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Abstract

The capacity to respond to environmental challenges ultimately relies on

phenotypic variation which manifests from complex interactions of genetic

and nongenetic mechanisms through development. While we know some-

thing about genetic variation and structure of many species of conservation

importance, we know very little about the nongenetic contributions to var-

iation. Rhizophora mangle is a foundation species that occurs in coastal

estuarine habitats throughout the neotropics where it provides critical eco-

system functions and is potentially threatened by anthropogenic environ-

mental changes. Several studies have documented landscape‐level patterns

of genetic variation in this species, but we know virtually nothing about the

inheritance of nongenetic variation. To assess one type of nongenetic var-

iation, we examined the patterns of DNA sequence and DNA methylation in

maternal plants and offspring from natural populations of R. mangle from

the Gulf Coast of Florida. We used a reduced representation bisulfite
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sequencing approach (epi‐genotyping by sequencing; epiGBS) to address the

following questions: (a) What are the levels of genetic and epigenetic di-

versity in natural populations of R. mangle? (b) How are genetic and epi-

genetic variation structured within and among populations? (c) How

faithfully is epigenetic variation inherited? We found low genetic diversity

but high epigenetic diversity from natural populations of maternal plants in

the field. In addition, a large portion (up to ~25%) of epigenetic differences

among offspring grown in common garden was explained by maternal fa-

mily. Therefore, epigenetic variation could be an important source of

response to challenging environments in the genetically depauperate popu-

lations of this foundation species.

KEYWORD S

coastal ecosystems, conservation genomics, epigenetic inheritance, foundation species,

mangrove

1 | INTRODUCTION

Preserving the ability of populations to respond to en-
vironmental challenges is critical to conservation efforts.
This ability ultimately depends on phenotypic variation
(Björklund et al., 2009; Henn et al., 2018; Norberg
et al., 2001). Conserving genetic variation has been
championed by numerous researchers studying con-
servation in recent decades to ultimately preserve these
phenotypic options (Allendorf et al., 2012). However, the
focus on genetic variation must be interpreted with
caution (Hufford & Mazer, 2003) considering the mis-
placed emphasis on the concept that only variation in
DNA sequence matters (Bonduriansky & Day, 2018;
Keller, 2002, 2014; Sultan, 2015). In fact, Sultan (2015)
argued that as modern biologists our task is to restore the
context dependence of gene expression and trait varia-
tion. This task has become particularly relevant in the
context of anthropogenic alterations to natural ecosys-
tems. In the framework of re‐evaluating the mapping of
genotype to phenotype (Keller, 2014; Pigliucci, 2010), we
can now use the concepts of Evo‐Devo to explore phe-
notypic plasticity and genetic and nongenetic structure
within populations, as well as examine how these pro-
cesses are impacted by climate change (Campbell
et al., 2017).

Natural epigenetic variation (e.g., alterations to DNA
methylation, small RNAs, and chromatin remodeling)
has been associated with phenotypic and functional di-
versity in plants, emerging both as a molecular‐level
mechanism underlying phenotypic plasticity and as a
potentially important nongenetic source of heritable
variation (Balao et al., 2018; Banta & Richards, 2018;

Cortijo et al., 2014; Medrano et al., 2014; Zhang
et al., 2018). There is increasing evidence that suggests
that environmentally‐induced epigenetic variation can be
heritable, particularly in plants (e.g., Herrera et al., 2017;
Richards et al., 2012; Verhoeven et al., 2010) but this
contention is not universally supported (reviewed in
Richards & Pigliucci, 2020). This source of variation may
be imperative for sessile organisms, and for organisms
with limited dispersal ability, as they cope with a broad
range of environmental conditions without the ability to
migrate away from stressors (Balao et al., 2018; Dodd &
Douhovnikoff, 2016). Further, rapid phenotypic altera-
tions mediated by epigenetic mechanisms may be espe-
cially important for persistence in dynamic ecosystems
that face significant natural environmental variation as
well as anthropogenic impacts, such as those in
coastal and alpine regions (Burggren, 2016; Jueterbock
et al., 2020; Neinavaie et al., 2021; Nicotra et al., 2015).

Much of what is presently known about the func-
tionality of epigenetic variation predominantly comes
from studies of model organisms (Balao et al., 2018;
Niederhuth & Schmitz, 2017; Richards et al., 2017). For
instance, epigenetic differences in Arabidopsis thaliana

have been linked to heritability in flowering time and
primary root length (Cortijo et al., 2014), response to
temperature (Kawakatsu et al., 2016), and biotic stressors
(Dowen et al., 2012) reviewed in Zogli and Libault (2017).
Additionally, inheritance of environmentally induced
epigenetic variation has been observed in A. thaliana

(Blevins et al., 2014; Lang‐Mladek et al., 2010), as well as
in several crop species (Bilichak et al., 2015; De Kort
et al., 2020; Li et al., 2014) and dandelions (Verhoeven
et al., 2010). However, our understanding of how
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epigenetic variation behaves in a variety of species and
ecological contexts is growing (Mounger et al., 2021;
Neinavaie et al., 2021; Richards & Pigliucci, 2020;
Richards et al., 2017). Common garden studies of
non‐model plant species have elucidated changes in
DNA methylation that are associated with community
composition (van Moorsel et al., 2019), responses to
temperature and nutrient stress (Nicotra et al., 2015;
Verhoeven et al., 2010), and inheritance of induced re-
sponses (aka transgenerational plasticity; Herman &
Sultan, 2016; Puy, Carmona, et al., 2021; Puy, de Bello,
et al., 2021; Shi et al., 2018). Moreover, methylation dif-
ferences in natural plant populations have been asso-
ciated with response to habitat (Foust et al., 2016; Gáspár
et al., 2019; Jueterbock et al., 2020; Lira‐Medeiros
et al., 2010; Schulz et al., 2014; Xie et al., 2015), biotic
interactions (e.g., herbivory; Herrera & Bazaga, 2011);
reviewed in Alonso et al. (2019), hybridization and
allopolyploidization (Mounger et al., 2021; Salmon
et al., 2005; Sehrish et al., 2014) and domestication (Chen
et al., 2020). However, other studies have shown that
epigenetic changes could be explained by single genetic
mutations, and several authors have argued that epige-
netic variation is largely explained by genetic variation
(Becker et al., 2011; Dubin et al., 2015; Sasaki
et al., 2019).

Understanding the mechanisms of response in foun-
dation species has become increasingly important for
conservation and management strategies. Work in foun-
dation species supports the idea that these species dis-
proportionately contribute to maintaining habitat integrity
and ecosystem resilience (Ellison, 2019; Keith et al., 2017;
Bertness 2020; Qiao et al., 2021). In coastal ecosystems,
foundation species must cope with several anthropogenic
impacts of habitat destruction and global climate change
(Alongi, 2008; Osland et al., 2013; Osland, Day,
et al., 2017; Osland, Griffith, et al., 2017). Worldwide,
mangrove forests perform significant ecosystem services
including buffering storm surges and tidal wave action,
reducing erosion, sequestering an estimated 34.4 Tg of
carbon per year (Mcleod et al., 2011), and providing
habitat for economically important marine fauna
(Alongi, 2008). These forests also play important roles in
nutrient and sediment dynamics that are integral to the
ecosystem processes of several marine systems, notably
coral reefs and seagrass flats (Alongi, 2008; Polidoro
et al., 2010). Despite their importance, the distribution and
persistence of mangrove tree species are threatened by
historic and current land‐use change as well as by pollu-
tion from agriculture and urban runoff, sewage effluents,
hazardous materials spills, and other contaminants from
human activities (Ellison et al., 2015). Evidence has sug-
gested that populations of many mangrove species have

moved along the intertidal zone and poleward at
pace with changes in sea level, reduced incidence of
winter frost, and a variety of other abiotic conditions
(Alongi, 2008; Osland, Day, et al., 2017). The mechanisms
that allow for this migration are not well understood
(Osland et al., 2013; Osland, Griffith, et al., 2017) and
coastal development poses a significant barrier to the
species' ability to colonize landward (Polidoro et al., 2010;
Schuerch et al., 2018) (reviewed in Godoy & de
Lacerda, 2015).

To date, broad surveys of genetic diversity across the
expansive ranges of mangrove species are lacking, and
virtually no studies have directly addressed the im-
portance of nongenetic variation for the persistence of
coastal plant species (but see Foust et al., 2016; Lira‐
Medeiros et al., 2010; Robertson et al., 2017; Spens &
Douhovnikoff, 2016). Genetic variation in the red man-
grove, Rhizophora mangle L., has been investigated in
various geographic regions to assess patterns of evolution
(Duke et al., 2002), hybridization and introgression
(Cerón‐Souza et al., 2010), genetic population, and sub-
population structure (Albrecht et al., 2013; Arbeláez‐
Cortes et al., 2007; Bruschi et al., 2014; Cerón‐Souza
et al., 2010; Chablé Iuit et al., 2020), and range expansion
in response to climate change (Kennedy et al., 2017;
Sandoval‐Castro et al., 2012). R. mangle populations vary
tremendously in genetic variation across their range. For
example, populations along the Pacific Coast of the
Americas have greater genetic diversity than those
sampled elsewhere within their range (Arbeláez‐
Cortes et al., 2007; Bruschi et al., 2014; Cerón‐Souza
et al., 2012). Other studies also suggest that R. mangle

populations are not well connected through gene flow
(i.e., panmictic; Pil et al., 2011)). Instead, they tend to form
somewhat isolated groups, particularly at range ends and
in areas of limited tidal flow (Kennedy et al., 2017;
Sandoval‐Castro et al., 2012).

In this study, we used the reduced representation
bisulfite sequencing approach epigenotyping by sequen-
cing (epiGBS; van Gurp et al., 2016)) to measure genetic
and DNA methylation differentiation among red man-
grove populations near the northern limit of this species
in the Tampa Bay region. We took advantage of the
unusual biology of R. mangle that allows for collecting
viviparous propagules that are still attached to the ma-
ternal plant. From six populations we collected leaves
from maternal trees and their offspring propagules to
answer the following questions: (a) What are the levels of
genetic and epigenetic diversity in natural populations of
R. mangle? (b) Are genetic and epigenetic variation
structured among populations of this species in the wild?
(c) To what extent does epigenetic variation in the off-
spring correlate with the maternal plants?
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2 | MATERIALS AND METHODS

2.1 | Study species

The red mangrove, R. mangle L. 1753 (Malpighiales,
Rhizophoraceae), is an estuarine tree species present
along the tropical and subtropical coasts of the Americas,
eastern Africa, Bermuda, and a handful of outlying is-
lands in the South Pacific (DeYoe et al., 2020; Proffitt
& Travis, 2014; Tomlinson, 2016). Rhizophora mangle

typically grows in the intertidal regions of sheltered
coastlines, but can also be found in estuaries, tidal
creeks, and occasionally along the edges of hypersaline
salt pans (DeYoe et al., 2020; Duke et al., 2002). It is a
dominant mangrove species across its range, including
along peninsular Florida (DeYoe et al., 2020). Like other
mangrove species, R. mangle functions as a foundation
species by altering environmental conditions, providing
nursery grounds for numerous fish species, and serving
as a crucial primary producer within tropical and sub-
tropical estuarine environments (Ellison, 2019; Ellison
et al., 2005; Proffitt & Travis, 2005).

R. mangle is a monoecious, self‐compatible species
(Nadia & Machado, 2014). Pollination in this species is
mediated by both insects and wind (ambophilous pollen
dispersal), which has been shown to effectively promote
outcrossing and long‐distance gene flow, but these out-
crossing events are thought to be rare (Cerón‐Souza
et al., 2012). R. mangle produces viviparous propagules
that mature for up to 6 months on maternal trees to
lengths of 15–20 cm (DeYoe et al., 2020; Goldberg &
Heine, 2017). These propagules have considerable long-
evity at sea, surviving up to 3–4 months in the water
column allowing a great potential for long‐distance dis-
persal through ocean current transportation (Duke
et al., 2002; Rabinowitz, 1978). However, propagules fre-
quently recruit either directly underneath or within short
distances of maternal trees (Goldberg & Heine, 2017;
Sengupta et al., 2005; Sousa et al., 2007). Maximum tidal
action via king tides and major weather events may be
required to move propagules significant distances
(Goldberg & Heine, 2017).

2.2 | Field sampling

We sampled six populations of R. mangle between June 9
and June 26, 2015, in the west coast of central Florida
(USA) within the following county and state parks: An-
clote Key Preserve State Park (AC), Fort De Soto Park
(FD), Honeymoon Island State Park (HI), Upper Tampa
Bay Conservation Park (UTB), Weedon Island Preserve
(WI), and Werner‐Boyce Salt Springs State Park (WB)

(Figure 1). At each population, we collected leaf tissue
and 20 propagules directly from each of 10 maternal trees
separated by at least 10 m from each other to maximize
the range of genetic variation sampled within each
population (Albrecht et al., 2013). With this design,
propagules from each maternal tree were at least half‐
siblings but they could be more closely related due to the
reported high selfing rate of R. mangle in the study area
(Proffitt & Travis, 2005). We maintained leaf tissue of
maternal trees on ice until transported to the Richards
laboratory at the University of South Florida and then
stored samples at −80°C (N= 60). We refrigerated the
propagules at 4°C for up to 14 days until we planted them
in the greenhouse at the University of South Florida
Botanical Gardens. In the greenhouse, propagules from
four of the maternal trees at AC and nine of the maternal
trees at FD failed to establish, so we returned to sample
propagules and maternal tissue from 8 new maternal
trees at FD on August 12 and 29, and from the same
original maternal trees at AC on October 17.

We planted propagules in 0.5 L pots with a 50:50
mixture of sand and peat soil and grew them for
9 months in the greenhouse at 18–29°C as part of a large
common garden experiment designed to assess propagule
response to salinity (15 ppt and 45 ppt reflecting the

FIGURE 1 Map of six collection sites (aka populations) within

the greater Tampa Bay region (FL, USA) generated in ArcGIS. We

collected Rhizophora mangle leaves and propagules from ten

maternal trees in Werner‐Boyce Salt Springs State Park (WB),

Anclote Key Preserve State Park (AC), Honeymoon Island State

Park (HI), Upper Tampa Bay Conservation Park (UTB), Weedon

Island Preserve (WI), and Fort De Soto Park (FD)
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range of salinity measured in the field populations) and
nitrogen (N) (no N amendment and high N, amended at
approximately 3mg N per pot each week, which is
equivalent to a rate of 75 kg N per hectare per year;
Langanke, 2017). The experiment was set up in five
spatial blocks. Within each block we randomized the
position of plants such that each block had one replicate
of each family for each treatment combination (i.e., a full
factorial randomized complete block design with N= 6
populations × 10 maternal families × 4 treatment combi-
nations × 5 blocks ×~1 replicate/block = 1150 plants;
Langanke, 2017; Richards et al., 2021).

We watered all plants daily with tap water until
propagules were planted and established for several
weeks. In mid‐October, we started applying treatments
twice per week. Replicates of some families were not
represented in all five blocks due to limitations in the
number of viable propagules. We sampled one block of
plants per day between 2 and 7 May 2016, storing leaf
tissue from each plant in paper envelopes, which we
dried in large glass containers with silica gel desiccant
beads (N = 841 plants with leaves at the end of the
experiment, ranging from 97 to 183 offspring per po-
pulation). For the current study, we wanted to assess
inheritance of epigenetic variation. Since epigenetic
variation can be induced by environmental variation,
we only used plants from the low salinity, no nitrogen
amendment treatment for the epigenetic analysis
(N = 158).

2.3 | Laboratory methods

For genetic and epigenetic analyses, we isolated total
genomic DNA from a total of 247 samples, including
60 maternal trees from the field and 187 offspring grown
in the greenhouse. The 187 individuals represented
46 maternal families across the six populations (5–10
families per population). We increased replication of
some families for genetic (not epigenetic) diversity ana-
lyses with 29 plants that had received either high salt or
high nitrogen treatments. By population, in the final
group of samples that made it through the filtering pro-
cess these 29 samples included AC (3 of 10 individuals),
FD (5/47), HI (3/19), UTB (8/49), WB (4/24), WI (6/38)
(Table S1).

To prepare the epigenotyping‐by‐sequencing
(epiGBS) libraries, we disrupted approximately 80mg of
leaf tissue using stainless steel beads in a Qiagen Tis-
sueLyser II. Then, we extracted the DNA using the
Qiagen Dneasy Plant Mini Kit following the manu-
facturer instructions with slight modifications that in-
cluded an extended lysis step, a post‐extraction clean‐up

with Buffer AW2, and elution in molecular grade water.
The final concentration of DNA was quantified using the
Qubit 3.0 Fluorometric dsDNA BR assay kit (Life
Technologies).

We prepared libraries for epiGBS following the methods
outlined in van Gurp et al. (2016). In brief, we digested
400 ng of genomic DNA from each sample with the
methylation‐sensitive restriction enzyme PstI, and ligated
methylated, non‐phosphorylated barcoded adapters to the
resulting fragments. The barcoded adaptors were designed
so that we can identify forward (“Watson”) and reverse
(“Crick”) strands for each fragment within each individual.
Having the strand information allows for differentiating
between C/T polymorphisms and methylation polymorph-
isms because we can recreate when unmethylated cytosines
were present in either strand before bisulfite treatment (for
details see van Gurp et al., 2016).

We concentrated the libraries (NucleoSpin™ Gel and
PCR Clean‐up Kit), and size selected the fragments using
0.8× SPRI beads (Agencourt AMPure XP; Beckman
Coulter). We performed nick translation, bisulfite con-
verted the fragments (EZ Lightning methylation kit;
Zymo Research), and performed polymerase chain reac-
tion amplification with the KAPA HIFI Uracil+ Hotstart
Ready Mix (Roche). Finally, we quantified the libraries
using the Qubit dsDNA assay kit, pooled them with
equimolar concentrations (each sequenced library con-
sisted of 96 multiplexed samples), and assessed their
quality by analyzing 1 µl on a High Sensitivity DNA chip
using an Agilent 2100 Bioanalyzer. We prepared libraries
and sequenced paired‐end reads of the 60 maternal plant
samples and 36 randomly chosen offspring at the
University of Florida Interdisciplinary Center for Bio-
technology Research on one lane of the Illumina HiSeq.
3000 (2 × 150 bp) in February 2017. In August 2017, we
prepared separate libraries for an additional 151 offspring
and sequenced them at Novogene (HK) Company Lim-
ited in Hong Kong on two lanes of the Illumina HiSeq
X‐Ten System (2 × 150 bp): one lane contained 96 off-
spring samples, a second lane held 55 offspring samples
along with 40 samples of another species prepared with
the same protocol for another study (Ceratodon purpur-

eus; Boquete et al., unpublished).

2.4 | Data processing

We processed the raw sequencing files using the pipe-
line provided by van Gurp et al. (2016) as in van
Moorsel et al. (2019), available on https://github. Com/
thomasvangurp/epiGBS, with a bug‐fix modification
(i.e., described in Gawehns et al., 2020); https://github.
com/MWSchmid/epiGBS_Nov_2017_fixed). Briefly, we
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demultiplexed, quality trimmed sequencing reads, and
removed the barcode sequences, then used the pro-
cessed reads for de novo reference construction. We
mapped the reads to the de novo reference and called
strand‐specific single nucleotide polymorphisms (SNPs)
and methylation polymorphisms (SMPs). De novo re-
ference sequences were annotated with DIAMOND
(protein coding genes; NCBI nonredundant proteins as
reference; version 0.8.22; Buchfink et al., 2015) and
RepeatMasker (transposons and repeats; Embryophyta
as reference species collection; version 4.0.6; Smit
et al., 2013–2015)). This annotation was used to classify
the genetic variants (SNPs) and epigenetic variants
(SMPs) into the different genomic features including
genes, repeats, and transposons.

SNPs and SMPs were filtered to include only loci with
a minimum coverage of five (i.e., five sequencing reads
mapping to each locus) and a maximum coverage of
10,000 within each individual and across at least five
individuals with a maximum coverage of 10,000 in at
least five samples per population and sample type (ma-
ternal trees and offspring). First, samples with read
coverage <5 and >10,000 were considered missing va-
lues. Then, we removed SNPs and SMPs that were not
present in at least five individuals per population and
sample type. Second, samples for which fewer than 60%
of the SNP or SMP sites passed this filter were removed.
This removed 59 samples from the original design, one
maternal tree from FD, and 58 offspring spread across
populations. The final design includes 59 maternal trees
and 129 offspring (between 7 and 39 offspring per po-
pulation from 3 to 10 maternal trees per population;
Table S1). Third, we repeated the first filtering step using
the original SNP and SMP datasets and the final design
which resulted in 48,964 SMPs and 62,944 SNPs present
in at least 51% of the samples, and evenly spread across
populations and sample types.

2.5 | Data analysis

We separated each of the filtered SNP and SMP datasets
into two distinct datasets comprising maternal trees and
offspring respectively. Thus, all analyses were performed
on the maternal trees and on the offspring datasets
separately. We did not directly compare both datasets
due to the fact that the resulting filtered datasets from
the maternal trees and the offspring did not overlap for
the most part, reflecting technical differences in sample
storage between the maternal trees and the offspring (i.e.,
frozen vs. dry), and that their libraries were prepared and
sequenced at different times. All the analyses were per-
formed in R version 3.5.1 (R Core Team, 2020).

All statistical analyses were done in the complete
maternal tree data set from the final design (N= 59
maternal trees from six populations × 9–10 maternal
trees per population). For the offspring data set, we
performed population‐level analyses on the full offspring
data set from the final design (N= 129 offspring in-
dividuals from six populations = 7–39 offspring per po-
pulation), whereas analyses including the family
predictor were done on a subset of the final design that
included only families with at least three members, and
populations with more than one family (i.e., N= 90 off-
spring individuals across 24 families × 3–6 offspring per
family, from 5 populations: 8 FD, 2 HI, 4 UTB, 3 WB, and
7 WI families) (Table S1).

2.5.1 | Genetic analyses

We characterized genetic variation at the population
(maternal trees, N= 59; offspring, N= 129) and family
(offspring subset, N= 90) levels. We estimated (i) allelic
richness (i.e., rarefied mean number of alleles per locus
within each population/family; function allelic.richness
from hierfstat package—Goudet, 2005); (ii) the propor-
tion of fixed loci (as the proportion of alleles with a
minor allele frequency—MAF—equal to 1; MAF esti-
mated with the function minorAllele from adegenet—
Jombart, 2008); and (iii) the mean and standard deviation
of observed gene diversity, and heterozygosity per locus
(function basic.stats within hierfstat which is based on
(Nei, 1987). We used SNPs with no missing values:
49,706, 885, and 6912 SNPs in maternal trees, offspring,
and offspring subsets, respectively. We also estimated
overall observed heterozygosity, mean within‐population
genetic diversity, total genetic diversity across popula-
tions, total among‐population genetic diversity, and
overall population differentiation for each data set with
the function basic.stats. We were unable to estimate in-
breeding coefficients with our data due to the limited
number of polymorphic SNPs since (Goudet et al., 2018)
report that at least 1000 polymorphic markers are
required.

We tested for genetic differentiation within and
among populations of R. mangle using several methods.
With the maternal trees data, we tested for differentiation
among populations with three different approaches.
First, we used an analysis of molecular variance (AMO-
VA) within the function poppr.amova in poppr (Kamvar
et al., 2014) and the model y ~ population. To test the
significance of the model we ran a randomization test
with 999 permutations on the output of the AMOVA
using the function randtest from the ade4 package (Dray
& Dufour, 2007). Second, we obtained overall Fst and
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pairwise Fst values using the functions wc and genet.dist,
respectively from the package hierfstat, and calculated
the confidence intervals of the pairwise Fst values using
the function boot.ppfst, from the same package, with 999
permutations to determine whether Fst values were sig-
nificantly different from zero, that is, to find evidence of
significant population differentiation. Finally, we calcu-
lated the G‐statistic using the function gstat.rand test
with 999 simulations implemented in the package
hierfstat. To reduce computation time of the gstat.rand
test analysis, we randomly subsampled 3000 from 49,796
SNPs with no missing values for the maternal trees.
Finally, to identify SNPs that could be under selection,
we tested for outliers with bayescan (version 2.1, Fischer
et al., 2011; Foll & Gaggiotti, 2008). SNPs were identified
as significant if the false discovery rate (FDR; Benjamini
& Hochberg, 1995) was below 0.05.

For the offspring data, we tested for differentiation
among families (i.e., among maternal trees) within po-
pulations and among populations (N= 90). As with the
maternal tree data set, we performed an AMOVA with
the model: y ~ population + family (population). We also
completed overall and pairwise Fst as well as G‐statistics
analyses using all 3786 SNPs with no missing values for
the offspring data set.

We quantified the relationship between genome‐wide
genetic variation and population of origin in the case of
the maternal trees, and population and family in the case
of the offspring (N= 90), using redundancy analysis
(RDA). RDA is an ordination technique that summarizes
the main patterns of variation in the response matrix,
that is, the scaled allele frequency matrix created from
the SNP data (obtained using the function scaleGen from
adegenet with NA.method set to “mean”), which can be
explained by our explanatory variables, that is, popula-
tion (for the maternal trees) or population and family (for
the offspring). We used the function rda implemented
within the vegan package (Oksanen et al., 2017) to fit the
following models:

1) maternal trees allele frequency matrix ~ population;
2) offspring allele frequency matrix ~ population+ family.

We tested the significance of the variation explained
by our explanatory variables using a Monte Carlo per-
mutation test with 999 permutations and obtained ad-
justed R2 using the function RsquareAdj from the vegan
package. We corrected p values for multiple testing using
the false discovery rate (“fdr”) method implemented with
the p.adjust function in the base package of R.

All analyses were also run on a second set of data
where we removed SNPs that were not in Hardy‐
Weinberg equilibrium (function hw.test from the

pegas package—Paradis, 2010), based on (Guo &
Thompson, 1992) and SNPs with a MAF ≤1%. The results
of these analyses are presented in Tables S2–S5.

2.5.2 | Epigenetic analyses

For both maternal trees (N= 59) and offspring plants
(N= 90), we calculated the DNA methylation level at
each SMP and individual sample as the number of reads
mapping to one position showing evidence of methyla-
tion divided by the total number of reads mapping to that
position. Then, we calculated mean and standard devia-
tion of DNA methylation for each sequence context (CG,
CHG, CHH) and across all contexts for each population
(maternal trees and offspring) and for each family (off-
spring), as well as the proportion of fixed loci for no
methylation (i.e., methylation level ≤5% across ≥95% of
the samples) and for full methylation (i.e., methylation
level ≥95% across ≥95% of the samples) for each data set.

We used a multivariate test for homogeneity of dis-
persions to estimate epigenetic diversity, that is, variation
in DNA methylation levels, for the maternal trees and
offspring datasets following the approach of Anderson
et al. (2006), which measures the average distance from
each individual to their group centroid in a multivariate
space using a dissimilarity measure. In line with this
interpretation, we argue that the distance from each in-
dividual sample to its population centroid in a multi-
variate space generated using an epigenetic distance
matrix provides an estimate of the extent of the variation
in DNA methylation, that is, epigenetic variation. Then,
the average distance of each population can be compared
to look for significant differences in the amount of epi-
genetic variation among populations. To do so, we gen-
erated pairwise epigenetic distance matrices for maternal
trees and offspring by calculating the average difference
in DNA methylation level across all cytosines between
each pair of samples. Then, we used this matrix to cal-
culate the distance between each individual sample and
its population centroid using the function betadisper
from the vegan package. We tested for differences in
dispersion among populations using a permutation‐based
test of multivariate homogeneity of group dispersions on
the output of betadisper with 9999 permutations. When
this test was significant, we used Tukey's Honest sig-
nificant difference test to check which populations dif-
fered in their average distance to the centroid, that is, in
their levels of epigenetic variation. Finally, to compare
genetic and epigenetic diversity levels, we used this ap-
proach to calculate the distance from each sample to its
population centroid using genetic distance matrices.
Genetic distances were calculated as the average distance
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of all per‐SNP differences between two individuals. For
each SNP, the distance was set to 0 if both alleles were
identical, 1 if both alleles were different, and 0.5 if one
allele was different.

We tested for differences in overall DNA methylation
levels, that is, the average percent DNA methylation per
individual, and its standard deviation. We calculated
average and standard deviation of percent DNA methy-
lation for each separate sequence context (i.e., CG, CHG,
and CHH) or across all sequence contexts, and then we
used a general linear model (functions lm and ANOVA)
to test for significant differences among populations
(maternal trees data) or among populations and families
nested within populations (offspring data).

To assess the effect of population (for the maternal
trees), and population and family (for the offspring) on
genome‐wide epigenetic variation, for each separate se-
quence context (i.e., CG, CHG, and CHH) or across all
sequence contexts, with and without accounting for their
genetic structure, we used RDA and partial constrained
RDA, respectively. Partial constrained RDA allows for
“conditioning” the analysis of epigenetic variation with
genetic data which we summarized with principal com-
ponent analysis (PCA). The use of the “family” term in
this analysis represents a composite of the maternal ge-
netic and nongenetic contributions to the offspring epi-
genetic patterns since this term is not simply defined by
maternal sequence patterns. Instead, the “family” term is
a categorical representation such that data for the pro-
pagules is explained by the association with the maternal
tree more generally.

For the RDA, we used only SMPs with complete data,
that is, no missing values across samples: 41,164 (3416 in
CG, 10,432 in CHG, and 27,316 in CHH) for maternal
trees and 9038 SMPs (766 in CG, 2549 in CHG, and 5723
in CHH) for offspring. As with the genetic analyses, we
only used families with at least three members, and po-
pulations with more than one family. First, we sum-
marized the genetic data into principal components
(PCs). We used the first 13 PCs for the maternal trees
data which combined explained ~31% of the genetic
variation in each of the three contexts. For the offspring,
we used 12, 13, and 12 PCs for CG, CHG, and CHH
contexts respectively which explained 31%, 30%, and 31%
of the variation, respectively. Then, we ran the three
following models to predict DNA methylation in the
maternal trees:

1) maternal trees DNA methylation matrix ~ population;
2) maternal trees DNA methylation matrix ~ PCs from

maternal trees genetic data;
3) maternal trees DNA methylation matrix ~ popula-

tion+Condition (PCs frommaternal trees genetic data).

We ran five similar models to predict DNA methy-
lation in the offspring plants:

1) offspring DNA methylation matrix ~ population;
2) offspring DNA methylation matrix ~ family;
3) offspring DNA methylation matrix ~ PCs from off-

spring genetic data;
4) offspring DNA methylation matrix ~ population +

Condition (PCs from offspring genetic data);
5) offspring DNAmethylation matrix ~ family +Condition

(PCs from offspring genetic data).

As for the genetic data, we tested the significance of
the variation explained by our explanatory variables
using a Monte Carlo permutation test and obtained ad-
justed R2, and adjusted p values for multiple testing using
the FDR method.

To test how much of the epigenetic (methylation) dif-
ferentiation could be attributed to differences among popu-
lations, and how much of the epigenetic variation was
associated with the populations after controlling for differ-
ences in sequence variation physically linked to the epige-
netic variation, we modeled the average DNA methylation
level of each 50–250 bp long fragment in response to the
sequence context (CTXT), the population (POP) and its in-
teraction with context (CTXT:POP), and the genotype of the
fragment (GENO) and its interaction with context
(CTXT:GENO) fitted in this order (percent methylation ~
CTXT+POP+CTXT:POP+GENO+CTXT:GENO). We
then compared this result to an alternative model in which
GENO and POP and their interactions with CTXT
were switched (percent methylation ~ CTXT+GENO+
CTXT:GENO+POP+CTXT:POP). We ran these models in
R with the function ANOVA() that uses type‐I (i.e., se-
quential) tests.

Therefore, the first model tests for epigenetic differ-
entiation between populations irrespective of the un-
derlying sequence differences, and the second model
tests whether there was epigenetic differentiation be-
tween populations that could not be explained by the
underlying DNA sequence. For the offspring, we used
similar models but further included the family term. We
only used fragments which passed the coverage filters
described above. We used the functions lm and ANOVA
in R (version 3.6.1). Results from all reference sequences
were collected and p values for each term were adjusted
for multiple testing by the FDR method (Benjamini &
Hochberg, 1995). As noted previously (van Moorsel
et al., 2019), this model is a good proxy for close‐cis as-
sociations. However, given that it does not account for
far‐cis or trans associations, it tends to overestimate the
proportion of epigenetic variation that is unlinked to
genetic variation.
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Finally, we identified differentially methylated cyto-
sine positions (DMPs) between pairs of populations for
the maternal trees and the offspring datasets using the
dispersion shrinkage for sequencing data (DSS) package
in (Park & Wu, 2016) and adjusted for false discovery
with FDR. This package models the DNA methylation
level at each position within each group using a beta‐
binomial distribution with arcsine link function, and
then performs Wald tests to detect differential methyla-
tion between groups at each position. Many studies have
shown that DMPs are not as likely to influence function
as methylation differences across large chromosomal
stretches (DMRs). However, DMRs are difficult to define
even in whole genome studies and the short fragments
that results from epiGBS libraries are typically <250 bp,
contain only a few cytosine positions, and prevent sta-
tistical confidence for calling DMRs (Paun et al., 2019;
Richards et al., 2017).

3 | RESULTS

3.1 | Population genetics

A high percentage of the loci were fixed (i.e., MAF= 1) in
the maternal tree data set (62%), whereas this percentage
was lower in the offspring (12% and 15% in the offspring
grouped by population and family, respectively). We
found low levels of genetic diversity among populations,
with observed gene diversity values per locus ranging
between 0.009 and 0.012 and heterozygosity between
0.010 and 0.014 for the maternal trees. These values
ranged between 0.039–0.050 and 0.050–0.064 for the
offspring when grouped by population, and between
0.023–0.051 and 0.025–0.056 for the offspring when
grouped by family (Table 1). Mean allelic richness aver-
aged 1.1, 1.2, and 1.1 for the maternal trees, offspring
by population, and offspring by family respectively
(Table 1). Overall genetic diversity across populations
and families was also low, with values of 0.010,
0.045, and 0.037 for the maternal trees, offspring by po-
pulation, and offspring by family respectively, and most
of this diversity was found within populations/families
(Table 2).

We used three methods to examine genetic structure
of the maternal trees, which all provided evidence of
significant genetic differentiation among field popula-
tions of R. mangle. The randomization test performed
on the output of the AMOVA was highly significant
(Table 3), similar to the Monte Carlo permutation test
carried out on the output of the RDA (Table 4), and the
test on the significance of the G‐statistic (G‐stat = 39.9;

p= 0.048). Yet, the amount of variation explained by the
population of origin was very low. According to the
AMOVA, the bulk of the genetic variance is found within
(99.4%) rather than among (0.63%) populations. Simi-
larly, the RDA showed that population explains only
0.14% of the genetic variation. We found evidence for
significant genetic differentiation between all population
pairs except AC‐HI and UTB‐WI (Figure 2a), the overall
Fst was extremely low (0.003) and pairwise Fst values
ranged between 0.0005 (UTB‐WI) and 0.0081 (WB‐WI;
Figure 2a).

We visualized the genetic data by means of PCA
using the complete SNP data set as well as the 5% most
differentiated SNPs, finding that a clear separation
among populations was only possible when using the
5% most differentiated loci (Figures 3 and Figure S1).
We found that the significant genetic differentiation
among maternal trees of R. mangle yielded by our sta-
tistical analyses was principally due to the distinctness
of WB, and possibly of HI, from the rest of the popu-
lations. The separation of WB from all other popula-
tions was also reflected in the higher pairwise Fst values
between WB and the others (Figure 2a). Finally, our
analysis yielded 277 SNPs showing significant signs of
differences among maternal trees of R. mangle collected
in the field. The 277 SNPs were located in 111 different
sequence fragments, out of which 26 had a high se-
quence similarity to known genes (descriptions in
Table S9). Many of these (i.e., 9) were characterized as
“hypothetical” or uncharacterized proteins. The re-
maining included calcium‐transporting ATPase, puta-
tive adenylate kinases, or phosphatases.

Results of the genetic analyses on the offspring are
similar to that found for the maternal trees; the AMOVA
showed significant genetic differentiation among families
but this predictor explained only 1% of the genetic var-
iance. The majority of the variance was found within
families (99%) and population did not significantly ex-
plain any proportion of the genetic variation of the off-
spring (Table 2). On the contrary, the RDA model with
population and family did not explain any of the varia-
tion of the offspring genetics (Table 4). The G‐tests for
differentiation between families within populations were
significant in two out of five tested populations (WI: G‐
stat = 171.6, p= 0.001, UTB: G‐stat = 131.5, p= 0.005).
Again, the overall Fst value was very low (0.022)
and pairwise Fst ranged between −0.0023 and 0.0515
(Figure 2b).

The results of the genetic analyses carried out on the
set of data where we removed SNPs that were not in
Hardy‐Weinberg equilibrium and SNPs with a MAF ≤1%
were similar (Tables S2–S5).
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TABLE 1 Number of alleles (percent of total alleles), allelic richness (i.e., average number of alleles per locus) and mean and standard

deviation (SD) of observed gene diversity (Hs) and observed heterozygosity (Ho) per locus for each population (maternal trees and offspring

by population) and for each family within population (offspring by family) of Rhizophora mangle (sample sizes shown in parentheses)

Pop/Fam No alleles

Allelic

richness Mean Hs SD Hs Mean Ho SD Ho

Maternal trees AC (10) 54,498 (80) 1.09 0.012 0.044 0.014 0.068

FD (9) 53,880 (79) 1.08 0.011 0.045 0.013 0.067

HI (10) 54,341 (79) 1.08 0.011 0.043 0.013 0.066

UTB (10) 53,316 (78) 1.07 0.009 0.041 0.011 0.066

WB (10) 53,495 (78) 1.07 0.010 0.041 0.011 0.065

WI (10) 52,967 (77) 1.06 0.009 0.041 0.010 0.065

Overall (59) 68,431

Offspring by pop. AC (7) 1078 (65) 1.22 0.048 0.111 0.056 0.155

FD (39) 1448 (87) 1.23 0.050 0.098 0.064 0.169

HI (12) 1156 (70) 1.21 0.047 0.103 0.055 0.148

UTB (25) 1268 (76) 1.17 0.041 0.098 0.050 0.159

WB (16) 1200 (72) 1.20 0.045 0.102 0.057 0.166

WI (30) 1276 (77) 1.17 0.039 0.097 0.055 0.176

Overall (129) 1662

Offspring by fam. FD11 (4) 7957 (62) 1.12 0.043 0.106 0.046 0.127

FD14 (3) 7694 (60) 1.11 0.040 0.115 0.045 0.142

FD15 (4) 8004 (63) 1.12 0.044 0.105 0.048 0.131

FD16 (4) 8057 (63) 1.13 0.047 0.109 0.051 0.136

FD17 (5) 8231 (64) 1.12 0.045 0.099 0.049 0.124

FD18 (4) 8086 (63) 1.13 0.048 0.109 0.053 0.138

FD19 (4) 8178 (64) 1.14 0.051 0.112 0.056 0.139

FD5 (5) 8083 (63) 1.11 0.040 0.094 0.042 0.118

HI2 (4) 7674 (60) 1.09 0.031 0.094 0.033 0.110

HI9 (3) 7591 (59) 1.10 0.036 0.110 0.039 0.132

UTB11 (3) 7544 (59) 1.09 0.033 0.106 0.037 0.132

UTB2 (3) 7377 (58) 1.07 0.026 0.101 0.025 0.111

UTB6 (3) 7643 (60) 1.11 0.038 0.111 0.043 0.139

UTB9 (5) 7672 (60) 1.07 0.026 0.081 0.030 0.112

WB4 (3) 7591 (59) 1.10 0.035 0.109 0.039 0.133

WB6 (3) 7625 (60) 1.10 0.038 0.115 0.039 0.130

WB7 (4) 7652 (60) 1.08 0.030 0.092 0.035 0.122

WI1 (3) 7585 (59) 1.10 0.035 0.107 0.040 0.137

WI10 (4) 7703 (60) 1.09 0.032 0.093 0.037 0.124

WI2 (4) 7451 (58) 1.06 0.023 0.082 0.025 0.108

WI4 (3) 7580 (59) 1.10 0.035 0.107 0.040 0.137

WI5 (5) 7899 (62) 1.09 0.033 0.087 0.038 0.120

WI6 (3) 7518 (59) 1.09 0.032 0.104 0.035 0.128
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3.2 | Population epigenetics

A large proportion of the SMPs in the maternal tree data
set were fixed for no methylation (71% of the SMPs across
all contexts in the whole data set; ranging between
57% and 67% individually for each population;
Table 5A and 5B), and a small proportion were fixed for
full methylation (1.2% of the SMPs across all contexts in
the whole data set; ranging between 2.1% and 2.9% in-
dividually for each population; Table 5A and 5B). The
proportion of fixed SMPs was lower in the offspring
which showed <1% of fixed SMPs for no methylation
across all contexts in the whole data set and between
0.4% and 27% individually for each population, and ~1%
of fixed SMPs for full methylation across all contexts in
the whole data set and between 2.1% and 6% individually
for each population (Table 5A and 5B).

DNA methylation across all contexts was around 9%
for all populations in the data set for the maternal trees
whereas for the offspring this value ranged between 11%
and 17% (Table S6). Similarly, DNA methylation levels in
CG, CHG, and CHH contexts were close to 28%, 23%, and
1% respectively for all populations in the data set for the
maternal trees and slightly higher in the offspring
(29%–33%, 25%–30%, and 4%–9% for CG, CHG, and CHH
contexts respectively in the data grouped by population
and 29%–38%, 25%–34%, and 3%–15% for CG, CHG, and
CHH contexts respectively in the data grouped by family;

Table S6). The standard deviation of DNA methylation
levels averaged 26%, 25%, and 27% across all contexts for
the maternal trees, offspring by population and offspring
by family respectively, and 39%, 38%, and 40% in the CG
context, 41%, 39%, and 40% in the CHG context, and 1%,
6%, and 10% in the CHH context, for the maternal trees,
offspring by population and offspring by family respec-
tively (Table S6). The average distances from each sample
to its population centroid estimated as a proxy of the
amount of epigenetic variation range between 0.02 and
0.03 in the maternal trees and between 0.05 and 0.08 in
the offspring (Figure 4). The tests for homogeneity of
multivariate dispersions were significant for both the
maternal trees and the offspring datasets (F= 23.5,
p< 0.001; F= 16.0, p< 0.001, respectively) revealing sig-
nificant differences in the levels of epigenetic diversity
among populations in both datasets. The multiple pair-
wise comparisons within each data set showed that these
differences were due to the greater epigenetic diversity
found in WB in the maternal trees. In the offspring, FD,
HI, and WB showed higher levels of epigenetic diversity
than UTB and WI (Figure 4). The average distances to
centroid estimated with the genetic data were an order of
magnitude lower for the mothers (ranging between 0.007

TABLE 1 (Continued)

Pop/Fam No alleles

Allelic

richness Mean Hs SD Hs Mean Ho SD Ho

WI7 (4) 7808 (61) 1.10 0.036 0.098 0.041 0.129

Overall (88) 12,773

Note: Overall number of alleles is also presented for each data set. Calculated based on SNPs with no missing values (49,706, 885, and 6912 SNPs for maternal

trees, offspring by population and offspring by family, respectively).

Abbreviation: SNP, single nucleotide polymorphism.

TABLE 2 Overall observed heterozygosity (Ho), mean within‐

population genetic diversity (Hs), total genetic diversity across

populations (Ht), total among‐population genetic diversity (Dst),

and overall population differentiation (Gst) for each data set based

on single nucleotide polymorphisms (SNPs) with no missing

values (49,706, 885, and 6912 SNPs for maternal trees, offspring by

population and offspring by family, respectively)

Ho Hs Ht Dst Gst

Maternal trees 0.0120 0.0103 0.0103 0.0000 0.002

Offspring by pop. 0.0561 0.0450 0.0454 0.0003 0.007

Offspring by fam. 0.0403 0.0365 0.0368 0.0003 0.007

Note: Measures based on Nei (1987).

TABLE 3 Analysis of molecular variance (AMOVA) carried

out on the maternal trees and offspring datasets separately

Sigma % ϕ

Maternal trees

Among populations 1.6789 0.629 0.0063***

Within populations 265.40 99.37

Offspring

Among populations 0.0684 0.016 0.0002ns

Among families 4.4994 1.026 0.0103***

Within families 433.95 98.96 0.0104***

Abbreviations: %, percentage of genetic variance found among and within

the predictor (population or family); ϕ, estimate of the extent of genetic

differentiation among populations; sigma, amount of genetic variance found

among and within the predictor (population or family); ns, not significant.

***p< 0.001; p< 0.001.
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TABLE 4 Results of the redundancy analysis (RDA) showing the percentage of genetic and epigenetic variance explained by population

(in maternal trees data set), and population and family (in offspring data set) with and without adjusting for the variance explained by the

genetic component

Data set Context model df F value

% var. expl.

(adj. R2)

Maternal trees – MG ~ population 5 1.016** 0.139

Overall ME ~ population 5 1.232** 1.96

ME ~ population + Condition (PCs_MG) 5 1.178** 1.92

CG ME ~ population 5 1.330** 2.77

ME ~ population + Condition (PCs_MG) 5 1.274** 2.97

ME ~PCs_MG 12 0.868ns –

CHG ME ~ population 5 1.122** 1.04

ME ~ population + Condition (PCs_MG) 5 1.080ns –

ME ~PCs_MG 12 0.923ns –

CHH ME ~ population 5 1.110** 0.94

ME ~ population + Condition(PCs_MG) 5 1.052ns –

ME ~PCs_MG 12 1.051ns –

Offspring – OG ~ population 4 0.992ns –

Overall OE ~ population 4 1.605** 2.6

OE ~ population + Condition (PCs_OG) 4 1.528** 2.8

CG OE ~ population 4 2.346** 5.7

OE ~ population + Condition (PCs_OG) 4 1.506** 2.2

CHG OE ~ population 4 1.478** 2.1

OE ~ population + Condition (PCs_OG) 4 2.058** 5.4

CHH OE ~ population 4 1.469** 2.5

OE ~ population + Condition (PCs_OG) 4 1.435** 2.3

– OG ~ family 23 1.012ns 0.286

Overall OE ~ family 23 1.264** 6.4

OE ~ family + Condition (PCs_OG) 23 2.092** 5.7

CG OE ~ family 23 1.193** 26.99

OE ~ family + Condition (PCs_OG) 23 2.092** 25.50

OE ~PCs_OG 12 0.737ns –

CHG OE ~ family 23 1.131** 3.28

OE ~ family + Condition(PCs_OG) 23 1.088* 2.71

OE ~PCs_OG 12 0.54ns –

CHH OE ~ family 23 1.112** 2.82

OE ~ family + Condition (PCs_OG) 23 1.076* 2.32

OE ~PCs_OG 12 0.653ns –

Note: The output of the Monte Carlo permutation test (F value and significance) is also shown.

Abbreviations: Context, sequence context for DNA methylation; df, degrees of freedom. % var. expl. (adj. R2), percent of variance explained as the R2 adjusted

for multiple comparisons; MG, maternal trees genetic matrix; ME, maternal trees epigenetic matrix; ns, not significant; PCs_MG, matrix of principal

components summarizing the maternal trees genetics; PCs_OG, matrix of principal components summarizing the offspring's genetics.

**p< 0.01, < 0.01, *p< 0.05, < 0.05.
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FIGURE 2 Pairwise Fst values between field populations of Rhizophora mangle in the maternal tree data (a), and between families

within populations in the offspring data (b). Bold underlined values indicate significantly genetically differentiated population/family pairs,

that is, Fst values different from 0 [Color figure can be viewed at wileyonlinelibrary.com]
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and 0.01), and between 2.5× and 4× times lower for the
offspring (data not shown).

The linear models that test for differences in average
DNA methylation levels and standard deviation in DNA
methylation showed that population of origin sig-
nificantly explains 75% of the variation on average and
52% of the variation in standard deviation for the ma-
ternal trees if data from all sequence contexts were used.
Within individual contexts, the numbers were similar but
there was no significant association between population
of origin and average DNA methylation in the CG con-
text (Table S7). Among the offspring, the family term
significantly explained 79% of the variation in average
and 74% of the variation in standard deviation if data
from all sequence contexts were used. At least half could
be attributed to differences between population (47% of
the variation in average and 37% of the variation in
standard deviation). Within individual sequence con-
texts, the results were similar for the average DNA me-
thylation levels. However, the association between
population of origin and variation in standard deviation
in CG and CHG context were not significant (Table S7).

The RDA analysis on the effect of population (for the
maternal trees), and population and family (for the off-
spring) on genome‐wide epigenetic variation showed that
epigenetic variation is significantly structured in both
datasets. Population significantly explained 1.96% of the
total epigenetic variation across all sequence contexts in
the maternal trees and 2.6% of the epigenetic variation in
offspring; family explained 6.4% of the total epigenetic
variation across all sequence contexts in the offspring.
Additionally, population explained 2.77%, 1.04%, and
0.94% of the epigenetic variation in CG, CHG, and CHH
respectively for the maternal trees (Table 3). For the
offspring, family explained a greater percent of epigenetic

variation with 26.99%, 3.28%, and 2.82% in CG, CHG, and
CHH respectively against the 5.7%, 2.1%, and 2.5% in CG,
CHG, and CHH respectively explained by population
(Table 3).

The partial RDA in which the same models were
conditioned on the maternal and offspring genetic data
(based on PCs) showed similar results for the effect of
population in maternal trees (explaining 1.92% of the
variation) and offspring (2.8%), and of the family term in
the offspring (5.7%; Table 3) across all sequence contexts.
However, when examining each context separately for
the maternal trees, the effect of population only remains
significant in the CG context and explains 2.97% of the
variation (Table 3). For the offspring, both population
and family remain significant in all contexts after ac-
counting for the offspring's genetic component; popula-
tion explains similar levels of the variation in CG, CHG,
and CHH contexts respectively, while family explains
25.5%, 2.7%, and 2.3% of the variation in CG, CHG, and
CHH contexts, respectively. The genetic component does
not significantly explain any of the epigenetic variation in
either the maternal or the offspring data or across all
contexts and each sequence context separately (Table 3).

The differential methylation analysis with DSS com-
paring DNA methylation levels at individual cytosines
between pairs of populations yielded between 0.02% and
1.1% significantly differentially methylated cytosines in
the maternal trees and between 0.1% and 4.5% significant
cytosines in the offspring (Table S10). For maternal trees,
we found that the most pronounced differences were
between WB versus WI (1.13% significant Cs) and be-
tween WB versus UTB (1.08% significant Cs). We found
almost no differences between AC versus FD, HI, UTB,
and between UTB versus FD, HI, WI (≤0.05% significant
Cs). Most of the annotated DMPs were located in genes

FIGURE 3 Visualization of the genetic structure of the maternal trees of Rhizophora mangle using only the 5% of the most differentiated

SNPs based on Jost's D with a principal component analysis (the 95% percentile in the entire data set, Jost 2008). Only SNPs without any

NAs were used. Data were scaled with the function adegenet::scaleGen() and the PCA was done with the function adegenet::dudi.pca()

without further centering and scaling. Each dot represents one maternal tree; labels with the population identifiers represent each

population centroid. See also Figure S1 for similar depiction of genetic structure of offspring and epigenetic structure in maternal trees and

offspring. PCA, principal component analysis; SNP, single nucleotide polymorphisms [Color figure can be viewed at wileyonlinelibrary.com]
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(23% on average), and only few of them were located in
repeats and transposons (on average, 7% and 2% respec-
tively); in general, the number of DMPs tended to be
higher in the CHH context (Table S10). In the offspring,
we found the higher number of significant Cs were be-
tween WI versus FD (4.5%), WI versus HI (2.7%), and
UTB versus HI (1.8%). We found that the smallest dif-
ferences in the offspring were between UTB versus FD,
WB, WI and between FD versus WB (between 0.1% and
0.8% significant Cs). Similar to the data set for the
maternal trees, most of the annotated DMPs between

populations in the offspring were located in genes (27%
on average vs. 1% of DMPs in both repeats and trans-
posons), and the number of DMPs tended to be higher in
the CHH context (Table S10). Comparing family pairs in
the offspring resulted in between 0.4% and 14.7% sig-
nificant Cs. On average, family pairs differed significantly
in 3.3% of all cytosines. We found the greatest differences
between family WB6 and all other 23 families (between
10.2% and 14.7% significant Cs; Table S10). We listed
gene annotations of these DMPs in Tables S11–S13.

We detected individual fragments in which the epi-
genetic variation was unlinked to sequence variation on
the same reference fragment (i.e., in close‐cis). In the
maternal trees, we found that population and its inter-
action with the sequence context (POP & CTXT:POP)
could explain differences in DNA methylation in 19.3% of
all fragments (FDR< 0.05). However, if the terms testing
for population were fitted after the factor accounting for
the sequence of the fragments (GENO & CTXT:GENO),
only 5.9% of all fragments were still significant for POP &
CTXT:POP indicating that differences in these fragments
could not be explained by the underlying sequence dif-
ferences in close‐cis. In the offspring, POP & CTXT:POP
was significant for 82.7% of all fragments if fitted first. In
addition, terms testing for differences between families
(MOTHER & CTXT:MOTHER) were also significant for
68.2% of all fragments. Notably, even if GENO &
CTXT:GENO was fitted first, POP & CTXT:POP and
MOTHER & CTXT:MOTHER were significant in 60.5%
and 45.8% of all fragments, respectively.

4 | DISCUSSION

Conservation biologists strive to preserve biodiversity
and face the enduring challenge of doing so in the con-
text of changing environmental conditions. While the
capacity to respond to environmental challenges ulti-
mately relies on phenotypic variation, deciphering the
mechanisms that contribute to phenotypic variation is a
challenging task that requires a better understanding of
the complex interactions of genetic and nongenetic me-
chanisms. DNA methylation has been associated with
regulation of gene expression (and therefore phenotype)
in some contexts, and has been proposed to contribute to
phenotypic variation, particularly in populations with
low genetic diversity (Douhovnikoff & Dodd, 2015;
Mounger et al., 2021; Richards et al., 2017; Verhoeven &
Preite, 2014). Investigating biodiversity at these different
molecular levels can contribute to our understanding of
response in foundation species like mangroves, which
inhabit dynamic coastal landscapes and are constantly
under threat from various anthropogenic challenges.

TABLE 5 Number and proportion (within parentheses) of

fixed cytosine positions for no methylation (fixed unmeth Cs,

0% methylation) and full methylation (fixed fullmeth Cs, 100%

methylation)

Context

Fixed

unmeth Cs

Fixed

fullmeth Cs

(A)

Maternal

trees (N= 59)

total 29,099 (70.7) 510 (1.24)

CG 1547 (45.3) 30 (0.88)

CHG 6224 (59.7) 480 (4.6)

CHH 21,328 (78.1) 0

Offspring

(N= 90)

total 7 (0.08) 88 (0.97)

CG 0 3 (0.39)

CHG 0 25 (0.98)

CHH 7 (0.12) 60 (1.05)

(B)

Pop. fixed

unmeth Cs

fixed

fullmeth Cs

maternal

trees (N= 59)

AC 25,072 (60.9) 856 (2.1)

FD 26,041 (63.3) 1196 (2.9)

HI 26,410 (64.2) 1123 (2.7)

UTB 26,590 (64.6) 937 (2.3)

WB 23,328 (56.7) 1058 (2.6)

WI 27,387 (66.5) 1061 (2.6)

Offspring

(N= 90)

FD (33) 32 (0.4) 316 (3.5)

HI (7) 1239 (13.7) 540 (6.0)

UTB (14) 2452 (27.1) 546 (6.0)

WB (10) 441 (4.9) 314 (3.5)

WI (26) 559 (6.2) 185 (2.1)

Note: (A) across all samples within each data set (maternal trees and

offspring) and (B) for each population (Pop.) within each data set (maternal

trees and offspring) based on SMPs without missing values (41,164 and 9038

SMPs for the maternal trees and offspring, respectively). The proportions for

each context refer to the number of fixed cytosines with respect to the total

number of cytosines in that context.

Abbreviation: single methylation polymorphisms.
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While most mangrove species are not considered to
be threatened, habitat loss continues to be a serious
threat, with current average annual rates of loss of 1%–2%
(Alongi, 2008; Polidoro et al., 2010; Triest et al., 2021).
The resultant loss of diversity could pose risks for these
coastal foundation species in the future, particularly as
sea levels are projected to rise between 0.2 and 2m over
the next century due to anthropogenic climate change
(Melillo et al., 2014). Populations of R. mangle around
Tampa Bay are near the species northern limit, dictated
largely by periodic freezing events (Kennedy et al., 2017).
In addition, they could be more vulnerable to changing
conditions due to increased isolation and reduced genetic
diversity resulting from inbreeding, limitations in dis-
persal ability, and increased environmental pressures
(Kennedy et al., 2017; Polidoro et al., 2010; Sandoval‐
Castro et al., 2012). Our study confirmed that these po-
pulations had low genetic diversity, but we also found
that differences among populations explained very little
of the variation. In fact, genetic diversity was so low that
we were unable to accurately estimate inbreeding (i.e.,
this requires at least 1000 highly polymorphic markers
according to Goudet et al. (2018). Although it is difficult
to compare absolute levels of epigenetic to genetic var-
iation, there was significant epigenetic variation. Differ-
ences among populations explained more of the variation
in epigenetic variation than genetic variation for both the
maternal trees and offspring. Maternal family explained
the largest percentage of the variation in epigenetic

variation in the offspring plants. This pattern of DNA
methylation in the offspring plants suggests that propa-
gules maintain some level of epigenetic variation
inherited from the maternal plant or maternal environment
even when they are grown under common garden condi-
tions, which could have important implications for how
these propagules can respond to environmental challenges.

4.1 | Red mangrove population genetics

High levels of diversity in both heterozygosity and allelic
number have been reported from populations of
R. mangle along the Pacific coast of Nicaragua (Bruschi
et al., 2014), and Colombia (Arbeláez‐Cortes et al., 2007).
However, Pil et al. (2011) determined that genetic di-
versity was lower in Brazil. They also found considerable
genetic structuring between the northern and southern
Brazilian populations, possibly resulting from the last
glacial period (Pil et al., 2011). Studies at the current
range edge have also reported much lower levels of di-
versity (Kennedy et al., 2017; Polidoro et al., 2010;
Sandoval‐Castro et al., 2012). In our study, we found
overall low levels of diversity, and that most of the ge-
netic variation was found within populations and even
more so within families. This type of genetic structure
follows from the known levels of inbreeding of the spe-
cies followed by some mixing of the populations through
the limited dispersal of propagules (Francisco et al., 2018;

FIGURE 4 Distance from each individual sample to its corresponding population centroid calculated using epigenetic distance matrices

for the maternal trees (a) and offspring datasets (b). Lines within the violin plots mark the 25%, 50,% and 75% quartiles of the distribution;

letters inside the graphs summarize the results of the multiple pairwise comparisons where populations sharing letters do not differ

significantly in epigenetic diversity; red stars: average distance to centroid for each population [Color figure can be viewed at

wileyonlinelibrary.com]
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Pil et al., 2011). Although differences among populations
explained very little of the genetic variation, almost all
pairwise comparisons showed significant fine scale ge-
netic differentiation except for the AC to HI and UTB to
WI comparisons. The lack of differentiation specifically
between these pairs of populations might be explained by
spatial proximity and propagule dispersal. UTB and WI
are the only two populations sampled that are within the
mouth of the bay. AC and HI are both barrier islands that
are geographically close to one another and therefore
have a conceivably greater chance for dispersal between
these two islands than between other populations.

A study by Albrecht et al. (2013) provides insight for
interpreting our findings in the context of the larger
range of the species, since they compared genetic di-
versity among Florida and Caribbean populations. They
found high genetic structuring among the populations,
and that populations from the Gulf Coast of Florida had
much higher structuring compared to those along the
Atlantic Coast, suggesting that there is limited gene flow
along the Gulf Coast and across to other parts of the
species range, including the Caribbean islands and
throughout Florida (Albrecht et al., 2013). They suggest
that genetic structuring and loss of genetic diversity in
some populations are related to habitat loss via human
development (e.g., the Atlantic Coast of Florida has ex-
perienced more extensive habitat loss than the Gulf
Coast). While our findings of minimal genetic diversity
among populations run contrary to those in Albrecht
et al. (2013), this could in part be explained by significant
urbanization and resultant habitat loss in the Tampa
Bay region. Habitat shifts from Spartina alterniflora‐

dominated salt marshes to mangrove forests followed
early 20th century anthropogenic activities such as
dredging and mosquito ditching in the region (Jackson
et al., 2021. These events may also partially explain our
findings as founder effects could have accompanied re-
cent mangrove colonization.

Our findings of limited genetic variation in R. mangle

are similar to other studies in this part of the species
range, but contrast with several other foundation coastal
species of the southeastern USA., which are outcrossing
grasses or rushes that exhibit much higher levels of ge-
netic diversity. Studies on native southeastern US S.

alterniflora populations have reported diversity levels
that are comparable to other outcrossing grasses, despite
the fact that this species also spreads prolifically by clonal
reproduction (Foust et al., 2016; Richards et al., 2004;
Robertson et al., 2017; Zerebecki et al., 2021). Tumas
et al. (2019) found greater genetic diversity in Gulf of
Mexico than Atlantic coast populations of the salt marsh
dominant (potential foundation species) plant Juncus

roemerianus, but like in R. mangle, measures of genetic

diversity varied dramatically across the range. The au-
thors suggest this could be the result of differences in
plant community and disturbance regimes or reflect a
relationship with population size.

4.2 | Population epigenetics

The limited genetic diversity in these populations of
R. mangle might be cause for concern considering the
important ecosystem functions provided by this founda-
tion species (Ellison, 2019; Ellison et al., 2005), but what
really matters is how the species can maintain pheno-
typic response to challenging environments. Our com-
mon garden studies revealed that these populations
maintain extensive variation in traits and variation
in response to salinity and nitrogen treatments
(Langanke, 2017; Richards et al., 2021). Like in several
other studies of coastal foundation species, we found
epigenetic variation was high in R. mangle (based on test
for dispersion; see also Foust et al., 2016; Hardaway
et al., 2020; Jueterbock et al., 2020; Lira‐Medeiros
et al., 2010; Robertson et al., 2017, 2020). Further, this
variation was significantly associated with population for
both maternal trees and offspring plants, and even more
significantly associated with family for the offspring
plants. Although using a categorical family term in the
analysis does not allow for prescribing effects specifically
to the mother's genetic, epigenetic, or other nongenetic
contributions to the offspring epigenetic matrix, the fa-
mily term does represent a holistic contribution from the
maternal tree to offspring and in our study explains the
largest portion of the variation (approximately 6% overall
and 25% of the variation in the CG context). This pro-
vides some of the first evidence for epigenetic inheritance
in a coastal foundation species.

This finding that CG methylation was best explained
by maternal tree is somewhat surprising in the frame-
work of findings from other studies. Within A. thaliana

and among species, methylation levels vary in all three
contexts, but the differences were reported to be the least
in CG context, with ~3× as much variation in CHG, and
~5× in CHH contexts (Dubin et al., 2015; Niederhuth &
Schmitz, 2017). On the contrary, Schmid et al. (2018)
reported that variation was greatest in the CG context
followed by CHG and CHH in recombinant inbred lines
of the cross between the A. thaliana accessions Cvi and
Landsberg. They also reported that differences between
selected and ancestral lines were mostly found in CG,
which would support the idea that methylation in CG is
more heritable (i.e., that CHG and CHH are more prone
to be reset). CG methylation has long been associated
with transcription, and particularly with silencing when
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found in the promoter region or 5′‐end of genes (Paun
et al., 2019). In some plants, CG methylation is common
in exons of genes that are moderately and broadly ex-
pressed, and not associated with silencing. Considering
the limitations of our RRBS approach, further study and
more in depth bisulfite sequencing will be required to
link the methylation changes we found to function in R.

mangle (Paun et al., 2019; Richards et al., 2017).
While it has been established that genetic variation can

have considerable effects on epigenetic variation (Becker
et al., 2011; Dubin et al., 2015; Sasaki et al., 2019), we
found significant epigenetic structure in both maternal
trees and offspring that could not be explained by the
genetic sequence (i.e., genetic variation in close cis) of the
fragments. Instead, population of origin explained more of
the variation in DNA methylation than for sequence var-
iation. This finding was true not only in the field collected
plants, but also in the propagules grown in a common
garden. Several other studies have found that epigenetic
patterns that are associated with habitat can persist in
common gardens, suggesting that environmentally in-
duced epigenetic differences can be inherited, and con-
tribute to diversity (Richards et al., 2012; Robertson
et al., 2020; Xie et al., 2015). However, in our study, we
collected the propagules from the field and they had al-
ready matured on the maternal plants. Therefore, some
important early developmental responses would reflect
the maternal environment. Further study is required to
truly control for environmental, maternal, and genetic
effects which may not be possible in such a long‐lived tree
species.

These findings suggest that epigenetic variation could
contribute to heritable differences in R. mangle, but this
would depend also on which propagules survive the
various stages of selection before establishment in the
field. A recent study of propagule recruitment in R.

mangle at its range edge near Jacksonville, Florida found
that just two maternal trees contributed 79% of propa-
gules that reached branching stage. Propagule survival
was higher in populations within the range core com-
pared to the range edge, even though there was a longer
propagule development period and greater reproductive
output among trees at the range edge (Goldberg &
Heine, 2017). Populations at the range edges could re-
quire particular conservation attention since they have
been shown to have greater genetic differences among
populations and reduced genetic diversity (Kennedy
et al., 2017; Polidoro et al., 2010; Sandoval‐Castro
et al., 2012), which could constrain adaptive potential.
In addition, we know very little about the interactions
with the microbiome in the species, but microbes have
been highlighted as important symbionts in these and
other challenging environments (Bowen et al., 2017; Jung

et al., 2021). Moreover, a recent study in the Indian River
Lagoon system, in St. Lucie County, Florida suggested
that bacterial community composition differed among
R. mangle maternal genotypes but not with genetic di-
versity (Craig et al., 2020). Increased warming as a con-
sequence of climate change could result in either the
relaxation or amplification of some of these biotic and
abiotic limitations at range ends (Devaney et al., 2017).
So far, very little is known about how this or any coastal
foundation species survives the different selection pres-
sures across the various stages of establishment and
spread. Variation in these selection pressures will be
amplified by the pressures attendant to anthropogenic
climate change.

5 | CONCLUSIONS

The field of conservation biology relies on identifying the
capacity of organisms to respond to environmental
challenges which ultimately relies on the manifestation
of phenotypic variation through complex interactions of
genetic and nongenetic mechanisms. We know that
documenting the levels and structure of genetic variation
is one piece of information that is important for con-
servation, but how that information is translated into
function largely remains an enigma. We have provided
another piece of the puzzle for the coastal foundation
plant R. mangle that epigenetic variation (namely DNA
methylation) is inherited and could be an important
component of diversity for this species. However, our
interpretation of how this variation might be involved is
limited due to the small portion of the genome sampled
with our RRBS approach and the limited genomic re-
sources (see also Hardaway et al., 2020; McNew
et al., 2021; Robertson et al., 2020; van Moorsel
et al., 2019). We look forward to the future of integrating
novel molecular tools that can probe more deeply into
the molecular underpinnings of response, as they will
help shed light on the processes of development in the
context of climate change.
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