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Memes are the cultural equivalent of genes that spread across human culture by means of imitation.

What makes a meme and what distinguishes it from other forms of information, however, is still poorly

understood. Our analysis of memes in the scientific literature reveals that they are governed by a

surprisingly simple relationship between frequency of occurrence and the degree to which they propagate

along the citation graph. We propose a simple formalization of this pattern and validate it with data from

close to 50 million publication records from the Web of Science, PubMed Central, and the American

Physical Society. Evaluations relying on human annotators, citation network randomizations, and

comparisons with several alternative approaches confirm that our formula is accurate and effective,

without a dependence on linguistic or ontological knowledge and without the application of arbitrary

thresholds or filters.

DOI: 10.1103/PhysRevX.4.041036 Subject Areas: Complex Systems,

Interdisciplinary Physics,

Statistical Physics

I. INTRODUCTION

The evaluation of scientific output and the study of

patterns of scientific collaboration have received increasing

attention by researchers. From citation distributions [1,2],

coauthorship networks [3], and the formation of research

teams [4,5], to the ranking of researchers [6–8] and the

quantification and prediction of scientific success [9,10],

how we do science has become a science in its own right.

While the famous works of de Solla Price [11] and Merton

[12] from the mid 1960s marked the beginning of a popular

and long-lasting research field, the rapid progress made in

recent years is largely due to the increasing availability of

vast amounts of digitized data. Massive publication and

citation databases, also referred to as “metaknowledge”

[13], along with leaps in progress in the theory and

modeling of complex systems, fuel large-scale explorations

of human culture that were unimaginable even a decade ago

[14]. The “science of science” is scaling up massively as

well, with studies on global citation and collaboration

networks [15], the “scientific food web” [16], and phylo-

memetic patterns in the evolution of science [17],

culminating in the visually compelling atlases of science

[18] and knowledge [19].

Science is a key pillar of modern human culture, and the

general concept of memes has proved to be very insightful

for the study of culture. The term “meme” was coined by

Dawkins in his book The Selfish Gene [20], where he

argues that cultural entities such as words, melodies,

recipes, and ideas evolve similarly as genes, involving

replication and mutation but using human culture instead of

the gene pool as their medium of propagation. Recent

research on memes has enhanced our understanding of the

dynamics of the news cycle [21], the tracking of informa-

tion epidemics in the blog space [22], and the political

polarization on Twitter [23]. It has been shown that the

evolution of memes can be exploited effectively for

inferring networks of diffusion and influence [24], and

that information contained in memes is evolving as it is

being processed collectively in online social media [25].

The question of how memes compete with each other for

the limited and fluctuating resource of user attention has

also amassed the attention of scientists, demonstrating that

social network structure is crucial to understand the

diversity of memes [26], which suggests that social con-

tagion mechanisms [27] play an important role. It has also

been shown that the competition among memes can bring

the network to the brink of criticality [28], where even

minute disturbances can lead to avalanches of events that

make a certain meme go viral [29].

*
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While the study of memes in mass media and popular

culture has been based primarily on their aggregated bursty

occurrence patterns, the citation network of scientific

literature allows for more sophisticated and fine-grained

analyses. Quantum, fission, graphene, self-organized criti-

cality, and traffic flow are examples of well-known memes

from the field of physics, but what exactly makes such

memes different from other words and phrases found in the

scientific literature? As an answer to this question, we

propose the following definition that is a modified version

of Dawkins’ definition of the word “gene” [20]: A scientific

meme is a short unit of text in a publication that is

replicated in citing publications and thereby distributed

around in many copies; the more likely a certain sequence

of words is to be broken apart, altered, or simply not present

in citing publications, the less it qualifies to be called a

meme. Publications that reproduce words or phrases from

cited publications are thus the analogue to offspring

organisms that inherit genes from their parents. In contrast

to existing work on scientific memes, our approach is

therefore grounded in the “inheritance mechanisms” of

memes and not just their accumulated frequencies. The

above definition covers memes made up of exact words and

phrases, but the same methods apply just as well to more

abstract forms of memes.

For our analyses, we rely on 47.1 million publication

records from three sources. Because of its representative

long-term coverage of a specific field of research, we focus

mainly on the titles and abstracts from the data set of the

American Physical Society (APS), consisting of almost half

a million publications from the Physical Review journals

published between July 1893 and December 2009. We also

present results for the over 46 million publications indexed

by the comprehensive Web of Science database, and for the

over 0.6 million publications from the open access subset of

PubMed Central that covers research mostly from the

biomedical domain and mostly from recent years.

Figure 1 shows visualizations of these citation graphs.

The leftmost network depicts the entire giant component of

the citation graph of the Web of Science, consisting of more

than 33 million publications. Different scientific disciplines

form relatively compact communities: The physical scien-

ces (cyan) are close to engineering and technology

(magenta) in the top right-hand corner of the network,

but rather far from the social sciences and humanities

(green) as well as the medical and health sciences (red),

which take up the majority of the left-hand side of the

network, with the natural and agricultural sciences in

between (blue). Zooming in on the physical sciences and

switching to the data set from the American Physical

Society, we get the picture shown in the middle. The

colors now encode the five most important special-focus

journals of Physical Review, each covering a particular

subfield of physics (general coverage and smaller journals

are shown in gray). We see a complex structure with many

small and large clusters. Importantly, even though the

employed layout algorithm [30] does not take the scientific

disciplines and the journal information explicitly into

account, the different communities can be clearly inferred

in the citation graphs. Following our general meme-centric

perspective, the rightmost network highlights the above-

mentioned memes from physics, which mostly appear in

FIG. 1. Citation networks of the Web of Science and the American Physical Society (APS) data sets reveal community structures that

nicely align with scientific disciplines, journals covering particular subfields, and occurrences of memes. The generation of the

visualizations is based on Gephi [31] and the OpenOrd plug-in [30], which implements a force-directed layout algorithm that is able to

handle very large graphs.
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publications that form compact communities in the citation

graph. The meme quantum is widely but by no means

uniformly distributed, pervading several large clusters.

Publications containing the meme fission form a few

connected clusters limited to an area that makes up the

journal Physical Review C covering nuclear physics.

Similarly, the memes graphene, self-organized criticality,

and traffic flow (see enlarged area) are each concentrated in

their own medium-sized or small communities.

II. RESULTS

All words and phrases that occur frequently in the

literature can be considered important memes, but many

frequent words like “method” are not particularly interest-

ing for any given scientific field. To quantify the degree to

which a meme is interesting, we define the propagation

score Pm, which determines the alignment of the occur-

rences of a given meme with the citation graph. Pm is high

for memes that frequently appear in publications that cite

meme-carrying publications (“sticking”) but rarely appear

in publications that do not cite a publication that already

contains the meme (“sparking”). Formally, we define the

propagation score for a given meme m as its sticking factor

divided by its sparking factor. The sticking factor quan-

tifies the degree to which a meme replicates in a publication

that cites a meme-carrying publication. Concretely, it is

defined as dm→m=d→m, where dm→m is the number of

publications that carry the meme and cite at least one

publication carrying the meme, while d
→m is the number of

all publications (meme carrying or not) that cite at least one

publication that carries the meme. Similarly, the sparking

factor quantifies how often a meme appears in a publication

without being present in any of the cited publications. It is

thus defined as dm→m=d→m, where dm→m is the number of

meme-carrying publications that do not cite publications

that carry the meme, and d
→m is the number of all

publications (meme carrying or not) that do not cite

meme-carrying publications. For the propagation score

Pm, we thus obtain

Pm ¼
dm→m

d
→m

. dm→m

d
→m

: ð1Þ

Based on the propagation score Pm and the frequency of

occurrence fm (which is simply the ratio of publications

carrying the meme) of a particular meme m, we define the

meme score Mm as

Mm ¼ fmPm: ð2Þ

The propagation score, as defined in Eq. (1), can be

improved by adding a small amount of controlled noise δ,

thus obtaining

Pm ¼
dm→m

d
→m þ δ

. dm→m þ δ

d
→m þ δ

: ð3Þ

This corrects for the fact that any of the four basic terms can

be zero, and it also prevents phrases with a very low

frequency from getting a high score by chance. The

controlled noise corresponds to δ fictitious publications

that carry all memes and cite none, plus another δ

publications that carry no memes and cite all. This

decreases the sticking factors and increases the sparking

factors of all memes, thereby reducing all meme scores—

very slightly so for frequent memes but heavily for rare

memes. Our tests show that a small value of δ (e.g., δ ¼ 3

as used throughout this work unless stated otherwise) is

sufficient. Another matter that deserves attention is the

potential “free-riding” of shorter memes on longer ones.

For example, the multitoken meme “the littlest Higgs

model” contains the specific token “littlest” that rarely

occurs otherwise. The meme “littlest” therefore gets about

the same propagation score as the long meme, yet the larger

meme is clearly more interesting. This can be addressed by

discounting for free-riding by redefining the term dm→m in

Eq. (1) to exclude publications where the given meme

appears in the publication and its cited publications only

within the same larger meme. If “littlest,” for example, is

always followed by “Higgs” in a given publication and all

its cited publications, then this publication shall not

contribute to the dm→m term for m ¼ littlest.

The meme score considers whether a meme is important

(fm) and whether it is interesting (Pm), and it has addi-

tionally a number of desirable properties: (i) it can be

calculated exactly without the introduction of arbitrary

thresholds, such as a minimum number of occurrences,

without limiting the length of n-grams to consider, and

without filtering out words containing special characters;

(ii) it does not depend on external resources, such as

dictionaries or other linguistic data; (iii) it does not depend

on filters, like stop-word lists, to remove the most common

words and phrases; and (iv) it is very simple with only one

parameter (δ).

Calculating the meme score for all n-grams in the three

data sets considered gives us the results presented in Fig. 2.

Their relative frequency and their propagation score are

plotted against each other in the form of heat maps with

logarithmic scales. There is no upper limit to the length of

n-grams, and the presented maps cover without exception

all n-grams with a nonzero meme score (N being the

number of such n-grams). Meme scores are increasing

towards the top right and decreasing towards the bottom left

corner. Figures 2(a), 2(c), and 2(d) feature a broad band

with a downward slope, indicating that, in general, more

frequent memes tend to propagate less via the citation

graph. In the lower half of each figure, we see a wedge of

very high densities that follows the larger band on the

bottom left edge, but getting narrower towards the middle
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where it ends. Though this wedge has a somewhat rounder

and broader shape for the Web of Science database, overall

these patterns look remarkably similar across all data sets

despite their differences with respect to topic, coverage, and

size. This is an indication of universality in the distribution

patterns of scientific memes. The 99.9% quantile line

(M0.999) is also surprisingly stable, considering that the

underlying values range over 5 orders of magnitude or

more. Localizing the previously mentioned physics memes

in the APS data set Fig. 2(a), we see that they are located on

the very edge of the top right side of the band, where the

density of n-grams is very low. (Very frequent words like

“of” or “the” are found in the faint spike at the top of the

plot where P ≈ 1 and the frequency is close to 100%.)

The heat map in Fig. 2(b) illustrates a typical case of

what happens when the APS citation graph is randomized

but the time ordering of publications is preserved. The

number of terms with a nonzero meme score decreases

dramatically [from approximately 1.4 million in Fig. 2(a) to

just 89 356 in Fig. 2(b)], the universal distribution pattern

of scientific memes vanishes, and the top right part, where

the top-ranked memes should be located, disappears

completely. Naturally, if the APS citation graph is ran-

domized without preserving the time ordering, the overlap

with the original results presented in Fig. 2(a) is even

smaller (see Supplemental Material [32]). Statistical

analysis reveals that median values of the meme score

obtained with the randomized networks differ by more than

1 order of magnitude from those obtained with the original

citation graph, with very little variation between different

randomization runs. These results show that topology and

time structure alone fail to account for the reported

universality in the distribution patterns, and thus that the

top memes get their high meme scores based on intricate

processes and conventions that underlie the dynamics

of scientific progress and the way credit is given to previous

work.

Table I shows the 50 top-ranked memes from the APS

data set, also indicating their agreement with human

annotation and whether they can be found under a sub-

category of physics in Wikipedia. Most of these memes are

noun phrases denoting real and reasonable physics con-

cepts, which is remarkable given that the computation of

the simple meme-score formula uses no linguistic or

ontological knowledge whatsoever. The dominance of noun

phrases is consistent with the finding that (scientific)

concepts are typically captured by noun phrases when

represented as key words in terminologies [33,34]. The

extracted memes consist of one, two, or three words, which

indicates that the meme score does not favor short or long

phrases, again without applying explicit measures to

balance n-gram lengths. A further observation is that

FIG. 2. Universality in the distribution patterns of scientific memes across data sets. Heat maps encode the density of all n-grams with

M ≠ 0 (N being the number of such n-grams) with respect to their propagation score and frequency. Panels (a), (c), and (d) each show a

broad band with a downward slope for the data sets from the APS, the open access subset of PubMed Central, and the Web of Science,

respectively. The 99.9% quantile with respect to the meme score distribution (M0.999) is depicted as a white line. Memes are located

mostly around the very edge of the top right-hand side of the band (in the vicinity of the 99.9% quantile line). Panel (b) shows the results

obtained with a time-preserving randomization of the APS citation graph (see Sec. IV for details).
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chemical formulas such as MgB2 and CuGeO3 are rela-

tively frequent, which we investigate in more detail below.

In Table II, we present results of a manual annotation of

terms identified by meme score as compared to randomly

selected terms (both nonweighted and weighted by fre-

quency; see also Supplemental Material [32]). Each of the

annotators considers around 86% of the meme-score terms

to be important physics concepts, agreeing on this in 81%

of the cases. With respect to their linguistic categories, each

annotator considers 86% of the meme-score terms to be

noun phrases, and the two annotators agree on that for 83%

of the terms. The respective values are much lower for the

randomly extracted terms. Only 25% (nonweighted) and

19% (weighted) of terms are, in agreement, found to be

important physics concepts, and only 33% (nonweighted)

and 25% (weighted) are found to be noun phrases. The

reported differences between the meme score and the

two random selection methods are highly significant

(p < 10−15 using Fisher’s exact test on the number of

agreed classifications). These results confirm that the meme

score strongly favors noun phrases and important concepts.

Next, we compare the meme score to a number of

possible alternative metrics, as defined in the Sec. IV, and

align the identified words and phrases with a ground-truth

list of terms extracted from physics-relatedWikipedia titles.

Figure 3 summarizes the results, showing on the top right

that ≈70% of the top 10 memes identified by meme score

correspond to terms extracted from Wikipedia, as well as

≈55% of the top 20, ≈40% of the top 50, and ≈26% of the

top 100. The largest area under the curve A is obtained for a

controlled noise level δ ¼ 4, which is highlighted by the

thick blue line. The box plot compares the outcomes of

TABLE I. Top 50 memes with respect to their meme score from the APS data set. The symbol þ indicates memes where the human

annotators agree that this is an interesting and important physics concept, while the symbol � indicates memes that are also found on the

list of memes extracted from Wikipedia (see Sec. IV for details).

1. Loop quantum cosmologyþ� 14. Strange nonchaotic 27. NaxCoO2
þ 38. Inspiral�

2. Unparticleþ� 15. In NbSe3 28. The unparticleþ 39. SpinHall effectþ�

3. Sonoluminescenceþ� 16. SpinHallþ 29. Black 40. PAMELA

4. MgB2
þ 17. Elliptic flowþ� 30. Electromagnetically induced 41. BaFe2As2

þ

5. Stochastic resonanceþ� 18. QuantumHallþ� transparencyþ� 42. Quantum dotsþ�

6. Carbon nanotubesþ� 19. CeCoIn5
þ 31. Light-induced driftþ 43. Bose-Einstein condensatesþ

7. NbSe3
þ 20. Inflationþ 32. Proton-proton bremsstrahlungþ 44. Xð3872Þ�

8. Black holeþ� 21. Exchange biasþ� 33. Antisymmetrized molecular 45. Relaxorþ

9. Nanotubesþ 22. Sr2RuO4
þ dynamicsþ 46. Blue phasesþ

10. Lattice Boltzmannþ� 23. Traffic flowþ� 34. Radiativemuon captureþ 47. Black holesþ�

11. Dark energyþ� 24. TiOCl 35. Bose-Einsteinþ 48. PrOs4Sb12
þ

12. Rashba 25. Key distributionþ 36. C60
þ 49. The Schwinger multichannelmethodþ

13. CuGeO3
þ 26. Grapheneþ� 37. Entanglementþ 50. Higgslessþ

TABLE II. The two annotators (A1 and A2) classified more than 80% of the memes with the highest meme scores as relevant physics

concepts and noun phrases. The differences involving the meme score are highly significant (�). See Sec. IVand Supplemental Material

[32] for details.

Classified as main class: p value for difference to

Method Main class Annotator (Annotator agreement) Individually In agreement Random Weighted random

Meme score

Physics concept A1 (90.0%) 85.3% 81.3% < 10−15� < 10−15�

A2 87.3%

Noun phrase A1 (93.3%) 86.0% 82.7% < 10−15� < 10−15�

A2 86.0%

Random

Physics concept A1 (85.3%) 32.7% 25.3% 0.123

A2 32.7%

Noun phrase A1 (86.0%) 39.3% 33.3% 0.163

A2 36.0%

Weighted random

Physics concept A1 (90.7%) 20.7% 19.3% 0.123

A2 27.3%

Noun phrase A1 (86.0%) 28.7% 25.3% 0.163

A2 28.7%
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different metrics with respect to A, as described in the

Sec. IV. The isolated outlier at 32.3% on the lower end of

the distribution for the meme score originates from the

parameter setting δ ¼ 1. All other parameter settings 2 ≤

δ ≤ 10 lead to results in a narrow band between 40.9% and

44.8% (meaning that the performance of the metric is not

sensitive to movements within this range of the parameter

space). In contrast, all alternative metrics score consider-

ably worse, consistently below 22% (including outliers).

The two plots of Fig. 4 show the same data points as

Fig. 2(a) but with colors standing for the relative density of

Wikipedia terms [Fig. 4(a)] and of terms containing

chemical formulas [Fig. 4(b)]. Figure 4(a) confirms that

phrases in the area of a high meme score (towards the top

right) tend to show up as titles of Wikipedia articles on

physics. Additionally, the plot shows that this is the only

such area. There are a few scattered outliers, but the only

significant area with a high density of Wikipedia terms is

found around the 99.9% quantile. Figure 4(b) shows that

phrases containing chemical formulas (such as BaFe2As2)

tend to have a relatively low frequency (individually) but

high propagation score. The area with the highest density

can again be found along the 99.9% quantile, which is

consistent with the expectation of chemical compounds to

be important and interesting entities for physics research.

Moreover, the fact that they are standardized and com-

pressed representations reduces their “vulnerability” to

synonyms or spelling variants, making them stronger memes

on the level of pure character sequences. (We come back to

the issue of memes on different levels of abstraction below.)

Figure 5 shows the top memes over time, revealing

bursty dynamics, akin to the one reported previously in

human dynamics [35] and the temporal distribution of

words [36]. These bursts might be a reflection of the fast

rise and fall of many scientific memes in terms of their

popularity. As new scientific paradigms emerge, the old

ones seem to quickly lose their appeal, and only a few

memes manage to top the rankings over extended periods

of time. The bursty dynamics also support the idea that both

the rise and fall of scientific paradigms is driven by robust

principles of self-organization [37].

III. DISCUSSION

Going back to the original analogy with genes put forward

by Dawkins [20], we investigate the relation between the

occurrence frequency of scientific memes and the degree to

which they propagate along the citation graph. We find that

scientific memes are indeed governed by a surprisingly
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FIG. 3. The meme score outperforms alternative metrics. The

box plot shows the agreement with the ground-truth list of

physics terms extracted from Wikipedia as achieved by the

different metrics. Agreement is measured as the area under the

curve A, as shown for the meme score in the embedded graph on

the top right. The curves are defined as the percentage from the x
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simple relationship of these two factors. This is formalized

by the meme score—a metric to characterize and identify

scientificmemes—defined as the product of the frequency of

occurrence and the propagation score.

We show that the meme score can be calculated exactly

and exhaustively without the introduction of arbitrary

thresholds or filters and without relying on any kind of

linguistic or ontological knowledge. The method is fast and

reliable, and it can be applied to massive databases. We

demonstrate the effectiveness of the meme score on more

than 47million publication records from theWebof Science,

PubMed Central, and the American Physical Society.

Moreover, we evaluate the accuracy of the proposed meme

score by means of full and time-preserving randomizations

of the citation graphs, by means of manual annotation of

publications, as well as by means of several alternative

metrics. We provide statistical evidence for the agreement

between human annotators and the meme-score results, and

we show that it is superior to alternative metrics. We also

confirm that the observed patterns cannot be explained by

topological or temporal features alone, but are grounded in

more intricate processes that determine the dynamics of the

scientific progress and the way credit is given to preceding

publications. Furthermore, the top-ranking scientific memes

reveal a bursty time dynamics,whichmight be a reflection of

the fierce competition among memes for the limited and

fluctuating resource of scientists’ attention.

We consider only fixed character sequences as potential

memes, but it is clear thatmemes do not exist only on this low

level, and it is reasonable to expect that the inclusion of

additional layers of processing using linguistic and onto-

logical resources will lead to even better results and let us

capture memes on a more abstract level. Such memes might

consist of sets of morphological variants, co-occurrences of

words, compositions of multiple memes, grammatical con-

structions, or even argumentation schemes and rhetorical

styles. We deliberately keep the meme score as simple as

possible to emphasize that it is surprisingly precise on its

own. At the same time, there are many ways to improve the

metric in the future with more sophisticated processing to

capture memes on a higher level. In general, we believe that

our approach, allowing for the study of memes in a

comprehensive manner, opens up the field for a wide range

of future research on topics such as information diffusion,

complex systems, innovation, scientific progress, social

dynamics, ecosystems, cultural evolution, and, of course,

the study of memes themselves.

IV. METHODS

A. Graph randomization

The analyzed randomized networks have exactly the

same topology as the original ones, but the article texts (i.e.,

titles and abstracts with their memes) are randomly

assigned to the nodes. Each node, therefore, owes its

position in the network to one particular publication but

has text attached that comes from a different one. For the

time-preserving randomizations, we shuffle only publica-

tions that were published within narrow consecutive time

windows. Concretely, we use time windows of 1000

publications, meaning that—after shuffling—no publica-

tion has moved more than 1000 positions forward or

backward from the original chronological order.
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B. Human annotation

For the first part of the manual annotation, we use the

following two categories: (i) the phrase is not a meaningful

term or not an important concept of physics, and (ii) the

phrase is an important concept or entity of physics—it

could appear as the title of an entry of a comprehensive

encyclopedia of physics. For the second part, we define the

following linguistic phrase types: (i) noun phrase, (ii) verb,

(iii) adjective or adverb, and (iv) other.

The set of phrases used for this evaluation consists of the

top 150 memes with respect to their meme score, extracted

from the American Physical Society data set, plus another

two sets for comparison of 150 randomly drawn phrases

each. For the two comparison sets, we consider all phrases

that appear in at least 100 publications. From these, 150

terms are drawn randomly without taking into account their

frequency; i.e., frequent terms have the same chance of

being selected as infrequent ones, whereas the 150 terms of

the second set are drawn with a weight that corresponds to

their frequency. Moreover, to rule out effects of different

n-gram lengths, we make sure that the two batches of

random terms follow exactly the same length distribution as

the main sample extracted based on the meme score. The

resulting 450 terms are shuffled and given to two human

annotators, both Ph.D. students with a degree in physics,

who independently annotate the terms.

C. Metrics for comparison

We use the following metrics with different para-

meter settings as alternatives to the meme score (see

Supplemental Material for details [32]): (i) frequency—

the most frequent terms, optionally skipping the first x
terms; (ii) maximum absolute change over time—the

highest-scoring terms with respect to maximum absolute

change in frequency; (iii) maximum relative change over

time—the same as (ii) but based on relative changes;

(iv) maximum absolute difference across journals—the

highest-scoring terms with respect to maximum absolute

difference in frequency between journals; (v) maximum

relative difference across journals—the same as (iv) but

based on relative differences. Metric (i) is based on the

assumption that important memes are frequent but not as

frequent as the small class of general words that can be

found in all types of texts. Metrics (ii) and (iii) are based on

an idea proposed in Ref. [37], that interesting memes

exhibit trends over time. Metrics (iv) and (v) are based on

the intuition that phrases occurring mostly in specific

journals but not in others must be specific concepts of

the particular field of research.

As a ground-truth list of memes, we automatically

extract 5178 terms from Wikipedia. We collect the titles

of all articles—and terms redirecting to them—from the

categories “physics,” “applied and interdisciplinary phys-

ics,” “theoretical physics,” “emerging technologies,” and

their direct subcategories, but filtering out terms that appear

in less than 10 publications of the American Physical

Society data set. To quantify the agreement between the top

memes identified by a particular metric and the Wikipedia

list, we use the normalized area A under the curve as shown

in Fig. 3. The step-shaped curve has a log-scaled x axis

running up to the number of terms s on the ground-truth

meme list (s ¼ 5178 in our case) and a y axis running from
0 (no overlap) to 1 (perfect overlap). Limiting cases are

A ¼ 1, representing perfect agreement, and A ¼ 0, repre-

senting no agreement at all between the two compared lists.
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