
Inheritance Usage Paerns in Open-Source Systems 

 Jamie Stevenson 
Department of Computer and 

Information Sciences, 
University of Strathclyde, Glasgow,  

UK 
jamie.stevenson@strath.ac.uk 

Murray I. Wood 
Department of Computer and 

Information Sciences, 
University of Strathclyde, Glasgow, 

UK 
murray.wood@strath.ac.uk 

 

ABSTRACT 

is research investigates how object-oriented inheritance is 
actually used in practice. e aim is to close the gap between 

inheritance guidance and inheritance practice. It is based on 

detailed analyses of 2440 inheritance hierarchies drawn from 14 
open-source systems. e original contributions made by this 

paper concern pragmatic assessment of inheritance hierarchy 
design quality. e findings show that inheritance is very widely 

used but that most of the usage paerns that occur in practice are 
simple in structure. ey are so simple that they may not require 

much inheritance-specific design consideration. On the other 
hand, the majority of classes defined using inheritance actually 

appear within a relatively small number of large, complex 
hierarchies. While some of these large hierarchies appear to have 

a consistent structure, oen based on a problem domain model or 
a design paern, others do not. Another contribution is that the 

quality of hierarchies, especially the large problematic ones, may 
be assessed in practice based on size, shape, and the definition and 

invocation of novel methods – all properties that can be detected 
automatically. 

CCS CONCEPTS 

• Soware and its engineering → Abstraction, modeling and 
modularity 
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1 INTRODUCTION 

Inheritance is a key feature of the widely used object-oriented 

paradigm, allowing practitioners to define new program elements 
by building on what already exists and reducing duplication in 

source code. e aim of this research is to help close the gap 
between guidance on how inheritance should be used and how it 

is actually used in practice. Long standing guidance covers 
maers such as depth and width of hierarchies, reuse and type 

substitutability of hierarchy members, and keeping the core of the 
hierarchy abstract. is study provides a detailed analysis of how 

inheritance is actually used in practice by examining 2440 
hierarchies. e study investigates the inheritance usage paerns 

that are present in production-quality code, with the aim of 
informing design choices and objectively improving design 

quality. 
e study is based on 14 Java systems, mainly open source 

systems from the alitas Corpus [30]. Java is chosen due to the 
availability of ‘real world’ open source systems, its current 

popularity as an object-oriented development language [4], and 
its common use as a teaching language. e similarities between 

Java and other languages used in industry, such as C#, mean that 
this work will be open to replication in the wider soware 

ecosystem. 
In languages such as Java, inheritance is used to provide two 

quite distinct properties – type inheritance (polymorphism) and 

module reuse:  
• Type inheritance - the subclass (subtype) is considered a sub-

type of the parent class (type). e new class can be substituted 
for the parent class in any design context. 

• Module reuse - the subclass inherits the superclass aributes and 
method definitions, saving redefining and duplicating them in the 

subclass. 
ese two properties are oen implemented using the same 

inheritance mechanism and mixed together in one hierarchy. 
Much of the advice on inheritance is concerned with how type 

inheritance and module reuse can be used while keeping designs 

comprehensible and maintainable.  

Other aspects associated with inheritance that can affect 
practitioner comprehension and their ability to make changes 

include: the depth of an inheritance hierarchy - where there is a 
need to understand a sequence of ancestors [11]; overriding of 

method definitions - where children can alter the behaviour 
inherited from parents; and, self-calls - where method calls are 
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being propagated up a hierarchy and, potentially, out into the 
surrounding system. 

e original contributions made by this paper concern 
pragmatic assessment of inheritance design quality. e results 

confirm that inheritance is being widely used, and therefore very 
important. e majority of hierarchies appear simple in structure 

– shallow and narrow – only causing limited maintenance 
challenge. However, the majority of classes actually defined using 

inheritance appear in large, more complex hierarchies that do 
require design assessment. Manual assessment highlights that 

these are oen modelling a problem or solution domain concept. 
e new findings highlight the potential to automatically 
categorise and evaluate inheritance hierarchies based on 

branching points, shape, method definition, method invocation, as 
well as depth. 

roughout the paper the term class (and subclass, superclass) 
has been used generally to mean a member of an inheritance 

hierarchy. When it is more appropriate to refer to the ‘type’ (the 
set of requests to which a class can respond [11]) defined by a class 

then type (and subtype, supertype) is used. e term ‘types’ is also 
used to refer to the collection of classes, abstract classes and 

interfaces in a Java system. 

2 RELATED WORK 

Previous research aims to guide both the structure and the 

semantics of inheritance hierarchies. Inheritance use is 
complicated by its dual roles, as a reuse mechanism and as a type 

substitution mechanism [16]. While Liskov argues that reuse and 
subtyping should be kept separate [19], Meyer argues that “If we 

accept classes as both modules and types, then we should accept 
inheritance as both module accumulation and subtyping” [22]. 

It is argued that inheritance overuse, or even abuse, can lead 

to programs that are difficult to understand and change, because 

of the need to traverse up, down and across hierarchies to fully 
understand runtime behaviour [5, 29]. e concept of ‘fragile base 

classes’ has also been identified, where changes in a superclass 
may break a subclass or its dependents [23] – though recent work 

disputes how much impact fragile base classes actually have in 
practice [26]. Addressing the dangers of unintended inheritance 

interactions, Bloch argued that developers should “design and 
document for inheritance or else prohibit it” [2]. 

e Liskov Substitution Principle (LSP) [20] imposes an 
extreme constraint on hierarchy design requiring a subclass to be 

a semantic substitute for a superclass and not to break the 
behaviour of any system in which the subclass is used as a 

substitute for the superclass (also known as ‘is-a’ inheritance 
relationships). Liskov also identifies “convenience inheritance”, 

where inheritance is used simply as a reuse mechanism, as a weak 
form of usage.  

In their design paerns catalogue, Gamma et al. introduce the 
principle of “favouring object composition over class inheritance” 

[11], arguing that composition should be preferred as a reuse 
mechanism (though many of their paerns still use inheritance). 

Martin’s Dependency Inversion Principle (DIP) [21] argues that 
“no dependency should target a concrete class”, which, when 

applied to hierarchies, advocates that only leaves should be 

concrete classes with the hierarchy core constructed from abstract 
classes. 

Meyer provides a taxonomy of twelve different “faces of 
inheritance” [22] that takes a more relaxed approach to 

implementation inheritance, arguing there is a lack of “strong 
theory that should support any such indictment” but does note that 

“has relation without is”, “taxonomy mania” and “convenience 
inheritance” are all improper uses of inheritance.  

Although early object-oriented advocates, Johnson and Foote, 
suggested that hierarchies should be “deep and narrow” [17] to 

maximise reuse, most authors now propose that depth should be 
restricted: “In practice, inheritance hierarchies should be no deeper 
than an average person can keep in his or her short-term memory. A 

popular value for this depth is six” [25]. e Sonarbe tool treats 
inheritance depth over five as a severe quality issue suggesting 

that “Most of the time, a too deep inheritance tree is due to bad object 
oriented design” [3].  

Metrics associated with inheritance focus on Depth of 
Inheritance Tree (DIT) and Number of Children (NOC) associated 

with hierarchy members, again with the viewpoint that larger 
values for these metrics are an indicator of potential design 

weakness [5]. On the other hand, Gill and Sikka highlight that 

assessing negative factors such as hierarchy magnitude/size and 

complexity do not shed much light on the core desirable 
properties of hierarchies – reuse and substitutability [12]. 

Suryanarayana et al.’s hierarchy smells [28] also address 
depth, with a ‘rule of thumb’ that six is too deep, and width, 

suggesting that more than nine subclasses is too wide. eir bad 
smells also address ‘broken’ (non-LSP), ‘rebellious’ (overriding 

that restricts or cancels behaviour), cyclical, unfactored and 
unnecessary hierarchies. 

Previous work analysing inheritance use in practice has found 
significant inheritance usage, with Tempero et al. finding that 

across 93 applications from the alitas Corpus [31] “around 
three-quarters of user-defined classes use some form of inheritance 

in at least half the applications in our corpus”. ey also found that 
most classes appear in shallower hierarchies, two-thirds of 

inheritance uses were for type-substitutability, and that around 
20% of uses could have been achieved using composition instead 

of inheritance. Collberg et al. also found a predominance of 
shallow hierarchies and a small number of large outliers [7], with 

a depth of inheritance all the way up to 39.  
In a survey on design quality with industry practitioners [27], 

Stevenson and Wood found a mixed response in terms of the value 
of inheritance. Specific comments on inheritance usage included: 

“avoid … it always ends up biting me”, “you don’t want your ears to 
pop when traversing down the inheritance hierarchy”, “abstract 

inheritance over object inheritance”, and “derived types must satisfy 
the Liskov Substitution Principle … very difficult to achieve, so we 

try to use composition”. Respondents also indicated more concern 
for the depth of hierarchies than the width. 

 
 

 
 



 

3 STUDY DESIGN 

3.1 Research Objectives 

e research goal is to investigate how inheritance is actually used 

in practice and to determine the extent to which it can be related 
to design guidance on soware quality. is was achieved by 

analysing inheritance usage in 14 open source systems – see Table 
1. 

e research questions addressed were: 
1. How is inheritance used in practice in open-source Java 

systems? 
2. To what extent can inheritance hierarchies used in open-source 

systems be characterised? 
3. To what extent can inheritance usage paerns be related to 

design quality where quality is defined via guidance, metrics, code 
smells and modelling? 

e intention is to describe what is observed, rather than 
validate a metric or to find a correlation. 

 

Table 1: Study Corpus Details 

Name Version Types Domain 

aoi 2.8.1 493 3D, graphics, media 

ant 1.8.4 1204 parser, build 

argouml 0.34 1976 diagram visualisation 

axion 1.0 M2 237 database 

azureus 4.8.1.2 3319 torrent client 

columba 1.0 1181 email client 

freecol 0.10.7 654 game 

freecs 1.3.2010040

6 
139 chat server 

freemind 0.9.0 445 diagram visualisation 

galleon 2.3.0 258 3D, graphics, media 

eclipse sdk 4.3 22629 IDE 

gizmoball - 86 student design  

jdk 8u60 7713 language library 

jhotdraw 7.0.6 310 graphics framework  

3.2 Study Corpus 

Eleven open source Java systems were selected from the alitas 

Corpus [30], including six from the evolution distribution. (e 
evolution package systems have a development history consisting 

of at least ten versions.) Together, the chosen systems covered a 
range of application domains, system sizes and development 

histories– see Table 1. ree additional systems were included: jdk 
– the core library of the Java language, an example of Java as it is 

spoken by language designers; jhotdraw – an exemplar of good 
design and design paern usage [9]; gizmoball – a small game 

design challenge originally from MIT [34] and an example of 
design guidelines as taught to students. e third column of Table 

1 provides the total number of types in each system. 
While the corpus analysed here is smaller in number of 

systems than other recent studies, high-level similarities with 
other corpora will be shown. e range of system sizes is well in 
keeping with system sizes found by Radjenović et al. in a review 

of code-survey research - where less than 200 classes was 
categorised as a small system, 200-1000 classes medium sized, and 

1000 or greater as large [24]. 

3.3 Study Instrumentation 

Analysis was performed using a purpose-built tool based on the 

Eclipse JDT Core . While this tool is novel, the core components 
are very reliable as they are sourced from the Eclipse Project. 

Previous similar studies have used a range of tools e.g. purpose-
built bytecode analysis [31], Byte Code Engineering Library [1], 

Soot Framework [32], Codecrawler [18], and MOOSE [13]. It was 
noted that Tempero et al.’s study on inheritance use in Java “had 

memory limitations that restricted the size of the systems than we 
could analyse” [32]. Similarly, Sabané estimated that the time and 

effort required to understand and adapt (possibly unsuitable and 
usually out of date) existing research tools is too high [26]. 

Each analysis is recorded in code or script, so experiments are 
explicitly documented to promote reuse, validation, and 

replication. In the interests of reproducibility and ease of tracing 
what processing was done, each sub-experiment was codified in 

its own package. Once an experiment has been run, the package 
responsible is not modified thereaer, providing a permanent 

record of the experimental process and environmental variables.  
All counts are based only on the code within the system 

package, including any third party types and Java library types 
(excluding the ubiquitous Java.lang.Object). An effort was made 

to exclude testing code from the analysis, however for some 

projects this was difficult to achieve as it was tightly integrated 

with the main code base. Code wrien for use with injection 
frameworks was considered part of current development practice 

and therefore included in the analysis. 

4 RESULTS 

4.1 Use of Inheritance 

Fourteen systems were analysed comprising a total of 40644 types 

(system range 86–22629 types) – see Table 1. e systems studied 
contain a total of 2440 inheritance hierarchies (range 6–1277 

hierarchies), consisting of 22913 hierarchy members (range 2-1366 
members per hierarchy). Abstract classes make up between 2% 

and 12% (median 6%) of the total types in the systems. Interfaces 
make up between 4% and 29% (median 10%) of total types. 

Figure 1 shows proportions of types (including abstract classes 
and interfaces) defined by inheritance and interface 

implementation in each system. e figure shows that between 
26% and 76% (median 54%) of all types are defined using 

inheritance (blue and green bars together) and between 54% and 

85% (median 80%) are defined using either inheritance or interface 

implementation, or both (blue, green and red). For concrete classes 
only (not shown here), 38-80% (median 64%) are defined via 

inheritance and 71-90% (median 85%) are defined using either 
inheritance or interfaces, or both. erefore, this result is 

generally in keeping with Tempero et al.’s finding that “around 
three-quarters of user-defined classes use some form of inheritance 

in at least half the applications” [31]. Here 13/14 systems define 



 

 

69% or more of types using inheritance or interface 
implementation. 10/14 systems define at least 50% of types using 

inheritance alone. 
 

 
Figure 1: Total Types Defined Using Inheritance 

 

4.2 Hierarchy Size, Depth and Width 

e large majority of the 2440 hierarchies analysed were small: 

80% of hierarchies contained seven or less members. Ninety 
percent contained 36 members or less. Figure 2 shows the 

distribution of hierarchy sizes following a typical power law 
distribution with the vast majority of hierarchies in the smaller 

sizes to the le and the long tail with few hierarchies all the way 
up to maximum size 1366.  

 

 

 
 

Over 80% of the extended classes are extended only once (64%) or 
twice (17%) indicating that most individual uses of inheritance do 

not significantly widen the containing hierarchy. On the other 
hand, all systems had individual classes that were extended five 

times or more, almost all (10/14) had classes that were extended 
at least 18 times, the maximum number of children found for any 

single class was 172. 
Table 2 shows the number of hierarchies found at each depth 

level across all of the corpus. Hierarchy depth ranged from 
DITMAX 1 to 10 (DITMAX is the maximum depth of a hierarchy 

with counting starting at zero at the root). Seventy one percent 
(1739/2440) of hierarchies observed were of depth DITMAX 1. 

Ninety percent of all hierarchies are depth 2 or less, 98% are depth 
four or less. Of the 2% (52) of hierarchies of depth five or more, 26 
of these were found in eclipse and 14 in jdk.  

 
Table 2: Number of Hieararchies at each Depth of Inheritance 

Depth 1 2 3 4 5 6 7 8 10 

ant 47 12 2   1    

aoi 38 4 2 1 1     

argouml 120 17 14 7 3 1    

axion 16 5 4       

azureus 118 26 5 1 1     

columba 88 19 4  1     

eclipse 874 260 78 39 12 6 5 2 1 

freecol 51 7  2  1    

freecs 6         

freemind 34 14 1 1 1     

galleon 27 4 1       

gizmoball 5 1   1     

jdk 287 74 24 12 8 5 1   

jhotdraw 28 6 2  1     
 

In terms of width, previous studies have focused on the 
Number of Children (NOC) of individual hierarchy members [5] 
or Breadth of Inheritance Tree (BIT) [15] which summarises the 

width of a hierarchy into a vector of widths at each hierarchy 
depth. In this study, the interest was primarily in capturing a 

single notion of width per hierarchy. Hierarchy width was 
therefore defined as BITMAX, the maximum count of classes at 

any depth throughout the entire depth of a hierarchy.  
Like the depth results, small values again dominate across the 

systems. Many inheritance hierarchies (1043, 43%) do not branch 
(are width one) and 21% (515) of hierarchies branch only once 

(width two). Most of the analysed systems, though, also contain a 
hierarchy in the top 10% of widths, and many having at least one 

in the top 1%. e top 1% of hierarchy widths were in the range 
44-542, suggesting that hierarchies grow more by widening, than 

by deepening, and that widening appears much less restricted 

than depth. 
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4.3 Public Interfaces and Method Novelty 

A native interface is defined in this study as all the public methods 
provided by a concrete class or abstract class. is includes 

inherited public methods from superclasses and interfaces – the 
total set of public methods a practitioner needs to deal with for 

each class. Analysis of the size of native interfaces among 
hierarchy members yields another long-tailed distribution with 

80% of hierarchy members having 10 or fewer public methods. 
Most inheritance members (and thus hierarchies) have relatively 

small (narrow) public interfaces. On the other hand public 
interfaces of size 150 all the way up to 1260 were found – these 

tended to associated with some external standard or domain 
entity. 

A potential indicator of hierarchy design quality is how 
subclasses add methods to the parent class’s public interface. 

ese additional, ‘novel’, methods cannot be invoked on the 

parent type and must be accessed indirectly via overridden 

methods or via the subclass type itself. Adding methods to the 
public interface of a subclass is of limited value if the subclass is 

being used as type substitute for a parent - it may suggest that the 
hierarchy is emphasizing reuse instead. On the other hand, the 

parent type interface may be being used in one design context and 
the added methods interface in an extended context. It may 

therefore be possible to assess the quality of hierarchy design by 
examining how and where novel methods are used. 

Across all hierarchies, at depth level one, 47% of added 
methods are novel. By the time we get to a depth of four, 84% of 

the cumulative method definitions are novel. As depth increases, 
it appears the type interface is increasingly novel. On the other 

hand, around a twentieth (9542, 6.51%) of the hierarchy members 
analysed do not add any novel public methods to their interface. 

It is possible that these hierarchy members are mostly, or 

completely, motivated by polymorphism. Hierarchies with no 

novel methods (7%, 398 in total) appear to be constrained in 
growth – with most of these (91%, 364) at depth one and none over 

depth three. Overall, nearly a quarter of hierarchy members (5070) 
have zero novelty (introduce no new methods). 

 

4.4 Hierarchy Shape 

Five distinct hierarchy shapes were found: Line, Fan, Line-Branch, 
Branch-Line and Subtrees.  

• Line - hierarchy with no branching (BITMAX=1). 
• Fan - hierarchy consists solely of one root and its immediate 

children (DITMAX=1). (Similar to Lanza’s ‘flying saucer’ shape 
[18].) 

• Line-Branch - hierarchy root node that has a single child, then 
branches later (one or more times) 

• Branch-Line - hierarchy root node branches, and has no later 
branches, but does have depth of more than one (extended Fan). 

• Subtrees - hierarchy consists of a branching root with at least one 
other branching node – see Figure 4. 

ese categories are based on observations, can be applied to 
any hierarchy, and include all possible legal hierarchy structures. 

Figure 3 shows the counts of each shape of hierarchy in each of 

the systems in the corpus. Most systems show a similar break-

down of shapes, with Line, Fan, then Subtrees being the most 
popular (note the logarithmic scale). 

Line dominates – a further indication that much of the 
inheritance present in systems is uncomplicated. e next most 

common shape in each system is Fan, which represent many one-
deep variations on a single superclass. e Line and Fan shapes 

account for 74% (1801) of all hierarchies examined – 94% (979) of 
Line-shaped hierarchies are of depth one, and all but one Line 

hierarchy is shallow (DITMAX 1-3), indicating also that depth 

ant aoi argouml axion azureus columba eclipse freecol freecs freemind galleon gizmoball jdk jhotdraw

Line 29 24 82 7 72 43 490 36 2 22 20 4 192 20

Fan 18 14 41 10 50 49 418 15 4 13 7 2 111 8

Subtrees 5 6 22 7 17 9 224 6 8 2 1 63 7

Branch-Line 8 1 6 5 8 99 1 5 1 32 1

Line-Branch 2 1 11 1 7 3 46 3 3 2 13 1
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Figure 4: Sub-Trees (yellow nodes abstract / red concrete) - 
org.eclipse.jdt.apt.core.internal.declaration.EclipseDeclarationI

mpl 



 

 

without branching is rare. Additionally, if a hierarchy does not 
branch at the root (Line, Line-Branch), it is unlikely to branch 

subsequently. 
e next most common shape is Subtrees, which capture 86% 

of the hierarchies in medium (DITMAX 5-6) and 96% of deep 
(DITMAX 7-10) hierarchies – indicating that branching is usually 

required for depth. Of the 497 (24%) hierarchies with a width 
(BITMAX) greater than four, 53% (263) of these are Subtrees (31% 

are Fan), if we consider hierarchies larger than width 19, the 
proportion that are Subtrees increases to 79% - so not only do wide 

hierarchies branch, their branches branch. 
e Subtree category constitutes 15% of hierarchies examined, 

but contains 63% of all hierarchy members due to the size of these 

hierarchies. is has implications for the perception of inheritance 
in a system. With almost two thirds of hierarchy members being 

part of wider, deeper, overall larger hierarchies, this may be the 
default impression of inheritance usage, even though these 

members represent only 15% of hierarchies. 

4.5 Abstract Classes 

Fieen percent (3408) of hierarchy members are abstract classes, 
roughly half of these as hierarchy roots (1760) and half appearing 

inside a hierarchy (1648). Fiy four percent (1325) of the 
inheritance hierarchies examined contain at least one abstract 

class – with 50% (1207) containing one to three abstract classes. 
However, there is noticeable variation between systems with 

extremes of none and many – jdk notably has a high number of 

abstract class hierarchy roots, but many of these implement no 

interfaces.  
Hierarchies are seen to have either a contiguous backbone 

where all the abstract classes in the hierarchy form a contiguous 
structure, or a fragmented backbone where gaps appear in the 

structure of abstract classes. In the hierarchies observed, only 3% 
(70 of 2440) of the hierarchies have abstract classes that are not in 

a contiguous sub-graph within the containing hierarchy. When 
broken down by hierarchy shape, 93% (65) of these fragmented 

hierarchies have a Subtree shape, with the other shape categories 
having only a few fragmented hierarchies.  

e yellow nodes in Figure 4 represent abstract classes, 
therefore the hierarchy shown there is an example of a 

‘contiguous abstract backbone’. 
A hierarchy is considered out-of-order if it contains a sequence 

of types where one type inherits from a less abstract type – this is 

direct breach of the DIP - where an abstract class inherits from a 

concrete class. Only 6% (146) of hierarchies are out-of-order. 
Subtrees again account for 75% (109) of these – so in larger 

hierarchies, where a continuous chain of abstractions may be of 
most use in managing a complex abstraction, there is more chance 

of a breach of dependency inversion (DIP) occurring. 

4.6 Method Invocation 

If a hierarchy design is intended for type substitution then it 

would be expected that most method invocations are to methods 
defined by the hierarchy root type. On the other hand, non-root 

type method invocation could suggest that the hierarchy members 
are making more use of the hierarchy as a reuse mechanism – 

though it could also be that non-root methods are legitimately 
being used in different design sub-contexts. Forty-five percent of 

hierarchy members have no direct method calls (excluding 
constructors), perhaps suggesting that they are being accessed 

polymorphically – or perhaps they are ‘reuse placemarkers’ in the 
hierarchy. In all but one system (freecol) a high majority of 

method calls to hierarchy members are either via root types 
themselves or via root type methods. 31%-93% (median 71%) of all 

hierarchy member method calls were via the root type. e 
remainder of method calls are on subtypes split between inherited 

methods and local, novel, methods. 
Each hierarchy member can be classified as one of: never 

directly accessed, accessed only via root-type method calls, 

invoked only via local (novel) methods, or invoked using a 
mixture of root and local. It is possible to automatically classify 

hierarchies using these different access mechanisms: Strict 
Polymorphism – all accesses to hierarchy members are via root 

type references; Common Interface Polymorphism – all accesses to 
hierarchy members are via root type methods; Balanced Reuse – 

uses novel methods and at least one invocation of a root method; 
Aggressive Reuse – members only accessed via novel methods; 

Fragmented – a mixture of the previous. 

While it is obvious in the case of Strict and Common Interface 

Polymorphism that substitutability is important, the other 
categories are less clear. With increasing invocations of non-root 

methods, the hierarchies in the reuse-categories appear to be less 
well defined by the root of the hierarchy, indicating that 

polymorphism is perhaps less important in these cases. With 
decreasing method invocations to root methods, these have been 

distinguished by the severity of this ‘distance’ from the root type. 
Finally, the fragmented category is assigned where there is no 

other suitable category. 
Fiy-four percent of hierarchies are in the Strict or Common 

Interface Polymorphism categories indicating that access to just 
over half of hierarchies is exclusively polymorphic. Of these, 47% 

are accounted for by Fan and Line hierarchies. Again, it is the 
larger hierarchies that tend to be non-polymorphic, suggesting 

they are more likely to be driven by reuse (or a mixture of 
polymorphism and reuse). It is important to note, again, that these 

large hierarchies are where most hierarchy members reside – 
those with 37 or more members are usually ‘fragmented’. e 

larger hierarchies appear to have ‘inconsistent’ usage paerns. It 
is important to stress, as above, the skewing effect of large 

hierarchies on what might be viewed as ‘normal’. 

4.7 Casting 

Closely related to polymorphic access is casting – converting one 
type to another usually to access methods specifically associated 

with the destination type. is is necessary if we have access to a 
subtype via a root type reference and wish to invoke methods 

specifically defined in the subtype. Casting, or excessive casting, 
may be viewed as a sign of weakness in the design of a hierarchy 

[33]. Across the systems, 15-34% (median 24%) of hierarchy 
members are involved in cast operations. Of these casts, 89% are 
within hierarchy – from one hierarchy member to another, 6% are 

into a hierarchy from outside, and 4% are out of a hierarchy from 



 

inside. In terms of average cast per hierarchy member there is a 
steady decline from root types to leaf types. is may indicate that 

root abstractions are frequently insufficient for meeting the needs 
of hierarchy clients in these systems. A limitation of this analysis 

is the exclusion of interfaces used within hierarchies. 

4.8 Large Hierarchies 

Forty-eight of the most complex hierarchies were manually 

inspected. Twelve of these hierarchies were identified as 
‘generalisation (is-a)’ hierarchies. Seven were characterized as 

‘grouping’ hierarchies where the root abstraction is small and 
well-defined but does not define the subclasses and there is lots of 

semantic variation in the hierarchy. Eight are characterized as 
‘cross cuing concern’ where the hierarchy represents an aspect 

or trait representing an implementation detail or architectural 
abstraction e.g. a design paern. e remaining 21 of these large 

hierarchies could not be easily classified. It was also found that 
25/48 of the large hierarchies were related to recognized 

architectural features – mainly design paerns. Two other 
motivations for large hierarchies appeared to be as frameworks 

hooks [10] – well defined application plugin points – and 
‘specification ties’ where the structure appeared closely bound to 

an external standard e.g. a document standard.  
Forty-five of these large hierarchies show a Fragmented or 

Balanced Reuse invocation profile, with only the most generic 
hierarchies having Common Interface Polymorphism. Most (36) 

also show a mixture of overriding and new methods. Both reuse 

and substitutability appear to be strong design factors for some 

large hierarchies but not all. 
ere is no indication that external motivations for large 

hierarchies correspond to empirical properties, indicating that 
understanding of both is necessary to assess these hierarchies. 

e deepest hierarchy encountered (eclipse EventManager, 
DITMAX=10) is an efficient replacement for a common Java 

library type (java.util.Observable). However, it appears that many 
of the sub-classes of EventManager are “implementation 

inheritance” [19] seeking to re-use EventManager public methods 
and functionality while, in many cases, ignoring the accumulated 

functions of the superclasses. e next two deepest (eclipse 
Viewer and eclipse Window) have 85 and 361 members 

respectively. eir characteristics include being both wide and 
deep, having some continuous abstract backbones, having 

fragmented method invocation – some subtypes manipulated 

directly (particularly as depth increases) and some via root type 

methods. 

5 ANSWERS TO RESEARCH QUESTIONS 

5.1 RQ1: How is inheritance used in the corpus? 

Inheritance is present in significant amounts in the corpus – 

typically over 50% of all types are defined using inheritance, over 
80% if interface implementation is included, and 64% of concrete 

classes are defined using inheritance (median values across the 14 
systems). Inheritance is therefore clearly very important to 

soware design and construction using Java. 

However, most of these hierarchies are very simple in 
structure – 80% of hierarchies contain seven members or less, 

most inheritance is shallow (71% depth one, 19% depth two), most 
hierarchies (64%) are either width one or two. Most hierarchy 

members are only extended once or twice. Depth rarely goes 
beyond four. Width is less constrained, oen reaching 10 and 

oen going beyond this. e simplicity of most hierarchies may 
mean that they are relatively easy to understand and maintain and 

that there is lile need to be concerned about their overall design 
quality. 

Large hierarchies were rare, only 2% were depth four or more 
(and most of these were in two systems – jdk and eclipse). Only 
nine hierarchies out of 2440 were of depth greater than six. Wider 

hierarchies are more common – 229 hierarchies of width ten or 
more, 44 hierarchies with a width of 44 or more (again eclipse 

contributed 50% of these). Although larger hierarchies form a 
small percentage of the overall population, these are where the 

majority of hierarchy members reside (63% of hierarchy 
members). erefore, developers are just as likely, or more likely, 

to encounter a class siing in a large hierarchy as a small 
hierarchy. In terms of design quality, it seems that it is the small 

number of larger hierarchies that warrant close design 

consideration. 

5.2 RQ2: How can inheritance hierarchies be 
characterised? 

Hierarchies can be categorised by shape (Line, Fan, Line-Branch, 

Branch-Line, Subtrees) – which are present in similar proportions 
across the systems analysed here. Many hierarchies are simple 

(Line and Fan) reflecting again that much inheritance seems 
trivial. Hierarchies can grow arbitrarily wide, indeed, deeper 

hierarchies without branching are rare and very deep hierarchies 
always branch. 

Over half of the hierarchies examined were categorised as 
Strict or Common Interface Polymorphism where access is 

exclusively polymorphic – via the root type or the root type 

defined methods only. Of these, 47% are accounted for by Fan and 

Line hierarchies. Hierarchy members with no-novel methods are 
usually in shallow hierarchies. 

It is the larger hierarchies that tend to be non-polymorphic, 
suggesting they are more likely to be driven by reuse. Overriding 

declines with depth in a hierarchy, while novel methods continue 
to be added, indicating that initial subclasses tend to refine root 

behaviour, and deeper subclasses tend to add behaviour.  
e most obvious and significant influence on large hierarchies 

are elements from the problem or solution domain such as a 
protocol, document format, or design paern. ese provide 

regularity in the hierarchies which allows faster comprehension 
and identification of inconsistent structure. ese are specific to 

each hierarchy however, and do not necessarily inform a general 
inheritance assessment strategy. 

e use of abstract classes to form structures within 

hierarchies is common, but not universal. is abstract structure 

is generally continuous within a hierarchy or not present at all, 
though in very larger hierarchies this structure becomes 

fragmented.  



 

 

Casting is common in the examined systems, including a 
significant number of casts involving inheritance hierarchy 

members. Root abstractions are commonly being bypassed, which 
may mean that reuse has come at the cost of poor abstraction. 

Alternatively, it may just be that clean, versatile abstractions are 
hard to define in some cases. 

5.3 RQ3: To what extent can inheritance usage 
patterns be related to design quality? 

Much of the design quality guidance relating to inheritance is 

structural advice. For example, metrics such as C&K, code smells 
and tools such as Sonarbe focus on depth of hierarchy. 

Sonarbe by default highlights a depth of six or more. Others 
have debated various depths at which potential maintenance 

issues can arise. Previous census studies have found the majority 
of inheritance is at depth two or less [9]. e results here are 

consistent with that finding – here 98% of hierarchies are smaller 
than depth four. Wide hierarchies are more common. Arguably, 

width is less of a design challenge than depth since subclasses at 

the same level can oen be understood independently of their 
neighbours. As a simplistic indicator, a depth of more than three 

or four seems a good indicator that a hierarchy might warrant 
closer examination – especially given the finding that deeper 

hierarchies are more likely to add novel methods that cannot be 
accessed directly through the hierarchy root type.  

e majority of classes defined by inheritance reside in ‘large’ 
hierarchies – hierarchies of depth four or greater and with tens or 

hundreds of members. Design guidance that relates to such 
hierarchies includes LSP - polymorphic rather than reuse 

hierarchies [20, 22, 28] and DIP – depend on abstractions [21]. e 
findings here suggest that analysis of hierarchy method definition, 

hierarchy method invocation, use of abstract classes and casting, 
together, offer potential insights into the nature and quality of a 

hierarchy – in particular the extent to which it is being used 
polymorphically or for reuse. Such analyses offer potential 

insights into areas within larger hierarchies that are starting to 

dri from the root purpose and could be beer broken into 

separate hierarchies or achieved using an alternative mechanism 
such as interface implementation and composition.  

Only 15% of hierarchy members are abstract, a lower 
proportion than expected if DIP was being pursued rigorously. 

Part of the explanation for this is the small size of the majority of 
hierarchies. When abstract classes are present they usually occur 

in a ‘continuous backbone’. ere also appears to be an ‘all-or-
nothing’ approach to the use of abstract classes – possibly 

indicating different practitioner styles [6]. As hierarchies grow 
very large, the abstract backbone tends to become fragmented. 

Ninety three percent of ‘fragmented hierarchies’ and 75% ‘out of 
order’ hierarchies were Subtrees – again an indicator that it is 

these hierarchies that warrant closer design aention. 
Meyer’s taxonomy for inheritance [22] describes three broad 

categories of inheritance use, depending on the model inspiring 

the hierarchy: model inheritance (is-a relationships in the problem 

domain), soware inheritance (solution domain relationships), 
and variation inheritance (similarity or difference relationships). 

ere is evidence that model and soware inheritance are present 

in significant amounts in the large hierarchies examined, and that 
these supersede the need for some lower level guidance. However, 

these were detected via manual inspection and do not have 
consistent indicators in the counting metrics. is is consistent 

with previous aempts to validate this taxonomy [8]. 

6. DISCUSSION AND IMPLICATIONS 

It is clear from this study and related studies [31] that inheritance 
is widely used in real-world objected-oriented systems wrien in 

Java. Typically, over 60% of concrete classes were defined using 
inheritance in the systems analysed here. Inheritance is therefore 

a key topic for object-oriented practitioners and for students 
studying soware development. Given both its subtyping and 

reuse benefits, but also the risks of associated complexity, it is 
therefore important to investigate whether inheritance usage and 

teaching could or should be limited to ‘best practice paerns’. 

is study confirms findings from previous work that much 

inheritance usage is in the form of very simple structures – 
structures that can provide subtyping and reuse benefits with lile 

danger of adding unnecessary complexity to soware. e large 
majority of hierarchies found in this study are depth one or two 

and take the form of Line (width one) or Fan (depth one) 
hierarchies. e majority of hierarchies had less than seven or less 

members. ese shallow depth findings are consistent with 
Ferreira et al. who found a ‘typical’ value of depth two [9] and 

Tempero et al. who observed that most classes appear in the 
shallow parts of hierarchies [31].  

e simplicity of this majority of hierarchies is likely to mean 
that they are relatively easy to understand and maintain, and that 

there may be lile need to be concerned about their overall design 
quality while they remain so simple. 

A typical example of such a ‘simple’ hierarchy is 

org.eclipse.swt.widgets.Dialog. is is a ‘Fan’ hierarchy with seven 

leaves. ere is no overriding in this hierarchy – the shared 
behaviour from the abstract root type is a ‘minimal’ set of 

behaviour/functionality. e lack of overriding makes each leaf in 
the hierarchy a simple extension of the root type. 

Although large hierarchies are rare, because of their size, these 
are where many members that are defined reside. It is this small 

number of large hierarchies that warrant close design aention. 
How can they be identified and what criteria might be used to 

assess their design quality? 
A simple source of identification is depth. In the analysed 

systems, almost all hierarchies were depth one or two, 98% were 
depth four or less. Certainly hierarchies beyond a depth of four 

warrant close design aention. Again these depth findings are 
reasonably consistent with previous work. In a survey of 

practitioners, Gorsheck et al. obtained preferred thresholds of 
three or five for inheritance depth [14] (although 20% of 

respondents did not care about inheritance maximum depth, and 
31% responded “indicating an awareness of depth but a tendency 

not to act on this information”). Riel [25], code smells [28] and 
Sonarbe [3] have set higher thresholds of depth of six. is 

work indicates that such depth are rare, and only occur in the 
largest systems.  



 

One issue to be aware of is that, in this study, the largest 
systems contained the deepest hierarchies. Although deep 

hierarchies were very rare, if the study had included more of these 
large systems (those with thousands of user-defined types) then 

more large hierarchies may have been found. ere is no reason 
to expect the overall percentage of large hierarchies to alter, 

however. Also, the two largest systems studied here are mature 
frameworks which have been subject to intense design effort over 

the last decade or longer. 
Almost all the systems in the study corpus had ‘wide’ 

hierarchies - exceeding the ‘bad smell’ advice of width nine [28]. 
Although, most hierarchies were also narrower than Johnson and 
Foote’s maximum width of 27 [17]. Again, many of these wider 

hierarchies are very shallow, and as such are considered unlikely 
to cause significant maintenance challenge. Wider hierarchies 

may create more paths from root to leaf, but sibling classes at the 
same depth do not increase complexity in the way ancestors do. It 

is suggested that width, particularly shallow width, is more likely 
to be associated with type substitutability rather than reuse – as 

demonstrated by the eclipse Dialog example described above. 
Other than depth, what other factors may indicate problems 

and how can these larger hierarchies be assessed for quality? is 

research identified five different hierarchy shapes. Two of these 

shapes are the simplest of hierarchy structures Line and Fan, and 
again they are the most common. Two related shapes, Branch-

Line and Line-Branch also appear relatively unproblematic, due to 
their inherent lack of branch-points. It is the Subtree hierarchies, 

with multiple branch-points – see Figure 4, that tended to be the 
largest and most complicated. So as well as depth, number of 

branch-points may be an indicator that a hierarchy warrants close 
design aention. 

Examining how a hierarchy defines methods and how those 
methods are invoked throughout the system may provide deeper 

insights into the fundamental nature and quality of an inheritance 
hierarchy. If a hierarchy is being used polymorphically, in keeping 

with LSP, it would be expected that access would mainly be 
through the hierarchy root type or at least through methods 

defined by the root type. Characterisation of hierarchies in this 
way may help distinguish hierarchies that are designed with 

polymorphism in mind as opposed to those that are designed for 
reuse (or both).  

For example, a Fan with Strict Polymorphism and uniform 
overriding in the leaves is a comprehensible, regular structure 

regardless of how wide it becomes. While a structure with 
inconsistent paerns of overriding may indicate a poorly defined 

abstraction. Assessing local regularity may be more useful than 
concern over comparing numerical values between hierarchies. 

is may provide guidance for interpreting the ‘fitness for 
purpose’ of a hierarchy. If this is generally the case, this may 

indicate that once overriding stops in a hierarchy, the deeper 
portions which are merely adding new behaviour may instead be 

‘composed’ with the shallower parts of the hierarchy. On the 
other hand, it seems quite valid to add novel methods which are 

only to be used in a localized context within a design while 
general usage of the class is restricted to root type method access. 

Another finding is that many of the larger complicated 
hierarchies are strongly influenced by a problem or solution 

domain model. If a hierarchy satisfies other design criteria 
(usefulness, domain modelling, low complexity), a depth cut-off 

seems arbitrary. ese relationships appear harder to detect 
automatically but are oen quite visible under manual analysis. A 

problem is that some of the largest hierarchies appeared initially 
motivated by such factors but had then grown out of control and 

become major legacy issues for their containing designs. is is 
where it seems the biggest inheritance design challenges reside – 

being able to detect that a hierarchy is losing its original design 
motivation and quality, and being able to recognize that an 
alternative design structure would be more appropriate. 

7. THREATS TO VALIDITY 

Using open-source systems as a proxy for real-world development 

is a threat to the external validity of this work. Given the difficulty 

of analysing propriety program code, open-source is oen used as 
a substitute for closed source soware. However, it is important 

to be aware that there are real risks in doing so, these open-source 
systems are unlikely to be subject to the same design and review 

practices associated with commercial soware. 
ere are also external validity dangers in the selection of the 

corpus used in this study. Care was taken to select a range of 
system sizes, problem domains and system maturity levels. It is 

argued that the corpus shares similarities with corpora used in 
comparable studies. Some of the high level findings such as the 

prevalence of inheritance suggest that the corpus properties are 
in keeping with related research.  

Although many of the findings appear consistent across the 
systems, the deeper and more complex inheritance hierarchies 

occur in the two largest systems (eclipse and jdk). Tempero et al. 

noted in their work that “the depth of classes in the inheritance tree, 

does not increase with program size” [31], but here it is the two 
largest systems that contain the majority of these rare deep 

hierarchies. It is perhaps the case that there is more opportunity 
to accommodate deeper hierarchies in larger systems. 

In terms of internal validity, the size of the corpus was on the 
small side compared to earlier census-style research. e reason 

for the relatively small corpus size, 14 systems, was the depth of 
analysis performed. Each system had its own particular package 

configuration which required understanding. Extracting and fully 
analysing the source code for each individual system was a 

significant effort.  
In terms of construct validity, creating a new tool carries with 

it inherent risks. At each stage in the building process the results 
from the tool were compared with reference hierarchies in the 

testing suite. In addition, spot checks were carried out on the 
actual corpus results to confirm that the tool had correctly 

recorded inheritance structures. Finally, any easily reachable 
measures that could serve as a checksum were used for data 

validation e.g. depth of inheritance (DIT) and number of children 
(NOC). 

 



 

 

8. CONCLUSIONS 

It was found that inheritance was heavily used in the corpus. In 
most of the systems at least 50% of the concrete classes that are 

defined are involved in an inheritance relationship. 
Most hierarchies are of depth one, or two maximum. Many 

hierarchies are of width one. Width one was described as a Line 
shape and depth one as a Fan. Together, these account for 74% of 

all hierarchies in the analysed systems. Over 80% of hierarchies 
contained seven or less members. It is suggested that most of these 

hierarchies are unlikely to cause major comprehension or 
maintenance issues - even if they are being used for reuse rather 

than type substitutability. 
Despite the relatively small number of larger hierarchies, this 

is where the majority of classes defined via inheritance reside – as 
much as 63% of classes sit in the larger hierarchies. Developers are 

therefore just as likely to encounter a class defined in one of these 
hierarchies. It is these hierarchies that should be the focus of most 

design effort.  
How can the design quality of these hierarchies be assessed in 

a practical way? It was found that many of the large, apparently 
complex hierarchies, were modelling a problem domain or 

solution concept such as a document standard or a design paern. 
However, these required close manual examination to determine 

this. 
Depth of hierarchy remains a simple warning of potential 

hierarchy design issues. As stated above many hierarchies are 

only depth one or two, 98% are depth four or less. Based on this 

data, hierarchies that are of depth four and beyond warrant closer 
design aention.  

A novel contribution of this research is the characterization of 
hierarchies by shape. Most hierarchies are Line or Fan in shape. 

Many others are Line-Branch or Branch-Line. e deepest, most 
complex hierarchies are Subtree in shape, with multiple branch-

points. Along with depth, multiple branch points seems another 
practical indication that the design of the hierarchy should be 

examined in more detail. 
A further new contribution is the characterization of 

hierarchies by method definition and method invocation. ese 
analyses enable determination of the extent to which a hierarchy 

member is being accessed polymorphically – through its root type 
or through root type methods. In practice, this would seem to 

indicate good quality hierarchy design in keeping with the Liskov 

Substitution Principle. 

Another new finding is that many hierarchies added novel 
methods that could not be accessed directly via the root type, and 

that novelty increased noticeably as hierarchy depth increased. 
is is another indicator that increased hierarchy depth is more 

likely to be a concern. e addition of novel methods may be an 
indication that a hierarchy is being used for reuse rather than type 

substitution – not necessarily a poor practice, but again a potential 
design warning sign. Type casting to access novelty is likely to be 

another hierarchy design danger sign.  
A topic for further research is the study of inheritance 

hierarchy evolution. Some of the key findings here on shape, 

particularly branching, and hierarchy characterization in terms of 
root method access and novel method addition, could be used as 

warning signs as a hierarchy evolves. ere is potential to study 
the complexity of the identified inheritance shapes and also any 

possible relationship to defect occurrence. Refactoring advice 
might be given based on the identified usage paerns and 

structures. 
Finally, this study did not include interfaces and their 

implementation in much of the analysis. Interfaces are oen found 
at the roots of hierarchies and, potentially, much of the access to 

hierarchy members is through interface-defined types. Future 
studies should therefore integrate interface analysis with 

inheritance analysis. 
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