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he promise of pharmacogenetics, the study of the role of in

 

-

heritance in the individual variation in drug response, lies in its potential to

identify the right drug and dose for each patient. Even though individual dif-

ferences in drug response can result from the effects of age, sex, disease, or drug inter-

actions, genetic factors also influence both the efficacy of a drug and the likelihood

of an adverse reaction.

 

1-3

 

 This article briefly reviews concepts that underlie the emerg-

ing fields of pharmacogenetics and pharmacogenomics, with an emphasis on the phar-

macogenetics of drug metabolism. Although only a few examples will be provided to

illustrate concepts and to demonstrate the potential contribution of pharmacogenetics

to medical practice, it is now clear that virtually every pathway of drug metabolism will

eventually be found to have genetic variation. The accompanying article by Evans and

McLeod

 

4

 

 expands on many of the themes introduced here.

Once a drug is administered, it is absorbed and distributed to its site of action, where

it interacts with targets (such as receptors and enzymes), undergoes metabolism, and

is then excreted.

 

5,6

 

 Each of these processes could potentially involve clinically signifi-

cant genetic variation. However, pharmacogenetics originated as a result of the obser-

vation that there are clinically important inherited variations in drug metabolism. There-

fore, this article — and the examples highlighted — focuses on the pharmacogenetics

of drug metabolism. However, similar principles apply to clinically significant inherit-

ed variation in the transport and distribution of drugs and their interaction with their

therapeutic targets. The underlying message is that inherited variations in drug effect

are common and that some tests that incorporate pharmacogenetics into clinical prac-

tice are now available, with many more to follow.

The concept of pharmacogenetics originated from the clinical observation that there

were patients with very high or very low plasma or urinary drug concentrations, followed

by the realization that the biochemical traits leading to this variation were inherited. Only

later were the drug-metabolizing enzymes identified, and this discovery was followed

by the identification of the genes that encoded the proteins and the DNA-sequence vari-

ation within the genes that was associated with the inherited trait. Most of the pharma-

cogenetic traits that were first identified were monogenic — that is, they involved only

a single gene — and most were due to genetic polymorphisms; in other words, the allele

or alleles responsible for the variation were relatively common. Although drug effect is

a complex phenotype that depends on many factors, early and often dramatic examples

involving succinylcholine and isoniazid facilitated acceptance of the fact that inherit-

ance can have an important influence on the effect of a drug. Today there is a systematic

search to identify functionally significant variations in DNA sequences in genes that in-

fluence the effects of various drugs.

 

4
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Metabolism usually converts drugs to metabolites

that are more water soluble and thus more easily

excreted.

 

5

 

 It can also convert prodrugs into thera-

peutically active compounds, and it may even result

in the formation of toxic metabolites. Pharmacol-

ogists classify pathways of drug metabolism as ei-

ther phase I reactions (i.e., oxidation, reduction, and

hydrolysis) or phase II, conjugation reactions (e.g.,

acetylation, glucuronidation, sulfation, and methyl-

ation).

 

5

 

 The names used to refer to these pathways

for drug metabolism are purely historical, so phase II

reactions can precede phase I reactions and often

occur without prior oxidation, reduction, or hydrol-

ysis. However, both types of reaction most often

convert relatively lipid-soluble drugs into relatively

more water-soluble metabolites (Fig. 1).

The finding, approximately 40 years ago, that

an impairment in a phase I reaction — hydrolysis

of the muscle relaxant succinylcholine by butyryl-

cholinesterase (pseudocholinesterase) — was in-

herited served as an early stimulus for the develop-

ment of pharmacogenetics.

 

7

 

 Approximately 1 in

3500 white subjects is homozygous for a gene en-

coding an atypical form of butyrylcholinesterase

 

8

 

and is relatively unable to hydrolyze succinylcho-

line, thus prolonging the drug-induced muscle pa-

ralysis and consequent apnea.

 

9

 

 At almost the same

time, it was observed that a common genetic varia-

tion in a phase II pathway of drug metabolism —

 

N

 

-acetylation — could result in striking differences

in the half-life and plasma concentrations of drugs

metabolized by 

 

N

 

-acetyltransferase. Such drugs in-

cluded the antituberculosis agent isoniazid,

 

10

 

 the

antihypertensive agent hydralazine,

 

11

 

 and the an-

tiarrhythmic drug procainamide,

 

12

 

 and this varia-

tion had clinical consequences in all cases.

 

13

 

 The

bimodal distribution of plasma isoniazid concen-

trations in subjects with genetically determined

fast or slow rates of acetylation in one of those early

studies

 

10

 

 strikingly illustrates the consequences of

inherited variations in this pathway for drug me-

tabolism (Fig. 2). These early examples of the poten-

tial influence of inheritance on the effect of a drug

set the stage for subsequent studies of genetic vari-

ation in other pathways of drug biotransformation.

 

pharmacogenetics of phase i drug metabolism

 

The cytochrome P-450 enzymes, a superfamily of

microsomal drug-metabolizing enzymes, are the

most important of the enzymes that catalyze phase

I drug metabolism.

 

5

 

 One member of this family,

cytochrome P-450 2D6 (CYP2D6), represents one of

the most intensively studied and best understood ex-

amples of pharmacogenetic variation in drug me-

tabolism. The CYP2D6 genetic polymorphism was

originally discovered as a result of striking differ-

ences in the pharmacokinetics and therapeutic ef-

fects of drugs metabolized by this enzyme — drugs

as diverse as codeine, dextromethorphan, metopro-

lol, and nortriptyline, to mention only a few of the

scores of agents metabolized by this enzyme.

 

14

 

 

Approximately 5 to 10 percent of white subjects

were found to have a relative deficiency in their

ability to oxidize the antihypertensive drug deb-

risoquin.

 

15

 

 They also had an impaired ability to

metabolize the antiarrhythmic and oxytocic drug

sparteine.

 

16

 

 Subjects with poor metabolism of these

two drugs had lower urinary concentrations of me-

tabolites and higher plasma concentrations of the

parent drug than did subjects with extensive metab-

olism. Furthermore, the drugs had an exaggerated

effect in these subjects, and family studies demon-

strated that poor oxidation of debrisoquin and

sparteine was inherited as an autosomal recessive

trait.

 

15,16

 

 That is, subjects with poor metabolism

had inherited two copies of a gene or genes that en-

coded either an enzyme with decreased CYP2D6 ac-

tivity or one with no activity. 

A plot of the ratio of urinary debrisoquin to

4-hydroxydebrisoquin — a so-called metabolic

ratio — is shown in Figure 3.

 

17

 

 The higher the met-

abolic ratio, the less metabolite was excreted. There-

fore, subjects with poor metabolism are shown,

counterintuitively, at the far right of the graph, with

a few subjects at the far left of the frequency distri-

bution who are now classified as having ultrarapid

metabolism.

 

18

 

 As described subsequently, such

subjects may have multiple copies of the gene for

CYP2D6.

 

18

 

 Therefore, debrisoquin and sparteine

represented “probe drugs” — compounds that

could be used to classify subjects as having either

poor metabolism or extensive metabolism. That

strategy, the administration of a probe compound

metabolized by a genetically polymorphic enzyme,

became a standard technique used in many phar-

macogenetic studies. Unfortunately, even though it

was useful for research purposes, the approach was

not easily adapted for the routine clinical laborato-

ry. Therefore, the application of molecular genetic

techniques to pharmacogenetics not only has made

it possible to determine underlying molecular mech-

pharmacogenetics of 

drug metabolism
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Figure 1. The Effect of Drug Metabolism on Excretion.

 

Lipophilic (or fat-soluble) drugs are metabolized to form relatively more hydrophilic (or water-soluble) metabolites than 

the parent drug, and these metabolites are thus more easily excreted.
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anisms responsible for genetic polymorphisms, but

also has created the possibility of high-through-

put clinical tests that can be performed with DNA

isolated from a blood sample, an approach that is

being adapted for routine diagnostic use in clini-

cal laboratories.

Application of molecular genetic techniques re-

sulted in the cloning of a complementary DNA

(cDNA) and the gene encoding CYP2D6.

 

19,20

 

 Those

advances, in turn, made it possible to characterize

a series of genetic variants responsible for low lev-

els of CYP2D6 activity or no activity, ranging from

single-nucleotide polymorphisms that altered the

amino acid sequence of the encoded protein to sin-

gle-nucleotide polymorphisms that altered RNA

splicing or even deletions of the 

 

CYP2D6

 

 gene.

 

21

 

More than 75 

 

CYP2D6

 

 alleles have now been de-

scribed (descriptions are available at http://www.

imm.ki.se/cypalleles). In addition, some subjects

with ultrarapid metabolism have been shown to

have multiple copies of the 

 

CYP2D6

 

 gene.

 

18

 

 Such

subjects can have an inadequate therapeutic re-

sponse to standard doses of the drugs metabolized

by CYP2D6. Although the occurrence of multiple

copies of the 

 

CYP2D6

 

 gene is relatively infrequent

among northern Europeans, in East African popu-

lations, the allele frequency can be as high as 29

percent.

 

22

 

 The effect of the number of copies of the

 

CYP2D6

 

 gene — ranging from 0 to 13 — on the phar-

macokinetics of the antidepressant drug nortrip-

tyline is shown in Figure 4.

 

23

 

 There could hardly be

a more striking illustration of how genetics influ-

ences the metabolism of a drug.

The 

 

CYP2D6

 

 polymorphism represents an excel-

lent example of both the potential clinical impli-

cations of pharmacogenetics and the process by

which pharmacogenetic research led from the phe-

notype to an understanding of molecular mecha-

nisms at the level of the genotype. Similar approach-

es were subsequently applied to other cytochrome

P-450 isoforms, including 2C9, which metaboliz-

es warfarin, losartan, and phenytoin; 2C19, which

metabolizes omeprazole; and 3A5, which metab-

olizes a very large number of drugs.

 

24-26

 

 We now

know that many other phase I drug-metabolizing

enzymes display genetic variation that can influ-

ence a person’s response to a drug. Table 1 lists

selected examples of clinically relevant pharmaco-

genetic variations involving phase I drug-metabo-

lizing enzymes. In many cases, we also understand

the molecular basis of inherited variation in the

drug-metabolizing enzymes. For example, in the

atypical butyrylcholinesterase variant responsible

for striking decreases in the ability to catalyze the

hydrolysis of succinylcholine, guanine is substitut-

ed for adenine at position 209 in the open reading

frame of the gene, resulting in a change from as-

partic acid to glycine at position 70 in the encoded

protein.

 

42

 

 A series of other variant alleles for bu-

 

Figure 2. Pharmacogenetics of Acetylation. 

 

Plasma isoniazid concentrations were measured in 267 subjects six hours af-

ter an oral dose. The bimodal distribution in the rate of acetylation is due to 

genetic polymorphisms within the 

 

N

 

-acetyltransferase 2 gene. Modified from 

Price Evans et al.

 

10

 

 with the permission of the publisher.
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Figure 3. Pharmacogenetics of CYP2D6.

 

Urinary metabolic ratios of debrisoquin to its metabolite, 4-hydroxydebriso-

quin, are shown for 1011 Swedish subjects. The Cutoff box indicates the cut-

off point between subjects with poor metabolism as a result of decreased or 

absent CYP2D6 activity and subjects with extensive metabolism. Modified 

from Bertilsson et al.

 

17

 

 with the permission of the publisher.
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tyrylcholinesterase that result in decreased enzyme

activity have also been described.

 

41

 

Another example of the pharmacogenetics of

phase I drug metabolism involves metabolism of

the antineoplastic agent fluorouracil. In the mid-

1980s, fatal central nervous system toxicity devel-

oped in several patients after treatment with stand-

ard doses of fluorouracil.

 

39,40

 

 The patients were

shown to have an inherited deficiency of dihydro-

pyrimidine dehydrogenase, an enzyme that metab-

olizes fluorouracil and endogenous pyrimidines.

Subsequently, several variant alleles for the gene

encoding dihydropyrimidine dehydrogenase were

described that placed patients at risk for toxic ef-

fects when they were exposed to standard doses of

fluorouracil.

 

43

 

 The pharmacogenetics of dihydro-

pyrimidine dehydrogenase and its effect on the me-

tabolism of fluorouracil, as well as the pharmaco-

genetics of thiopurine drugs discussed below, serve

to illustrate another general principle: pharmaco-

genetic variation in the response to drugs has been

recognized most often for drugs with narrow ther-

apeutic indexes — drugs for which differences be-

tween the toxic and therapeutic doses are relatively

small. However, the same general principles would

be expected to apply to all therapeutic agents, and

the same research strategies that were used to iden-

tify common, clinically significant genetic variations

in phase I pathways of drug metabolism have also

been applied — with equal success — to reactions

involving phase II drug metabolism.

 

pharmacogenetics of phase ii drug 

metabolism

 

The 

 

N

 

-acetylation of isoniazid (Fig. 2) was an early

example of inherited variation in phase II drug me-

tabolism. Molecular cloning studies subsequently

demonstrated that there are two 

 

N

 

-acetyltransfer-

ase (

 

NAT

 

) genes in humans, 

 

NAT1

 

 and 

 

NAT2.

 

44

 

 The

 

Figure 4. Pharmacogenetics of Nortriptyline.

 

Mean plasma concentrations of nortriptyline after a sin-

gle 25-mg oral dose are shown in subjects with 0, 1, 2, 3, 

or 13 functional 

 

CYP2D6

 

 genes. Modified from Dalén et 

al.

 

23

 

 with the permission of the publisher.
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* Examples of genetically polymorphic phase I enzymes are listed that catalyze drug metabolism, including selected examples of 

 

drugs that have clinically relevant variations in their effects.

 

Table 1. Pharmacogenetics of Phase I Drug Metabolism.*

Drug-Metabolizing Enzyme
Frequency of Variant Poor-

Metabolism Phenotype
Representative

Drugs Metabolized Effect of Polymorphism

 

Cytochrome P-450 2D6 
(CYP2D6)

6.8% in Sweden
1% in China

 

17

 

Debrisoquin

 

15

 

Sparteine

 

16

 

Nortriptyline

 

23

 

Codeine

 

27,28

 

Enhanced drug effect
Enhanced drug effect
Enhanced drug effect
Decreased drug effect

Cytochrome P-450 2C9 
(CYP2C9)

Approximately 3% in England

 

29

 

 (those 
homozygous for the *2 and *3 alleles)

Warfarin

 

29,30

 

Phenytoin

 

31,32

 

Enhanced drug effect

 

29-32

 

Cytochrome P-450 2C19 
(CYP2C19)

2.7% among white Americans

 

33

 

3.3% in Sweden
14.6% in China

 

17

 

18% in Japan

 

33

 

Omeprazole

 

34,35

 

Enhanced drug effect

 

36,37

 

Dihydropyrimidine 
dehydrogenase

Approximately 1% of population is 
heterozygous

 

38

 

Fluorouracil

 

39,40

 

Enhanced drug effect

 

39,40

 

Butyrylcholinesterase 
(pseudocholinesterase)

Approximately 1 in 3500 Europeans

 

41

 

Succinylcholine

 

9,41

 

Enhanced drug effect

 

9,41
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common genetic polymorphism responsible for

the pharmacogenetic variation in isoniazid metab-

olism illustrated in Figure 2 involved the 

 

NAT2

 

 gene.

That polymorphism, like those in the genes for

many other drug-metabolizing enzymes, shows

striking ethnic variation.

 

45

 

 As a result, most East

Asian subjects are rapid acetylators of isoniazid

and other drugs metabolized by 

 

N

 

-acetyltransfer-

ase 2.

 

46

 

 Although the 

 

NAT2

 

 genetic polymorphism

was one of the earliest examples discovered of a

pharmacogenetic variant in a phase II drug-metab-

olizing enzyme, it was a common genetic polymor-

phism involving another conjugating (i.e., phase II)

enzyme that became one of the earliest clinically

accepted pharmacogenetic tests.

The thiopurine drugs mercaptopurine and aza-

thioprine — a prodrug that is converted to mercap-

topurine in vivo — are purine antimetabolites used

clinically as immunosuppressants and to treat neo-

plasias, such as acute lymphoblastic leukemia of

childhood.

 

47

 

 Thiopurines are metabolized in part

by 

 

S

 

-methylation catalyzed by the enzyme thiopu-

rine 

 

S

 

-methyltransferase (TPMT).

 

48,49

 

 Approxi-

mately 20 years ago it was reported that white pop-

ulations can be separated into three groups on the

basis of the level of TPMT activity in their red cells

and other tissues and that the level of activity was

inherited in an autosomal codominant fashion (Fig.

5A).

 

50,51

 

 Subsequently, it was shown that when

persons who were homozygous for low levels of

TPMT activity or for no activity (

 

TPMT

 

L

 

/TPMT

 

L

 

)

(Fig. 5A) received standard doses of thiopurines,

they had greatly elevated concentrations of active

metabolites, 6-thioguanine nucleotides, as well as

a greatly increased risk of life-threatening, drug-

induced myelosuppression.

 

52

 

 As a result, the phe-

notypic test for the level of TPMT activity in red cells

and, subsequently, DNA-based tests were among

the first pharmacogenetic tests to be used in clini-

cal practice. They are an example of the individual-

ization of therapy on the basis of pharmacogenetic

data. Patients with inherited low levels of TPMT ac-

tivity can be treated with thiopurine drugs but only

at greatly reduced doses, if drug-induced toxicity is

to be avoided.

 

51

 

 There is also evidence that in pa-

tients with very high levels of activity, the efficacy of

thiopurine drugs is decreased,

 

53

 

 presumably be-

cause the drugs are rapidly metabolized.

It is interesting to contrast the test used to deter-

mine the TPMT phenotype with that used original-

ly to classify subjects as having either poor or exten-

sive metabolism of CYP2D6. In the case of TPMT, a

blood sample could be obtained and the enzymatic

activity measured directly, whereas for CYP2D6 a

probe drug had to be administered and a urine

sample collected (Fig. 3). The fact that TPMT is ex-

pressed in an easily accessible cell — the red cell —

facilitated the introduction of this pharmacoge-

netic test into clinical use. The availability of DNA-

based tests means that the clinical application of

pharmacogenetics could be greatly accelerated for

a large number of genes that encode proteins im-

portant in drug response.

The 

 

TPMT

 

 gene has been cloned,

 

54

 

 and the most

common variant allele responsible for low levels

of activity among white populations encodes a pro-

tein with two alterations in the amino acid sequence

as a result of single-nucleotide polymorphisms

 

Figure 5. Pharmacogenetics of Thiopurine 

 

S

 

-Methyltransferase (TPMT) (Pan-

el A) and the 

 

TPMT

 

 Gene (Panel B).

 

Panel A shows the level of TPMT activity in red cells among 298 randomly select-

ed white adult blood donors. Presumed genotypes for the 

 

TPMT

 

 genetic poly-

morphism are also shown. 

 

TPMT

 

L

 

 and 

 

TPMT

 

H

 

 

 

are alleles that result clinically 

in low levels and high levels of activity, respectively. These allele designations 

were used before the molecular basis for the polymorphism was understood. 

(Modified from Weinshilboum and Sladek

 

50

 

 with the permission of the pub-

lisher.) Panel B shows the human 

 

TPMT

 

 gene. 

 

TPMT*1

 

 is the most common 

allele, and 

 

TPMT*3A

 

 is the most common variant allele among white subjects. 

The 

 

TPMT*3A 

 

allele is primarily responsible for the trimodal frequency distribu-

tion shown in Panel A. The two single-nucleotide polymorphisms in 

 

TPMT*3A,

 

 

which are in strong linkage disequilibrium, as well as the resultant changes in 

encoded amino acids, are indicated.
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(Fig. 5B).54,55 These sequence changes result in a

striking reduction in the quantity of TPMT,54 prob-

ably because the variant protein is degraded rapid-

ly.56 A series of less frequent TPMT variant alleles

have also been described.51 Finally, there are large

differences in the types and frequencies of TPMT al-

leles among ethnic groups. For example, TPMT*3A,

the most common allele responsible for very low

levels of enzyme activity in whites, with a frequency

of approximately 4 percent (Fig. 5B), has not been

observed in China, Korea, or Japan.57 Other exam-

ples of pharmacogenetic variation involving phase

II pathways of drug metabolism are listed in Table 2.

Recurring themes in pharmacogenetics include

the presence of a few relatively common variant al-

leles of genes encoding proteins important in drug

response, a larger number of much less frequent

variant alleles, and striking differences in the types

and frequencies of alleles among different popu-

lations and ethnic groups. These generalizations,

based primarily on studies of drug metabolism, are

now being extended to include common genetic

variations in other proteins that might alter the ef-

fects of drug transporters or targets.

Most drugs are metabolized by several different

enzymes, can be transported by other types of pro-

teins, and ultimately interact with one or more tar-

gets. If several steps in this type of pathway were

to display genetic variation — that is, if the effects

were polygenic — clear multimodal frequency dis-

tributions like those shown in Figures 2 and 3

would quickly be replaced by multiple overlapping

distributions. Therefore, even if inheritance influ-

enced the effect of a drug, the relatively simple, one-

to-one relation observed for CYP2D6 and TPMT

would not be obvious. Perhaps partly as a result of

that fact, there are still relatively few examples of

clinical tests based on pharmacogenetics. An addi-

tional factor responsible for the relatively slow trans-

lation of pharmacogenetic approaches into clinical

practice — as mentioned previously — has been

the frequent requirement for the administration of

a probe drug in the diagnosis of many pharmaco-

genetic traits. DNA-based assays make it possible

to obtain pharmacogenetic information on a large

number of genes encoding relevant proteins. The

range of functionally significant variations in DNA

sequences in genes that influence the response to

drugs is wide and includes single-nucleotide poly-

morphisms, small insertions and deletions, vari-

able-number tandem repeats, gene deletions, and

gene duplications. And although DNA-based tests

can be used to detect sequence variations, the re-

sults of such tests will not necessarily account for

all possible phenotypic variations. What they can

potentially do quickly is make available large quan-

tities of data on many genes that might contribute

to variations in drug response.

The convergence of pharmacogenetics and rapid

advances in human genomics has resulted in phar-

macogenomics, a term used here to mean the in-

fluence of DNA-sequence variation on the effect of

a drug. With the completion of the Human Ge-

nome Project66,67 and the ongoing annotation of

its data, the time is rapidly approaching when the

sequences of virtually all genes encoding enzymes

from pharmacogenetics

to pharmacogenomics

* Examples of genetically polymorphic phase II (conjugating) enzymes are listed that catalyze drug metabolism, including selected 
examples of drugs that have clinically relevant variations in their effects.

Table 2. Pharmacogenetics of Phase II Drug Metabolism.*

Drug-Metabolizing Enzyme
Frequency of Variant Poor-

Metabolism Phenotype
Representative

Drugs Metabolized Effect of Polymorphism

N-Acetyltransferase 2 52% among white Americans10

17% of Japanese58

Isoniazid10

Hydralazine11

Procainamide12

Enhanced drug effect13

Uridine diphosphate–glucurono-
syltransferase 1A1 (TATA-box 
polymorphism)

10.9% among whites59

4% of Chinese60

1% of Japanese60

Irinotecan61

Bilirubin62

Enhanced drug effect63

Gilbert’s syndrome62

Thiopurine S-methyltransferase Approximately 1 in 300 whites50,57

Approximately 1 in 2500 Asians57

Mercaptopurine51

Azathioprine
Enhanced drug effect 

(toxicity)51-53

Catechol O-methyltransferase Approximately 25% of whites51,64 Levodopa51,65 Enhanced drug effect51,65
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that catalyze phase I and II drug metabolism will be

known. The same will be true for genes that encode

drug transporters, drug receptors, and other drug

targets. As a result, the traditional phenotype-to-

genotype pharmacogenetic-research paradigm de-

scribed at the beginning of this article is reversing

direction to create a complementary genotype-to-

phenotype flow of information.

The convergence of advances in pharmacogenetics

and human genomics means that physicians can

now individualize therapy in the case of a few drugs.

As our knowledge of genetic variations in proteins

involved in the uptake, distribution, metabolism,

and action of various drugs improves, our ability to

test for that variation and, as a result, to select the

best drug at the optimal dose for each patient should

also increase.
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