the ACF of self-

affine time series cumulates several pitfalls that can easily lead
to fallacious interpretations of the correlation time. Unfortu-
nately, most problems arise for spectral indices that fall
between 1 and 2, which precisely coincides with the inertial
range and f−1 range of solar wind turbulence.
Does it then mean that the ACF is worthless? Probably not

because values obtained under identical conditions may still be

Figure 7. ACF of synthetic data for four spectral indices, from top to bottom:
γ=0.5, γ=1 γ=5/3 (i.e., Kolmogorov model), and γ=3. All plots show
the average ACF for 1000 realizations that have the same length as the original
data in Figure 4. The intersection with the horizontal dashed line defines the
e-folding time.

Figure 8. Upper plot: relative standard deviation of the ACF tACF cs ( )/ACF(tc),
measured at the e-folding time for simulated self-affine records with different
values of the spectral index γ. Lower plot: scaling index β and its confidence
interval (± one standard deviation), estimated from samples of duration
T=10, 20, 40, and 60 hr. An ensemble of 1000 realizations was used to
estimate these quantities.
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compared, taking into account their large uncertainty. While
their absolute values are incorrect, they can still potentially be
used for comparison purposes.

3.5. Synthetic Solar Wind Data: Double Power Law

So far we have concentrated on self-affine processes that
exhibit one single power law in the PSD. Long observations of
solar wind turbulence show that we have at least two power
laws (Kiyani et al. 2015), followed by a steeper decay in the
kinetic range. Here, we ignore the latter because most magnetic
field observations (from fluxgate magnetometers) and wind
velocity measurements cannot resolve its short timescales.

Extending Equations (6)–(8) to double power laws is not
straightforward. Therefore, we generated synthetic time series
whose PSD manifests a double power law with various spectral
indices and break frequencies; the latter refers to the frequency
at which the transition occurs between two spectral indices.
Fortunately, the main results for such double power laws are a
direct generalization of the single power-law case. They can be
summarized by considering the two characteristic frequencies
of the sample: the sampling frequency (Δt)−1 at the high end
and the inverse duration T

−1 at the low end:

1. If both characteristic frequencies belong to the frequency
range in which a power law is observed with the same
spectral index, then the results of the previous section
apply (single power-law case).

2. If the two characteristic frequencies belong to ranges with
different spectral indices, then the properties of the ACF
are dominated by the spectral index at the lowest
frequencies.

In practice the situation is not always clear cut, especially since
the transition from one index to another is gradual. A robust
result, however, is the strong impact of the low-frequency end
of the PSD on the properties of the record.

Most solar wind studies rely on fluxgate magnetometer data
or on velocity data whose highest frequency (sampling rate) is
of the order of 1 Hz. These studies generally consider intervals
of several hours at most. Their characteristic frequencies, the
low-frequency value that is sample dependent and the high
frequency value that is sampling rate-dependent belong to the
inertial range of turbulence.

Therefore, a single power-law model often applies, with a
spectral index of 3/2–5/3. Unfortunately, this is the worst case
scenario as far as stationarity is concerned because the ACF has
a high variance and converges very slowly toward the average.

For studies that consider longer time intervals, typically 1
day or more, a double power-law model may be more relevant
since the f−1 scaling enters into play. While this case is
somewhat more favorable than the previous one because of the
lower variance of the ACF, convergence remains very slow.
Not surprisingly, Mandelbrot (1999) called such f−1 processes
wildly self-affine.

4. Discussion

Since the formal existence of weak stationarity in solar wind
observations cannot be proven, the better question is whether
we have enough evidence to draw conclusions. As mentioned
before, the main practical signature of non-stationarity in the
solar wind is a significant variation of the ACF. Our
observations first reveal a striking lack of convergence of the

ACFs, whose mean value fails to stabilize when increasing the
sample size, i.e., the duration of the observations. Concomitant
with this lack of convergence is the gradual increase of the
correlation time or e-folding time with sample size. This
correlation time, which is often interpreted as the integral scale,
keeps on increasing. In the slow solar wind, for example, its
value starts at 0.7 hr for intervals of 10 hr and exceeds 7 hr
when intervals of 300 hr are taken; these are about the longest
intervals we can reasonably observe in the slow solar wind.
These results already raise serious concerns about the
possibility of meaningfully estimating the ACF and the integral
scale from solar wind observations.
Technically speaking, the lack of convergence of the ACF

refers to the consistency of the estimator and provides no proof
of non-stationarity. However, we can go one step further. From
the observational evidence for power laws in the PSD of the
magnetic field we can derive theoretical expressions for the
ACF (Equations (6)–(8)) and find that depending on the value
of the spectral index γ the ACFs may or may not converge.
Therefore, the lack of convergence we observe is not just a
property of the estimator (i.e., because we are working with
finite samples) but also stems from the non-stationarity of the
population.
The second major result is the large variance of the ACF

estimates, as illustrated in Figure 2. Such a large dispersion
seriously undermines our capacity to draw meaningful physical
conclusions. This effect has been chronically overlooked in the
literature, probably because very few studies provide ACFs
with uncertainties. Large uncertainties are not a problem per se
as long as they can be reduced by considering longer time
intervals. Figure 8, however, tells us that this helps only when
the spectral index is sufficiently small, i.e., for γ<1. For
steeper spectra, typically in the inertial range, the uncertainty of
the average ACF cannot be notably reduced by increasing the
duration T. This effect persists for spectral indices that
correspond to the sub-ion range of solar wind turbulence, for
γ>2. For steeper spectra, longer durations help again but the
dispersion of the ACFs remains large. For example, to reduce
the uncertainty of the average ACF by a factor of 10, the
averaging needs to be performed over a record that is
approximately 102 longer when γ<0.5, 1014 times longer
when γ=5/3 and 105 times longer when γ=3. Clearly, these
numbers are prohibitively large for spectral indices that
typically exceed 0.5.
At very long timescales of weeks or more the f−1 scaling of

the PSD should eventually break down to prevent an infrared
catastrophe; the amount of energy that is injected into the solar
wind cannot grow indefinitely. Such a low-frequency cutoff has
not been observed experimentally. For these reasons we can
only conjecture that the wind should eventually become
stationary.
The picture that emerges from these results is a scale-

dependent non-stationarity. The question whether the solar
wind is stationary or not is ill-posed. We find strong evidence
for signatures of non-stationarity in the inertial range and in the
f−1 range. These are the frequency intervals in which the ACF
suffers from a high variance and converges slowly, precluding
the estimation of meaningful correlation times.
Outside of that range, stationarity may become a reasonable

assumption. A similar picture can be found, for example, in
terrestrial imaging (Flandrin & Borgnat 2008): land surface
images look non-stationary at scales when cities and streets can
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be clearly identified. At smaller scales and at larger scales they
tend to look more stationary because no major features
stand out.

The reason for this non-stationarity resides in the statistical
properties of the ACF for a self-affine process. These properties
have been well documented in the literature, (e.g., Sornette
2004). Several methods have been developed for mitigating
their deleterious effects. Detrended fluctuation analysis (Peng
et al. 1994; Hu et al. 2001) is a popular one; in this method
polynomials of various orders are adjusted and then subtracted
in place of the mean value. This method has been shown to
perform well when the observations are affected by some
external trend. In the case of the solar wind, low-frequency
trends are intrinsically part of of the wind, and so their
subtraction becomes questionable.

Another key result is the impossibility of deriving mean-
ingful characteristic scales from the ACF in the inertial and f

−1

ranges. The inertial scale length cannot be properly inferred
from the ACF because its value depends both on the underlying
physics, on the duration of the time intervals, and on the
number of intervals used for averaging. Taking longer intervals
or increasing their number offers no remedy and merely
increases the false impression that the estimator is more
accurate, especially since averaged ACFs tend to be smooth
functions of the lag τ, thereby giving the false impression that
they are accurate. This misleading result questions the validity
of correlation times that are published in the literature.

Our results also suggest that one should avoid working in the
time domain to obtain accurate measurements of characteristic
times. The Fourier transform offers a valuable alternative and
has indeed often been used for such purposes. However,
because the Fourier transform also formally requires stationar-
ity, it is not ideally suited for self-affine processes. The discrete
wavelet transform has been shown to be more appropriate
because it is self-affine by construction (Mallat 2008). In
particular, wavelets provide a better (unbiased) estimator of the
spectral index (Abry et al. 1995) and so should systematically
be preferred to the Fourier transform.

Let us finally address Taylor’s “frozen-in” assumption,
which is often used to convert temporal scales into more natural
spatial ones. This assumption is known to hold well in the
inertial range and in the sub-ion ranges when the advection
effects are dominant over the dispersive effects (Matthaeus &
Goldstein 1982a). We expect it to break down for rapidly
evolving structures such as shears and rapid rotations of the
magnetic field. It should also break down when the eddy size
becomes comparable to the Sun–Earth distance, i.e., for
timescales of several days. Such limitations have already been
recognized by Perri & Balogh (2010) and suggest that the
correspondence between temporal stationarity and spatial
homogeneity is not automatic. To avoid any ambiguity in the
interpretation of our scales, we prefer to keep on working in the
time domain, and convert to spatial scales only when
necessary.

5. Conclusion

In this study we revisit the question of weak stationarity in
the solar wind through the lens of the ACF. While the ACF has
not been designed to test stationarity, it is sensitive to it and its
abundant use in solar wind studies motivates its study here. We
observe clear signatures of non-stationarity, both in the fast and
in the slow solar wind although no rigorous proof can be given.

In addition, these signatures arise in specific frequency ranges

only. Therefore, the common question of whether the solar

wind is stationary or not is ill-posed.
To reach these conclusions we use the observational

evidence for power-law scalings in the PSD of magnetic field

fluctuations measured at 1 au by the WIND satellite. We first

reveal that for such power laws the analytical expressions of the

ACFs are ill-behaved because of self-similarity. Records whose

spectral index is between 1 and 2 (typically, for the inertial

range, for which the spectral index is 5/3) the ACFs suffer

from a high variance and converge very slowly to a stable mean

value. Actually their convergence is so slow that the estimated

ACFs cannot be meaningfully estimated from finite observa-

tions, even with years of data. Likewise, the correlation time

that is routinely inferred from ACFs is more likely to be

affected by the length of the observed sequence rather than by

the physical timescales associated with the turbulent eddies.

These insidious pitfalls have often been overlooked and

highlight the need for more systematic validation of correlation

measures.
These convergence problems persist for spectral indices

greater than 2, i.e., in the sub-ion range and in the electron

kinetic range of solar wind turbulence, which should therefore

be considered as non-stationary. We conjecture that for very

long timescales, typically of the order of several days or weeks,

stationarity may set in again because in the solar wind the

spectral energy content cannot grow indefinitely at low

frequencies. However, as of today, these very long timescales

have not yet been observed and so even records that are several

days long should be treated with the utmost care.
Based on these results we recommend avoiding using the

ACF as a estimator of eddy size in the inertial and f−1 regimes,

even when the duration of the record exceeds the correlation

time by a considerable amount (2 orders of magnitude and

more). Working in Fourier space offers a good alternative.

Even better is the wavelet transform, which is ideally suited for

studying self-affine processes.
However, there is a caveat in our study. Here, we address

weak stationarity only, which considers first- and second-order

moments only of the wavefield. Higher-order moments are

usually ignored because their assessment is increasingly

difficult. These moments, however, are precisely the ones that

give insight into the existence of phase couplings, which may

give rise to coherent structures such as shocks, rapid rotations,

or compressions. These structures are inherent to the

solar wind.
Therefore, the weak stationarity we have studied does not

exclude the presence of small-scale structures that may be

locally organized and in this sense make the wavefield

inhomogeneous in space, and non-stationary in time. The

way forward to assessing the role of such structures is by

means of higher-order moments, or their Fourier equivalent,

which are higher-order spectra.
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