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Summary

 

It is generally assumed that mitochondrial genomes are uniparentally transmitted,
homoplasmic and nonrecombining. However, these assumptions draw largely from
early studies on animal mitochondrial DNA (mtDNA). In this review, we show that
plants, animals and fungi are all characterized by episodes of biparental inheritance,
recombination among genetically distinct partners, and selfish elements within the
mitochondrial genome, but that the extent of these phenomena may vary substan-
tially across taxa. We argue that occasional biparental mitochondrial transmission
may allow organisms to achieve the best of both worlds by facilitating mutational
clearance but continuing to restrict the spread of selfish genetic elements. We also
show that methodological biases and disproportionately allocated study effort are
likely to have influenced current estimates of the extent of biparental inheritance,
heteroplasmy and recombination in mitochondrial genomes from different taxa.
Despite these complications, there do seem to be discernible similarities and differ-
ences in transmission dynamics and likelihood of recombination of mtDNA in plant,
animal and fungal taxa that should provide an excellent opportunity for comparative
investigation of the evolution of mitochondrial genome dynamics.
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Introduction

 

Early research on mitochondrial genomes focused primarily
on animal mitochondrial DNA (mtDNA), and has led to the
widely held assumptions that all mitochondrial genomes are
uniparentally inherited, homoplasmic, and nonrecombining.
These assumptions have had a strong influence on many areas
of evolutionary inquiry, but have only recently been subject to
systematic challenge (Birky, 1995; Ladoukakis & Zouros, 2001b;

Ballard & Whitlock, 2004). Here, we review the current body
of knowledge on properties of mitochondrial genomes in
plants and fungi, as well as animals, and show that these
common assumptions are often violated. We then discuss
the evolutionary implications of departure from uniparental,
homoplasmic, and nonrecombinational transmission of mtDNA
with regard to two important evolutionary phenomena
associated with mtDNA: the accumulation of deleterious
mutations and the spread of selfish elements. We posit that
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occasional biparental reproduction and recombination prob-
ably occur at a high enough frequency to counter mutation
accumulation, but likely not often enough to allow the spread
of selfish mitochondrial elements.

Mitochondrial genomes are smaller than nuclear genomes,
though they vary substantially in size across taxa from the
relatively small animal mitochondrial genome (14–20 kb) to
the larger and highly variable higher plant genome (200–
2500 kb). Across eukaryotes, mitochondrial genomes contain
an average of 40–50 genes which perform five basic processes
(Burger 

 

et al

 

., 2003). These physical contrasts among mito-
chondrial genomes among phyla are well documented
(Wolstenholme & Fauron, 1995; Burger 

 

et al

 

., 2003), but the
dynamic properties of mitochondrial genomes are not as
well understood. Profound differences in the mechanisms of
inheritance of heteroplasmy and recombination and the
frequency in mitochondrial genomes are likely to have
important evolutionary implications.

 

Inheritance

 

The nuclear genome generally transmits copies of itself to the
next generation via fair meiosis involving strict segregation. In
contrast, cytoplasmic genome segregation is less equitable and
more complex. Differential transmission of mitochondrial
genes can occur both by differential replication of mitochondrial
genomes in heteroplasmic cells and by differential segregation
of mitochondrial genomes during mitosis and meiosis.

 

Differential genome replication

 

In contrast to nuclear genomes, multiple mitochondrial
genomes populate each cell, can replicate more than once
per cell cycle, and can be differentially transmitted to daughter
cells (Birky, 1983; Andersson, 1999). This sets the stage for a
situation in which certain mitochondrial genomes might
replicate and be transmitted more often than others.

There are multiple ways in which differential replication of
mitochondrial genomes can occur. Several studies have found
a relationship between replication rate and distance from the
nucleus, with mitochondrial genomes closer to the nucleus
having higher replication rates (Mignotte 

 

et al

 

., 1987; Davis
& Clayton, 1996). High rates of replication in the mutant
‘petite’ mitochondrial genomes in yeast relative to wild-type
mitochondrial genomes have been ascribed to a high number
of replication origins in mutant genomes (Williamson, 2002).
A number of other mitochondrial mutations, characterized
in animals and fungi, and ranging from point mutations to
insertions and deletions, seem to confer relatively high repli-
cation rates on their genomes (Bertrand 

 

et al

 

., 1980; Griffiths,
1992; Chinnery 

 

et al

 

., 2000; Schwartz & Vissing, 2002). High
replication rates in mutated genomes may be linked to
selection for a threshold level of respiratory performance that
favors accelerated production of mitochondria (and their

attendant genomes) that respire at below-normal levels
(Griffiths, 1995).

 

Differential segregation in meiosis and mitosis in plants

 

Maternal transmission of mtDNA appears to be the predom-
inant mode of mitochondrial inheritance in plants, and is
likely to be enforced by two mechanisms. First, the sperm that
ultimately fertilizes the egg undergoes a drastic reduction in
mitochondrial numbers during development and carries few
mitochondria relative to the egg (Miyamura 

 

et al

 

., 1987;
Russell, 1987; Sodmergen 

 

et al

 

., 2002). Secondly, mechanisms
that prevent the transmission of paternal cytoplasm to the zygote
or cause the subsequent degradation of paternal mtDNA
are numerous and common (Mogensen, 1996). Nevertheless,
paternal transmission resulting in biparental inheritance of
mitochondria has been documented in several plant taxa (Neale

 

et al

 

., 1989; Erickson & Kemble, 1993; McCauley 

 

et al.

 

,
2005). Compared to the substantial evidence for the existence
of biparental transmission in plastids, however, evidence for
biparental mitochondrial transmission is sparse (Mogensen,
1996; Havey, 1997; Vaillancourt 

 

et al.

 

, 2004).

 

Differential segregation in meiosis and mitosis in fungi

 

The rules of organelle inheritance in fungi are more complex
than in plants or animals. Modes of sexual reproduction
and exclusion of paternal mitochondria are variable, and both
biparental and uniparental inheritance are common (reviewed
in Taylor, 1986).

In some of the Basidiomycetes, haploid mating types fuse
and nuclei from both mating types are reciprocally exchanged
and uniformly distributed in the heterokaryon. Mitochondria
migrate across the zone of fusion in some taxa (Smith 

 

et al

 

.,
1990) and not in others (May & Taylor, 1988). Even with
high biparental mitochondrial contribution, however, prog-
eny of the dividing zygote usually contain the mitochondrial
genome of only one parent. Similarly, in laboratory yeast,
fusion of parental types results in a more equitable contribu-
tion of mitochondria from both parents to the zygote than is
typical for plants or animals (Birky, 1995), but heteroplasmy
rarely persists through later zygotic divisions. Explanations for
this phenomenon vary across fungal taxa, from the selective
elimination of the mitochondria of one strain postfertilization
(

 

Cryptococcus neoformans

 

; Yan & Xu, 2003) to the poor mix-
ing of parental mitochondrial genomes and maintenance of
separated positions in the zygote (

 

Saccharomyces cerevisiae

 

;
Callen, 1974; Strausberg & Perlman, 1978; Nunnari 

 

et al

 

.,
1997). Nevertheless, persistence of mtDNA contributed by
both mating types has been documented on several occasions
(Kawano 

 

et al

 

., 1987; Smith 

 

et al

 

., 1990; Sakurai 

 

et al

 

., 2004),
even in anisogamous fungi (Yang & Griffiths, 1993).

The finding that biparental inheritance occurs in anisoga-
mous taxa, along with the observation that many isogamous
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taxa have uniparental inheritance (Nunnari 

 

et al

 

., 1997; Peters

 

et al

 

., 2004), refutes the notion that anisogamy has evolved as
a mechanism to prevent biparental transmission of cytoplasmic
genomes. Interestingly, mitochondrial plasmids, defined as
small extragenomic mtDNA molecules, are often transmitted
biparentally in fungi and appear to facilitate the transmission
and persistence of paternal mitochondrial genomes (Yang &
Griffiths, 1993).

 

Differential segregation in meiosis and mitosis in 
animals

 

Similar to plants, paternal animal mtDNA does not generally
persist through zygotic development. Loss of zygotic paternal
mtDNA through selective degradation has been shown to
occur in mice (Kaneda 

 

et al

 

., 1995), and is suspected in a wide
range of taxa. Degradation of paternal DNA has even been
documented in a case in which a relatively high proportion
of paternal mitochondria enter the egg (Meusel & Moritz,
1993). Thus, it seems unlikely that paternal mtDNA regularly
persists into later developmental stages (Houshmand 

 

et al

 

.,
1997).

There are, however, a few documented cases of persistence of
paternal mtDNA beyond early zygotic stages into adulthood
(Kondo 

 

et al

 

., 1990; Gyllensten 

 

et al

 

., 1991; Birky, 2001;
Schwartz & Vissing, 2002). In addition, indirect evidence for
paternal leakage comes from the growing number of studies
reporting heteroplasmy (Magoulas & Zouros, 1993; Kvist

 

et al

 

., 2003) and recombination (Ladoukakis & Zouros, 2001b;
Piganeau 

 

et al

 

., 2004). In these cases, paternal leakage is often
cited as the explanation for the coexistence of genetically
distinct mtDNA lineages. One unique case of paternal trans-
mission of mitochondrial DNA is the doubly uniparental
inheritance (DUI) that characterizes some bivalves (e.g.
Ladoukakis & Zouros, 2001a; Passamonti 

 

et al

 

., 2003). In these
species, females have only maternally transmitted mtDNA, but
male progeny have maternally transmitted mtDNA in somatic
tissues and paternally transmitted mtDNA in gonadal tissues.

Mitotic divisions can also result in differential mitochon-
drial segregation. In particular, the hypothesized sharp reduc-
tion in mitochondrial genome number (‘bottleneck’) that
accompanies oogenesis has received a great deal of attention as
a phenomenon that may be of particular relevance in under-
standing the evolutionary dynamics of mitochondrial genomes
(Koehler 

 

et al

 

., 1991; Poulton 

 

et al

 

., 1998). Direct visual evi-
dence for bottlenecking in mitochondrial number and subse-
quent amplification of the bottlenecked organelles during
oogenesis is available. A recent review of electron micrographs
of different germline cell stages found 10-fold reductions in
mitochondrial number in germ cells relative to primary oocytes
( Jansen, 2000). When mitochondrial numbers are dramati-
cally reduced, random choice of molecules for replication and
more systematic biases in which mitochondria are subse-
quently amplified in the oocytes can result in rapid changes in

the frequency of different mitochondrial haplotypes over
generations. Consequently, bottlenecking of mitochondrial
numbers can lead to high variation in mitochondrial genomic
makeup within and between populations.

 

Selfish elements

 

Differential transmission of mitochondrial genomes can
also be mediated by selfish genes, defined as genes that have a
replication and transmission advantage at the expense of other
genes.

The best known selfish mitochondrial genes are those that
cause cytoplasmic male sterility (CMS) in angiosperms. CMS
is a phenomenon in which pollen development is aborted in
normally hermaphroditic plants, resulting in phenotypically
female individuals. CMS is widespread in the angiosperms,
very well studied, and significant in its impact on phenotypes
and population dynamics (Frank, 1989). Research suggests
that, in most cases of CMS, pollen abortion results in higher
seed production by females (van Damme & van Delden,
1984; Manicacci 

 

et al

 

., 1998). As a result, individuals carrying
CMS mitochondria increase in frequency at the expense
of individuals carrying wild-type mitochondria, and at the
expense of nuclear genes, which are transmitted both through
pollen and through seeds. One interesting aspect of CMS in
the current context is that the mtDNA transmission advan-
tage is determined by the phenotype of the whole plant,
instead of being strictly a result of heteroplasmy and compe-
tition within cells. Unlike most examples of selfish mitochon-
drial mutants, therefore, uniparental inheritance, with the
resulting paucity of competition among divergent mitochondrial
genomes within cells, is not an obstacle for selfish transmission.

In fungi, the most well-known selfish mitochondrial genes
are the petite mutants of yeast (Williamson, 2002). Petite
mitochondrial genomes are characterized by large deletions
and an inability to respire. Because yeast can metabolize via
fermentation (i.e. are facultative aerobes), the petite mutants
are not unconditionally lethal, but do result in lowered cell
fitness relative to the wild type in standard media. Petite mutant
genomes often contain more replication origins than wild-
type genomes (MacAlpine 

 

et al

 

., 2001), which can result in a
nearly 2-fold transmission advantage whenever the two coexist
within a cell.

A number of selfish mitochondrial genomes and selfish
mitochondrial plasmids are known from several taxa of obli-
gate aerobic fungi. These selfish mitochondrial elements arise
from rearrangements, deletions, and insertions in mtDNA,
and are implicated in phenotypes such as increased cell senes-
cence, decreased cell senescence, and retarded hyphal growth
(Bertrand 

 

et al

 

., 1980; Griffiths, 1992; Nakagawa 

 

et al

 

., 1998).
Despite this wide range of genomic and phenotypic effects, all
of these selfish mitochondrial genomes and mitochondrial
plasmids over-replicate at the expense of wild-type mitochondrial
genomes and plasmids. In some cases, the over-replication of
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dysfunctional mitochondrial genomes results in cell death
(Griffiths, 1992). In others, however, the competitive mainte-
nance of wild-type mitochondrial genomes at low levels allows
the retention of cell viability (Bertrand 

 

et al

 

., 1980; Griffiths,
1995). This phenomenon is similar to the among-cell com-
petitive maintenance of wild-type cells demonstrated experi-
mentally in yeast petite mutants by Taylor 

 

et al

 

. (2002). While
mitochondrial genomes and mitochondrial plasmids have
transmission rules that can be independent of each other, they
also interact extensively. Plasmids insert into and bud off from
the mitochondrial genome. These interactions can affect both
the transmission properties and the degree of selfishness of the
mitochondrial plasmids (Yang & Griffiths, 1993; Nakagawa

 

et al

 

., 1998).
Evidence hinting at the existence of other selfish elements

in fungi has come to light in recent years. In heterothallic
fungi, haploid strains (monokaryons) generally share nuclei
reciprocally and homogeneously following fusion in the
heterokaryon, but maintain separate mitochondria. However,
there are cases in which nuclei are not reciprocally exchanged.
In this instance, one monokaryon donates nuclei (‘male’)
while the other receives nuclei (‘female’). While direct evidence
is not yet available, Aanen 

 

et al

 

. (2004) suggest that nonrecip-
rocal exchange of nuclei can best be explained by the presence
of selfish mitochondria that can suppress the nuclear-donating
capacity of their monokaryon and thereby ensure that their
mitochondrial genome is represented in the fruiting dikaryon.
This possible ‘male’-suppressing phenomenon in fungi is
similar to plant CMS in the conflict that arises between nuclear
and mitochondrial genomes, but also because the mitochon-
drial genome produces a somatic phenotype that enhances
mitochondrial transmission relative to mitochondria from other
strains, and does so without heteroplasmy and competition
within cells.

Although selfish (male-killing or feminizing) cytoplasmi-
cally transmitted parasitic bacteria are common in insects,
documented examples of mitochondrial selfish elements in

animals are rare (Hurst 

 

et al

 

., 1996). There are a few known
cases of mitochondrial genomes that replicate at higher rates
because of their smaller size compared to wild-type genomes
(Rand & Harrison, 1989; Wallace, 1992). In general, however,
selfish mitochondria in animals are reported much less often
than in plants or fungi. The scarcity of selfish animal mtDNA
may be related to the stability and small size of animal mito-
chondrial genomes relative to their counterparts in plants and
fungi (Budar 

 

et al

 

., 2003).

 

Heteroplasmy

 

Biparental inheritance is an important source of heteroplasmy,
which is the coexistence within an individual of genetically
distinct mitochondrial genomes. Heteroplasmy can occur via
the coexistence of mitochondrial genomes of either different
nucleotide lengths (length heteroplasmy) or different nucleotide
compositions (site heteroplasmy). Length heteroplasmy can
involve large-scale insertions and deletions (Boursot 

 

et al

 

., 1987;
Volz-Lingenhohl 

 

et al

 

., 1992; Gillham, 1994), but more often
seems to derive from errors in mtDNA replication resulting
in variation in tandem repeat number in or near the control
region (e.g. Berg 

 

et al

 

., 1995; Lunt 

 

et al

 

., 1998; Townsend &
Rand, 2004). Site heteroplasmy is reported less frequently
than length heteroplasmy (Table 1), but is of special interest
to evolutionary biologists because the coexistence of mitochon-
drial genomes that differ in the placement of deleterious point
mutations is required for recombinational repair of mutational
degradation and generation of novel recombinant genotypes
(Lynch & Blanchard, 1998).

 

Plants

 

In plants, reports of heteroplasmy caused by paternal leakage
are rare (Mogensen, 1996; Hattori 

 

et al

 

., 2002). Interestingly,
plants seem to contrast sharply with animals in the frequency
of heteroplasmy in natural populations because of variation in

Table 1 The distribution of reported heteroplasmy in animals, plants and fungi
 

Heteroplasmy type 

Hybridization1 Phylogeography Paternal leakage Studies using PCR Without PCR Before 19893Length Site Unknown Total

Animals 56 18 6 80 11 (8 in lab) 30 15 (6 DUI)2 50 21 15
Plants 2 5 2 9 5 (4 in lab) 1 6 5 3 2
Fungi 2 1 10 13 9 (9 in lab) 1 11 1 12 5

1Number ‘in lab’ indicates heteroplasmy detected in laboratory-generated hybrids.
2‘DUI’ indicates heteroplasmy via doubly uniparental inheritance.
3Polymerase chain reaction (PCR) became widespread after 1988.
‘Heteroplasmy type’ refers to whether the heteroplasmy is caused by changes in genome length (‘Length’), point mutations (‘Site’), or unknown 
(‘Unknown’). ‘Hybridization’ shows the number of reports of heteroplasmy in each organismal type linked to hybridization. ‘Phylogeography’ 
represents the number of reports of heteroplasmy from phylogeographic studies for each organismal type. Finally, we present the number of 
reports of heteroplasmy in studies using PCR (‘Studies using PCR’), studies without PCR (‘Studies without PCR’), and in studies taking place 
before PCR was widespread (‘Before 1989’). Multiple reports of heteroplasmy within a single genus are lumped into one report or genus.
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tandem repeat number. Although tandem repeats are fairly
common in plant mtDNA (Sperisen 

 

et al

 

., 2001), our
literature survey of heteroplasmy in plants failed to uncover a
single example of intra-individual variation in tandem repeat
number. This is most likely a consequence of the infrequent
use of plant mtDNA for phylogeographic research (Städler &
Delph, 2002) where the majority of animal tandem repeat
heteroplasmy has been found (see the section ‘Study biases’
below).

Some discussion of mitochondrial heteroplasmy in plants is
associated with cytoplasmic male sterility (Maletskii, 1995;
Andersson, 1999), which may be a result of the fact that
sexual phenotypes of male-sterile and male-fertile mitochon-
dria are easily observed (see the section ‘Study Biases’ below).
Heteroplasmy has also been observed in a line of mutant
maize 

 

Zea mays

 

 heteroplasmic for a mitochondrial deletion
(Gu 

 

et al

 

., 1993; Yamato & Newton, 1999). However, most of
the studies examining and reporting heteroplasmy in plants
involve hybridization between different strains or species
(Table 1). Given the apparent slow rate of point mutation in
plant mtDNA (Wolfe 

 

et al

 

., 1987, but see Cho 

 

et al

 

., 2004),
this bias may be attributable to the assumption that hetero-
plasmy is unlikely to be observed within a single species.

Another source of heteroplasmy that is known only from
higher plants is the presence of mitochondrial genes on subg-
enomic molecules occurring at very low (‘substoichiometric’)
levels in cells. Plant mitochondrial genomes are distinguished
from those of animals and fungi by undergoing frequent
inter- and intramolecular recombination in areas of repeated
sequences (Abdelnoor 

 

et al

 

., 2003). This recombination can
produce small subgenomic molecules that contain only a
portion of the genome. Plants can maintain these subgenomic
molecules at very low frequencies over many generations, with
the phenotypic effects of their genes left unexpressed (Small

 

et al

 

., 1989). Interestingly, plants can then increase the copy
numbers of these subgenomic molecules to normal levels
over the course of a single generation, accompanied by the
phenotypic expression of these genes.

Substoichiometric shifting in mtDNA has been found in
wild 

 

Phaseolus

 

 species with an ancient, conserved cytoplasmic
male sterility gene located on subgenomic molecules (Arrieta-
Montiel 

 

et al

 

., 2001). In this system, the appearance of
females across taxa is associated with the amplification of
substoichiometric molecules containing the CMS gene. Ampli-
fication of a substoichiometric molecule and subsequent
recombination have also been proposed to explain a novel
duplication in maize 

 

Z. mays

 

 that is absent from its ancestor
(Small 

 

et al

 

., 1989). These molecules may present an important
mechanism for the widespread maintenance of heteroplasmy
in plants and a source of novel genotypes through nonhomolo-
gous recombination. However, given the difficulty of detect-
ing substoichiometric molecules with standard molecular
techniques, the prevalence of substoichiometric molecules in
nature is unknown.

 

Fungi

 

Heteroplasmy into later developmental stages seems to be
rare in most fungi (Hintz 

 

et al

 

., 1988), despite the fact that the
protoplasm fusion that accompanies sexual reproduction results
in heteroplasmic zygotes (Economou 

 

et al

 

., 1987; Matsumoto
& Futumasa-Nakai, 1996). In most cases, selection and
segregation in mitotic divisions following fusion mean that
heteroplasmy is quickly lost (Smith 

 

et al

 

., 1990). As mentioned
above, however, biparental inheritance of mitochondria
and persistent heteroplasmy have been documented (Kawano

 

et al

 

., 1987; Yang & Griffiths, 1993). In addition, heteroplasmy
of wild type and a number of different mitochondrial mutants
has been found in strains of 

 

Neurospora

 

 and 

 

Podospora

 

(Bertrand 

 

et al

 

., 1980; Bertrand 

 

et al

 

., 1985; Griffiths, 1992).
In these cases, the mutant mitochondria lack essential genes,
so cells either die as the mutant mitochondria eventually
replace wild-type mitochondria or survive as a result of
the maintenance of a low frequency of wild-type mitochondria
(see the section ‘Selfish elements’ above). Interestingly,
even cells that die because of a high frequency of mutant
mitochondria can maintain heteroplasmy in progeny lines by
transmitting the mutant mtDNA maternally before death
(Griffiths, 1992).

 

Animals

 

Length heteroplasmy is common in animals (Table 1;
reviewed in Lunt 

 

et al

 

., 1998), especially relative to plants and
fungi, and site heteroplasmy seems to be rare (e.g. Lansman

 

et al

 

., 1983; Meusel & Moritz, 1993; Taylor 

 

et al

 

., 2003; but
see Zhao 

 

et al

 

., 2004). The apparent scarcity of site hetero-
plasmy may be linked to the quick return to homoplasmy
during the bottlenecks that accompany transmission of mito-
chondria from parent to offspring (e.g. Poulton 

 

et al

 

., 1998;
Rand, 2001). In addition, there are substantial logistical
challenges to detecting heteroplasmy when the variant
genomes differ by no more than a few base pairs (Bermingham

 

et al

 

., 1986; Bendall et al., 1996; Ladoukakis & Eyre-Walker,
2004).

The role of hybridization

Many of the documented examples of persistent heteroplasmy
linked to paternal leakage in plants, animals and fungi involve
hybrids (e.g. Borkhardt & Olson, 1983; Kondo et al., 1990;
Yang & Griffiths, 1993; Kaneda et al., 1995; Laser et al.,
1997; Hattori et al., 2002; Kitagawa et al., 2002; Schwartz
& Vissing, 2002). The link among hybridization, paternal
leakage and heteroplasmy is not well understood. One possib-
ility is that the tagging of paternal mtDNA for subsequent
degradation, such as the ubiquitin labeling of mammalian
sperm, does not function properly in hybrid individuals. An
example of failure of ubiquitin labeling in a hybrid was
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recently reported from a cross between cow eggs and wild
guar sperm (Sutovsky et al., 1999). Another possible explana-
tion, at least in plants, for the relatively frequent detection
of paternal mtDNA and heteroplasmy in hybrid progeny
is that heteroplasmy stems not from paternal leakage but
from hybridization-induced amplification of paternal-like
mtDNA carried by the maternal parent in substoichiometric
quantities (Laser et al., 1997). Amplification of substoichio-
metric molecules is dependent on nuclear background in
maize Z. mays (Laughnan et al., 1981), and has been observed
in protoplast fusion experiments in other species (Morgens
et al., 1984; Morgan & Maliga, 1987; Ozias-Akins et al.,
1988).

A causal association between hybridization and hetero-
plasmy could have important evolutionary implications.
Specifically, there is a variety of empirical evidence suggesting
that the lineage sorting and drift that occur during uniparen-
tal mitochondrial transmission will quickly eliminate hetero-
plasmy (e.g. Birky, 1983; Koehler et al., 1991; Parsons et al.,
1997). This implies that heteroplasmy generated within a
species might be transient. Thus, hybridization (or doubly
uniparental reproduction) might be an important means by
which genetically divergent mitochondrial genomes can meet
and recombine. If this is the case, then hybrid zones may be
important locations for the generation of novel mitochondrial
haplotypes and mutational clearance.

Recombination

Even rare recombination can alleviate mutation accumulation
(Charlesworth et al., 1993), facilitate adaptive evolution (reviewed
in Hurst & Peck, 1996), and complicate the determination
of phylogeny (reviewed in Ballard & Whitlock, 2004).
Accordingly, a wide range of eukaryotic taxa, including many
plant and animal species and several species of fungi, have
been surveyed for the presence of recombinant mtDNA.
Most researchers now agree that plant mitochondrial genomes
undergo occasional recombination (Lonsdale et al., 1988;
Gillham, 1994; Birky, 2001; Städler & Delph, 2002;
Bergthorsson et al., 2003). There is even more evidence for
recombination in fungi (Taylor, 1986; Gillham, 1994; Saville
et al., 1998; Birky, 2001). In particular, a large body of data
provides confirmation that mitochondrial recombination
occurs readily in yeast (e.g. Dujon et al., 1974; Birky et al., 1982;
Taylor, 1986; MacAlpine et al., 1998). Fungi also contain
mitochondrial plasmids that can be transmitted paternally
(and even horizontally through somatic hyphae) and can move
in and out of mitochondrial genomes. This phenomenon
may increase the probability of gene transfer between gene-
tically distinct mitochondrial genomes (Yang & Griffiths,
1993).

Although animal mtDNA possesses the necessary machinery
for recombination (Pont-Kingdon et al., 1995; Thyagarajan
et al., 1996; Tang et al., 2000; Kajander et al., 2001), there is

little direct support for mitochondrial recombination (Birky,
2001; Elson et al., 2001; Innan & Nordborg, 2002; Ballard &
Whitlock, 2004; Berlin et al., 2004; Piganeau & Eyre-Walker,
2004). The few convincing examples of recombination
generally involve either bivalves with DUI (Zouros et al., 1992;
Ladoukakis & Zouros, 2001a; Passamonti et al., 2003) or
interspecific or interstrain hybrids (reviewed in Ballard &
Whitlock, 2004). There is one recent report of recombination
in humans (Kraytsberg et al., 2004) that has been interpreted
as definitive (Ladoukakis & Eyre-Walker, 2004). There is also
a growing body of indirect evidence pointing to the likelihood
of recombination in animal mtDNA (Ladoukakis & Zouros,
2001b; Piganeau et al., 2004; Gantenbein et al., 2005), but
this type of evidence has been treated with some skepticism
(Elson et al., 2001; Eyre-Walker & Awadalla, 2001; Piganeau
& Eyre-Walker, 2004).

Study biases

Patterns in the recorded incidences of heteroplasmy and
recombination may be influenced by study biases (Table 1).
One obvious example is the apparent link among hybridization,
paternal leakage and persistent heteroplasmy. Given the
established difficulty of detecting heteroplasmy (Gyllensten
et al., 1985; Milligan, 1992; Rokas et al., 2003) and recom-
bination (Posada & Crandall, 2001; Rokas et al., 2003) when
there is little divergence between mitochondrial genomes, the
connection between hybridization and heteroplasmy could
simply be a result of ease of detection (Ladoukakis & Zouros,
2001a; Passamonti et al., 2003; Rokas et al., 2003). If this
were the case, intraspecific paternal mitochondria genome
transfer may be more common than is generally supposed.
Polymerase chain reaction (PCR)-based methods, which are
now widely used, may reduce this detection bias.

A good example of the increased effectiveness of PCR in
detecting paternal transmission is provided by Gyllensten
et al. (1991). In this study, the authors used PCR to detect
paternal mitochondrial DNA present at extremely low fre-
quency in hybrid mice. The authors had used lower-resolu-
tion techniques in an earlier study (Gyllensten et al., 1985) of
the same cross, but failed to detect paternal mitochondrial
DNA. The success of this later study demonstrates that earlier
interpretations that paternal transmission (or low-frequency
heteroplasmy) is extremely rare may have been incorrect.

It should be noted that PCR will be helpful in detecting
heteroplasmic genomes at low frequency, particularly in those
cases in which paternal leakage is frequent but results in only
few mitochondria transmitted to progeny. In situations in
which paternal leakage occurs more rarely (even if the num-
bers of mitochondria leaked are high), a larger sample of
zygotes will be necessary to detect heteroplasmy (Birky,
2001). Similarly, plant mtDNA heteroplasmy produced by
substoichiometric subgenomic molecules may very well be
underreported because most standard molecular techniques
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do not detect mitochondrial haplotypes present at extremely
low copy number.

Mitochondrial variants may also lack obvious phenotypic
expression, which can hamper detection of mitochondrial
biparental inheritance and heteroplasmy. This may in part
explain why heteroplasmy underlying very visible pheno-
types of chloroplast mutants has been well documented
(Mogensen, 1996). Similarly, the observation of heteroplasmy
in plants with cytoplasmic male sterility (Maletskii, 1995;
Andersson, 1999) may be attributable to its unique and
obvious phenotypic expression.

Another potential source of bias is study effort. For exam-
ple, studies of mitochondrial inheritance in plants have largely
focused on crop and outcrossing species that may exhibit
reduced biparental inheritance (Reboud & Zeyl, 1994).
Similarly, the fact that the most common reports of nonhybrid-
associated heteroplasmy are from animals may also reflect
disproportionate study effort. Animal mtDNA may be the
focus of more study than plant or fungal mtDNA because of
the well-established links between mitochondrial mutations
and heteroplasmy, and human diseases and aging (Linnane
et al., 1989). MtDNA is also very commonly used for phylogeo-
graphic studies within animal species (reviewed in Avise,
2000; Table 1). In contrast, mtDNA is very rarely utilized
in intraspecific phylogeographical research in plants (Avise,
2000; Städler & Delph, 2002), and plant and fungal phylo-
geography has received much less attention than phylogeog-
raphy in animals (Avise, 1998; Bermingham & Moritz, 1998).
These marked differences in the degree of use of plant and
fungal mtDNA for medical studies and for intraspecific
phylogeography may explain both the apparent paucity of
tandem repeat heteroplasmy in plants and fungi relative to
animals and the disproportionate number of reports of heter-
oplasmy in plants and fungi linked to model species and
species of commercial importance.

Interestingly, detection of mitochondrial recombination
does not seem to be as obviously affected by biases in study
effort as is heteroplasmy. Despite the thousands of phylogeo-
graphical studies conducted using animal mitochondrial
DNA, there remain only a few convincing direct reports of
evidence for recombination. However, though controversy
remains, recent surveys of recombination in mtDNA increas-
ingly point to the likelihood of mtDNA recombination in a
wide variety of animal taxa (Ladoukakis & Zouros, 2001b;
Piganeau et al., 2004).

There is a general consensus than plant and fungal mito-
chondrial DNA do engage in occasional recombination. Data
pointing to recombination in these phyla have largely come
from cytological and molecular studies of model organisms, in
contrast to the heavy focus on phylogeography of natural
populations in animals. Perhaps the more frequent applica-
tion of techniques more commonly used for plant and fungal
mtDNA to animal mtDNA would reveal more definitive
evidence for or against recombination.

Implications of departure from homoplasmy, strict 
maternal inheritance, and no recombination for 
mutation accumulation and repression of selfish 
elements

Theory suggests that uniparental cytoplasmic inheritance
may be selectively favored by the host genome because it
counters the spread of selfish biparentally inherited organelles
or parasites (Grun, 1976; Cosmides & Tooby, 1981; Hoekstra,
1990; Law & Hutson, 1992; Hurst, 1996; but see Birky,
1995 and Whittle & Johnston, 2002). However, uniparental
inheritance also drastically reduces the opportunities for
heteroplasmy and recombination, leaving mitochondrial
genomes vulnerable to the accumulation of deleterious muta-
tions (Gabriel et al., 1993; Lynch, 1996).

Our review suggests that violations of uniparental inherit-
ance occur across plant, fungal and animal taxa, and may
influence many evolutionary processes involving mtDNA.
Here, we consider the evolutionary implications of occasional
biparental transmission, heteroplasmy, and recombination
with regard to the accumulation of deleterious mutations
and the spread of selfish elements. We suggest that low, but
nonzero amounts of biparental mitochondrial transmission
may allow organisms to achieve the best of both worlds in
terms of facilitating genetically relevant recombination and
mutational clearance, but still maintaining selfish element
control (also see Rispe & Moran, 2000).

Mitochondrial recombination and mutation 
accumulation

Theory suggests and empirical evidence demonstrates that
occasional genetic recombination is required to clear deleter-
ious mutations from a lineage (Charlesworth et al., 1993;
Poon & Chao, 2004). The connection between recombination
and maintenance of genome integrity has led to the prediction
that allegedly asexual mitochondrial genomes should be
plagued with mutation accumulation (Lynch, 1996, 1997).

This prediction has found some support in a series of
papers indicating that nonsynonymous mutations in the
mitochondrial genome accumulate at an accelerated rate
relative to the nuclear genome across animals, plants and fungi
(Lynch, 1996, 1997; Lynch & Blanchard, 1998). However,
mitochondrial genomes remain functional and integral to
fitness (Burton et al., 1999; Rand, 2001; Christie et al., 2004).
In addition, there is evidence for relaxed selection on male-
expressed relative to female-expressed mitochondrial genes.
These data suggest that the fitness of female-expressed
mitochondrial traits is maintained effectively through selection
(Frank & Hurst, 1996; Ruiz-Pesini et al., 2000). A relevant
question, also raised by other researchers (e.g. Birky, 1995;
Bergstrom & Pritchard, 1998; Rand, 2001), is how mito-
chondrial genomes stay healthy, especially if recombination
seems to be absent.
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Perhaps the most likely scenario is that mtDNA does
undergo recombination, but in a manner or on a scale that
often escapes detection. Given the well-established difficulty
of detecting rare recombination between similar sequences
(Maynard Smith, 1999; Posada & Crandall, 2001; Wiuf,
2001), recombination may happen much more frequently
than currently assumed.

This might be particularly likely given that the low rate of
recombination required to counter mutation accumulation
(Charlesworth et al., 1993) may fall well below the current
threshold of detection of methodologies for identifying
mitochondrial recombination (M. Neiman and D. R. Taylor,
unpublished). Moreover, there are additional mechanisms
apart from mtDNA recombination that may provide an effec-
tive means of mutational clearance (Bergstrom & Pritchard,
1998; Martin & Herrmann, 1998; Rispe & Moran, 2000;
Willett & Burton, 2003). Even if mutations are accumulating
in mitochondrial genomes, the rate of accumulation is slow
enough that severe fitness losses will occur on a time scale of
tens of millions of years (Lynch & Blanchard, 1998). Mutation
accumulation may thus not be a serious immediate problem
for the integrity and function of mitochondrial genomes
(Lynch & Blanchard, 1998).

Suppression of selfish elements

Uniparental inheritance is commonly thought to evolve as a
nuclear trait countering the negative effects of selfish organellar
genomes or cytoplasmic parasites (Grun, 1976; Cosmides &
Tooby, 1981; Hoekstra, 1990; Hastings, 1992; Law & Hutson,
1992; Hurst, 1996) by reducing the within-host variance and
opportunities for competitive advantage of selfish elements
(Frank, 1996; Rispe & Moran, 2000). This raises the question
of whether low levels of biparental inheritance may also
substantially reduce the selfish element control that uniparental
inheritance provides. We argue that it does not. If we assume
that selfish mitochondrial mutants realize a transmission
advantage by a competitive advantage within heteroplasmic
cells, then the magnitude of biased transmission becomes
vanishingly small as heteroplasmy becomes increasingly rare.
Moreover, the transmission advantage realized during an
episode of biparental transmission would need to more than
offset cell-level selection against the element until the next
episode of biparental transmission. In contrast, the same
rare biparental transmission may generate opportunities for
recombination with enough frequency to oppose mutational
processes such as Muller’s ratchet.

In essence, the two processes operate on two different
orders of magnitude; selfish elements require a high enough
frequency of biparental transmission and heteroplasmy to gain
a transmission advantage before being lost by drift, whereas
mutational clearance can occur with very little recombination
(Charlesworth et al., 1993). Thus, we suggest that the small
amounts of biparental inheritance of mitochondria and

subsequent heteroplasmy that appear to be present in plants,
fungi and animals are almost certainly too low to reduce the
effectiveness of uniparental inheritance in selfish element
control (also see Randerson & Hurst, 1999), and may even be
a symptom of the minimal threat that selfish elements pose.

Whether occasional biparental inheritance is a mechanical
accident or an adaptation to facilitate mutational clearance
remains unknown. On the one hand, it seems likely that vio-
lations of strict uniparental inheritance are inevitable, analo-
gous to the assumed impossibility of perfect DNA repair and
replication. In this case, mutational clearance may be a lucky,
unselected byproduct of imperfect enforcement. On the other
hand, if leakage leads to recombination that is beneficial to
genomes, it, like recombination per se, may be subject to selection.

Conclusions

Plants, animals and fungi are all characterized by the presence
of different mechanisms at the genome replication, meiotic,
and mitotic stages to prevent the transmission of paternal
mtDNA. However, despite these mechanisms, paternal trans-
mission has been repeatedly recorded across all of these taxa.

While animals, plants and fungi may differ in the extent to
which heteroplasmy occurs, and in the mechanisms whereby
it is both achieved and resolved, this review indicates that
there are some important similarities. In general, we find that
site heteroplasmy is rarely detected except when it is linked to
hybridization, and hybridization may prove to be an impor-
tant facilitator of heteroplasmy and recombination. In
addition, we find that many instances of site heteroplasmy are
attributable to paternal leakage. Length heteroplasmy seems
to be common in animals but rare in plants and fungi. Plants
are distinguished from the other taxa in that they may maintain
heteroplasmy over many generations through the presence
of substoichiometric subgenomic molecules, and experience
the rapid phenotypic expression of heteroplasmic genomes
through expansion of substoichiometric molecules to normal
levels. It is not at all clear why plant mitochondrial genomes
have this property and no cogent evolutionary explanation
has been forthcoming in the literature. We also find that unin-
tentional biases in the use of methodologies and study systems
may contribute to significant underdetection of paternal leakage,
heteroplasmy, and recombination, as well as misrepresen-
tation of the distribution of these phenomena across taxa.

We bring these findings together to suggest that low but
nonzero levels of biparental transmission, heteroplasmy and
recombination may facilitate mutational clearance in mtDNA,
but are likely to be rare enough that the control of the spread
of selfish elements is not severely compromised.
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