
Inheritance Usage Paerns in Open-Source Systems

 Jamie Stevenson
Department of Computer and

Information Sciences,
University of Strathclyde, Glasgow,

UK
jamie.stevenson@strath.ac.uk

Murray I. Wood
Department of Computer and

Information Sciences,
University of Strathclyde, Glasgow,

UK
murray.wood@strath.ac.uk

ABSTRACT

is research investigates how object-oriented inheritance is
actually used in practice. e aim is to close the gap between

inheritance guidance and inheritance practice. It is based on

detailed analyses of 2440 inheritance hierarchies drawn from 14
open-source systems. e original contributions made by this

paper concern pragmatic assessment of inheritance hierarchy
design quality. e findings show that inheritance is very widely

used but that most of the usage paerns that occur in practice are
simple in structure. ey are so simple that they may not require

much inheritance-specific design consideration. On the other
hand, the majority of classes defined using inheritance actually

appear within a relatively small number of large, complex
hierarchies. While some of these large hierarchies appear to have

a consistent structure, oen based on a problem domain model or
a design paern, others do not. Another contribution is that the

quality of hierarchies, especially the large problematic ones, may
be assessed in practice based on size, shape, and the definition and

invocation of novel methods – all properties that can be detected
automatically.

CCS CONCEPTS

• Soware and its engineering → Abstraction, modeling and
modularity

KEYWORDS

Object-oriented, inheritance, open-source, empirical, design
guidance.

1 INTRODUCTION

Inheritance is a key feature of the widely used object-oriented

paradigm, allowing practitioners to define new program elements
by building on what already exists and reducing duplication in

source code. e aim of this research is to help close the gap
between guidance on how inheritance should be used and how it

is actually used in practice. Long standing guidance covers
maers such as depth and width of hierarchies, reuse and type

substitutability of hierarchy members, and keeping the core of the
hierarchy abstract. is study provides a detailed analysis of how

inheritance is actually used in practice by examining 2440
hierarchies. e study investigates the inheritance usage paerns

that are present in production-quality code, with the aim of
informing design choices and objectively improving design

quality.
e study is based on 14 Java systems, mainly open source

systems from the alitas Corpus [30]. Java is chosen due to the
availability of ‘real world’ open source systems, its current

popularity as an object-oriented development language [4], and
its common use as a teaching language. e similarities between

Java and other languages used in industry, such as C#, mean that
this work will be open to replication in the wider soware

ecosystem.
In languages such as Java, inheritance is used to provide two

quite distinct properties – type inheritance (polymorphism) and

module reuse:
• Type inheritance - the subclass (subtype) is considered a sub-

type of the parent class (type). e new class can be substituted
for the parent class in any design context.

• Module reuse - the subclass inherits the superclass aributes and
method definitions, saving redefining and duplicating them in the

subclass.
ese two properties are oen implemented using the same

inheritance mechanism and mixed together in one hierarchy.
Much of the advice on inheritance is concerned with how type

inheritance and module reuse can be used while keeping designs

comprehensible and maintainable.

Other aspects associated with inheritance that can affect
practitioner comprehension and their ability to make changes

include: the depth of an inheritance hierarchy - where there is a
need to understand a sequence of ancestors [11]; overriding of

method definitions - where children can alter the behaviour
inherited from parents; and, self-calls - where method calls are

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work

owned by others than the author(s) must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ICSE '18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright is held by the owner/author(s). Publication rights licensed to

ACM.

ACM ISBN 978-1-4503-5638-1/18/05…$15.00

https://doi.org/10.1145/3180155.3180168

being propagated up a hierarchy and, potentially, out into the
surrounding system.

e original contributions made by this paper concern
pragmatic assessment of inheritance design quality. e results

confirm that inheritance is being widely used, and therefore very
important. e majority of hierarchies appear simple in structure

– shallow and narrow – only causing limited maintenance
challenge. However, the majority of classes actually defined using

inheritance appear in large, more complex hierarchies that do
require design assessment. Manual assessment highlights that

these are oen modelling a problem or solution domain concept.
e new findings highlight the potential to automatically
categorise and evaluate inheritance hierarchies based on

branching points, shape, method definition, method invocation, as
well as depth.

roughout the paper the term class (and subclass, superclass)
has been used generally to mean a member of an inheritance

hierarchy. When it is more appropriate to refer to the ‘type’ (the
set of requests to which a class can respond [11]) defined by a class

then type (and subtype, supertype) is used. e term ‘types’ is also
used to refer to the collection of classes, abstract classes and

interfaces in a Java system.

2 RELATED WORK

Previous research aims to guide both the structure and the

semantics of inheritance hierarchies. Inheritance use is
complicated by its dual roles, as a reuse mechanism and as a type

substitution mechanism [16]. While Liskov argues that reuse and
subtyping should be kept separate [19], Meyer argues that “If we

accept classes as both modules and types, then we should accept
inheritance as both module accumulation and subtyping” [22].

It is argued that inheritance overuse, or even abuse, can lead

to programs that are difficult to understand and change, because

of the need to traverse up, down and across hierarchies to fully
understand runtime behaviour [5, 29]. e concept of ‘fragile base

classes’ has also been identified, where changes in a superclass
may break a subclass or its dependents [23] – though recent work

disputes how much impact fragile base classes actually have in
practice [26]. Addressing the dangers of unintended inheritance

interactions, Bloch argued that developers should “design and
document for inheritance or else prohibit it” [2].

e Liskov Substitution Principle (LSP) [20] imposes an
extreme constraint on hierarchy design requiring a subclass to be

a semantic substitute for a superclass and not to break the
behaviour of any system in which the subclass is used as a

substitute for the superclass (also known as ‘is-a’ inheritance
relationships). Liskov also identifies “convenience inheritance”,

where inheritance is used simply as a reuse mechanism, as a weak
form of usage.

In their design paerns catalogue, Gamma et al. introduce the
principle of “favouring object composition over class inheritance”

[11], arguing that composition should be preferred as a reuse
mechanism (though many of their paerns still use inheritance).

Martin’s Dependency Inversion Principle (DIP) [21] argues that
“no dependency should target a concrete class”, which, when

applied to hierarchies, advocates that only leaves should be

concrete classes with the hierarchy core constructed from abstract
classes.

Meyer provides a taxonomy of twelve different “faces of
inheritance” [22] that takes a more relaxed approach to

implementation inheritance, arguing there is a lack of “strong
theory that should support any such indictment” but does note that

“has relation without is”, “taxonomy mania” and “convenience
inheritance” are all improper uses of inheritance.

Although early object-oriented advocates, Johnson and Foote,
suggested that hierarchies should be “deep and narrow” [17] to

maximise reuse, most authors now propose that depth should be
restricted: “In practice, inheritance hierarchies should be no deeper
than an average person can keep in his or her short-term memory. A

popular value for this depth is six” [25]. e Sonarbe tool treats
inheritance depth over five as a severe quality issue suggesting

that “Most of the time, a too deep inheritance tree is due to bad object
oriented design” [3].

Metrics associated with inheritance focus on Depth of
Inheritance Tree (DIT) and Number of Children (NOC) associated

with hierarchy members, again with the viewpoint that larger
values for these metrics are an indicator of potential design

weakness [5]. On the other hand, Gill and Sikka highlight that

assessing negative factors such as hierarchy magnitude/size and

complexity do not shed much light on the core desirable
properties of hierarchies – reuse and substitutability [12].

Suryanarayana et al.’s hierarchy smells [28] also address
depth, with a ‘rule of thumb’ that six is too deep, and width,

suggesting that more than nine subclasses is too wide. eir bad
smells also address ‘broken’ (non-LSP), ‘rebellious’ (overriding

that restricts or cancels behaviour), cyclical, unfactored and
unnecessary hierarchies.

Previous work analysing inheritance use in practice has found
significant inheritance usage, with Tempero et al. finding that

across 93 applications from the alitas Corpus [31] “around
three-quarters of user-defined classes use some form of inheritance

in at least half the applications in our corpus”. ey also found that
most classes appear in shallower hierarchies, two-thirds of

inheritance uses were for type-substitutability, and that around
20% of uses could have been achieved using composition instead

of inheritance. Collberg et al. also found a predominance of
shallow hierarchies and a small number of large outliers [7], with

a depth of inheritance all the way up to 39.
In a survey on design quality with industry practitioners [27],

Stevenson and Wood found a mixed response in terms of the value
of inheritance. Specific comments on inheritance usage included:

“avoid … it always ends up biting me”, “you don’t want your ears to
pop when traversing down the inheritance hierarchy”, “abstract

inheritance over object inheritance”, and “derived types must satisfy
the Liskov Substitution Principle … very difficult to achieve, so we

try to use composition”. Respondents also indicated more concern
for the depth of hierarchies than the width.

3 STUDY DESIGN

3.1 Research Objectives

e research goal is to investigate how inheritance is actually used

in practice and to determine the extent to which it can be related
to design guidance on soware quality. is was achieved by

analysing inheritance usage in 14 open source systems – see Table
1.

e research questions addressed were:
1. How is inheritance used in practice in open-source Java

systems?
2. To what extent can inheritance hierarchies used in open-source

systems be characterised?
3. To what extent can inheritance usage paerns be related to

design quality where quality is defined via guidance, metrics, code
smells and modelling?

e intention is to describe what is observed, rather than
validate a metric or to find a correlation.

Table 1: Study Corpus Details

Name Version Types Domain

aoi 2.8.1 493 3D, graphics, media

ant 1.8.4 1204 parser, build

argouml 0.34 1976 diagram visualisation

axion 1.0 M2 237 database

azureus 4.8.1.2 3319 torrent client

columba 1.0 1181 email client

freecol 0.10.7 654 game

freecs 1.3.2010040

6
139 chat server

freemind 0.9.0 445 diagram visualisation

galleon 2.3.0 258 3D, graphics, media

eclipse sdk 4.3 22629 IDE

gizmoball - 86 student design

jdk 8u60 7713 language library

jhotdraw 7.0.6 310 graphics framework

3.2 Study Corpus

Eleven open source Java systems were selected from the alitas

Corpus [30], including six from the evolution distribution. (e
evolution package systems have a development history consisting

of at least ten versions.) Together, the chosen systems covered a
range of application domains, system sizes and development

histories– see Table 1. ree additional systems were included: jdk
– the core library of the Java language, an example of Java as it is

spoken by language designers; jhotdraw – an exemplar of good
design and design paern usage [9]; gizmoball – a small game

design challenge originally from MIT [34] and an example of
design guidelines as taught to students. e third column of Table

1 provides the total number of types in each system.
While the corpus analysed here is smaller in number of

systems than other recent studies, high-level similarities with
other corpora will be shown. e range of system sizes is well in
keeping with system sizes found by Radjenović et al. in a review

of code-survey research - where less than 200 classes was
categorised as a small system, 200-1000 classes medium sized, and

1000 or greater as large [24].

3.3 Study Instrumentation

Analysis was performed using a purpose-built tool based on the

Eclipse JDT Core . While this tool is novel, the core components
are very reliable as they are sourced from the Eclipse Project.

Previous similar studies have used a range of tools e.g. purpose-
built bytecode analysis [31], Byte Code Engineering Library [1],

Soot Framework [32], Codecrawler [18], and MOOSE [13]. It was
noted that Tempero et al.’s study on inheritance use in Java “had

memory limitations that restricted the size of the systems than we
could analyse” [32]. Similarly, Sabané estimated that the time and

effort required to understand and adapt (possibly unsuitable and
usually out of date) existing research tools is too high [26].

Each analysis is recorded in code or script, so experiments are
explicitly documented to promote reuse, validation, and

replication. In the interests of reproducibility and ease of tracing
what processing was done, each sub-experiment was codified in

its own package. Once an experiment has been run, the package
responsible is not modified thereaer, providing a permanent

record of the experimental process and environmental variables.
All counts are based only on the code within the system

package, including any third party types and Java library types
(excluding the ubiquitous Java.lang.Object). An effort was made

to exclude testing code from the analysis, however for some

projects this was difficult to achieve as it was tightly integrated

with the main code base. Code wrien for use with injection
frameworks was considered part of current development practice

and therefore included in the analysis.

4 RESULTS

4.1 Use of Inheritance

Fourteen systems were analysed comprising a total of 40644 types

(system range 86–22629 types) – see Table 1. e systems studied
contain a total of 2440 inheritance hierarchies (range 6–1277

hierarchies), consisting of 22913 hierarchy members (range 2-1366
members per hierarchy). Abstract classes make up between 2%

and 12% (median 6%) of the total types in the systems. Interfaces
make up between 4% and 29% (median 10%) of total types.

Figure 1 shows proportions of types (including abstract classes
and interfaces) defined by inheritance and interface

implementation in each system. e figure shows that between
26% and 76% (median 54%) of all types are defined using

inheritance (blue and green bars together) and between 54% and

85% (median 80%) are defined using either inheritance or interface

implementation, or both (blue, green and red). For concrete classes
only (not shown here), 38-80% (median 64%) are defined via

inheritance and 71-90% (median 85%) are defined using either
inheritance or interfaces, or both. erefore, this result is

generally in keeping with Tempero et al.’s finding that “around
three-quarters of user-defined classes use some form of inheritance

in at least half the applications” [31]. Here 13/14 systems define

69% or more of types using inheritance or interface
implementation. 10/14 systems define at least 50% of types using

inheritance alone.

Figure 1: Total Types Defined Using Inheritance

4.2 Hierarchy Size, Depth and Width

e large majority of the 2440 hierarchies analysed were small:

80% of hierarchies contained seven or less members. Ninety
percent contained 36 members or less. Figure 2 shows the

distribution of hierarchy sizes following a typical power law
distribution with the vast majority of hierarchies in the smaller

sizes to the le and the long tail with few hierarchies all the way
up to maximum size 1366.

Over 80% of the extended classes are extended only once (64%) or
twice (17%) indicating that most individual uses of inheritance do

not significantly widen the containing hierarchy. On the other
hand, all systems had individual classes that were extended five

times or more, almost all (10/14) had classes that were extended
at least 18 times, the maximum number of children found for any

single class was 172.
Table 2 shows the number of hierarchies found at each depth

level across all of the corpus. Hierarchy depth ranged from
DITMAX 1 to 10 (DITMAX is the maximum depth of a hierarchy

with counting starting at zero at the root). Seventy one percent
(1739/2440) of hierarchies observed were of depth DITMAX 1.

Ninety percent of all hierarchies are depth 2 or less, 98% are depth
four or less. Of the 2% (52) of hierarchies of depth five or more, 26
of these were found in eclipse and 14 in jdk.

Table 2: Number of Hieararchies at each Depth of Inheritance

Depth 1 2 3 4 5 6 7 8 10

ant 47 12 2 1

aoi 38 4 2 1 1

argouml 120 17 14 7 3 1

axion 16 5 4

azureus 118 26 5 1 1

columba 88 19 4 1

eclipse 874 260 78 39 12 6 5 2 1

freecol 51 7 2 1

freecs 6

freemind 34 14 1 1 1

galleon 27 4 1

gizmoball 5 1 1

jdk 287 74 24 12 8 5 1

jhotdraw 28 6 2 1

In terms of width, previous studies have focused on the
Number of Children (NOC) of individual hierarchy members [5]
or Breadth of Inheritance Tree (BIT) [15] which summarises the

width of a hierarchy into a vector of widths at each hierarchy
depth. In this study, the interest was primarily in capturing a

single notion of width per hierarchy. Hierarchy width was
therefore defined as BITMAX, the maximum count of classes at

any depth throughout the entire depth of a hierarchy.
Like the depth results, small values again dominate across the

systems. Many inheritance hierarchies (1043, 43%) do not branch
(are width one) and 21% (515) of hierarchies branch only once

(width two). Most of the analysed systems, though, also contain a
hierarchy in the top 10% of widths, and many having at least one

in the top 1%. e top 1% of hierarchy widths were in the range
44-542, suggesting that hierarchies grow more by widening, than

by deepening, and that widening appears much less restricted

than depth.

0% 20% 40% 60% 80% 100%

gizmoball
freecs
axion

galleon
jhotdraw
freemind

aoi
freecol

columba
ant

argouml
azureus

jdk
eclipse

Implement and Inherit Inherit Only

Implement Only Neither Implement or Inherit

0

200

400

600

800

1000

1200

2 6 1
0

1
4

1
8

2
2

2
6

3
0

3
4

3
8

4
3 5
1

5
6

6
3 6
7

7
6

8
0

8
7

9
5

1
05

1
20

1
4

2

1
77

2
3

8

4
4

9

1
3

6
6

2-7 8-36 37-174 177-1366

C
o

u
n

t
o

f
H

ie
ra

rc
h

ie
s

Hierarchy Member Count
(Split by total hierarchy member content 80% / 10% / 9% / 1%)

Figure 2: Distribution of Hierarchy Sizes

4.3 Public Interfaces and Method Novelty

A native interface is defined in this study as all the public methods
provided by a concrete class or abstract class. is includes

inherited public methods from superclasses and interfaces – the
total set of public methods a practitioner needs to deal with for

each class. Analysis of the size of native interfaces among
hierarchy members yields another long-tailed distribution with

80% of hierarchy members having 10 or fewer public methods.
Most inheritance members (and thus hierarchies) have relatively

small (narrow) public interfaces. On the other hand public
interfaces of size 150 all the way up to 1260 were found – these

tended to associated with some external standard or domain
entity.

A potential indicator of hierarchy design quality is how
subclasses add methods to the parent class’s public interface.

ese additional, ‘novel’, methods cannot be invoked on the

parent type and must be accessed indirectly via overridden

methods or via the subclass type itself. Adding methods to the
public interface of a subclass is of limited value if the subclass is

being used as type substitute for a parent - it may suggest that the
hierarchy is emphasizing reuse instead. On the other hand, the

parent type interface may be being used in one design context and
the added methods interface in an extended context. It may

therefore be possible to assess the quality of hierarchy design by
examining how and where novel methods are used.

Across all hierarchies, at depth level one, 47% of added
methods are novel. By the time we get to a depth of four, 84% of

the cumulative method definitions are novel. As depth increases,
it appears the type interface is increasingly novel. On the other

hand, around a twentieth (9542, 6.51%) of the hierarchy members
analysed do not add any novel public methods to their interface.

It is possible that these hierarchy members are mostly, or

completely, motivated by polymorphism. Hierarchies with no

novel methods (7%, 398 in total) appear to be constrained in
growth – with most of these (91%, 364) at depth one and none over

depth three. Overall, nearly a quarter of hierarchy members (5070)
have zero novelty (introduce no new methods).

4.4 Hierarchy Shape

Five distinct hierarchy shapes were found: Line, Fan, Line-Branch,
Branch-Line and Subtrees.

• Line - hierarchy with no branching (BITMAX=1).
• Fan - hierarchy consists solely of one root and its immediate

children (DITMAX=1). (Similar to Lanza’s ‘flying saucer’ shape
[18].)

• Line-Branch - hierarchy root node that has a single child, then
branches later (one or more times)

• Branch-Line - hierarchy root node branches, and has no later
branches, but does have depth of more than one (extended Fan).

• Subtrees - hierarchy consists of a branching root with at least one
other branching node – see Figure 4.

ese categories are based on observations, can be applied to
any hierarchy, and include all possible legal hierarchy structures.

Figure 3 shows the counts of each shape of hierarchy in each of

the systems in the corpus. Most systems show a similar break-

down of shapes, with Line, Fan, then Subtrees being the most
popular (note the logarithmic scale).

Line dominates – a further indication that much of the
inheritance present in systems is uncomplicated. e next most

common shape in each system is Fan, which represent many one-
deep variations on a single superclass. e Line and Fan shapes

account for 74% (1801) of all hierarchies examined – 94% (979) of
Line-shaped hierarchies are of depth one, and all but one Line

hierarchy is shallow (DITMAX 1-3), indicating also that depth

ant aoi argouml axion azureus columba eclipse freecol freecs freemind galleon gizmoball jdk jhotdraw

Line 29 24 82 7 72 43 490 36 2 22 20 4 192 20

Fan 18 14 41 10 50 49 418 15 4 13 7 2 111 8

Subtrees 5 6 22 7 17 9 224 6 8 2 1 63 7

Branch-Line 8 1 6 5 8 99 1 5 1 32 1

Line-Branch 2 1 11 1 7 3 46 3 3 2 13 1

1

10

100

1000

C
o

u
n

t
o

f
H

ie
ra

rc
h

ie
s

(l
o

g
 s

c
a

le
)

Figure 3: Number of Occurrences of each Shape of Hierarchy in each System

Figure 4: Sub-Trees (yellow nodes abstract / red concrete) -
org.eclipse.jdt.apt.core.internal.declaration.EclipseDeclarationI

mpl

without branching is rare. Additionally, if a hierarchy does not
branch at the root (Line, Line-Branch), it is unlikely to branch

subsequently.
e next most common shape is Subtrees, which capture 86%

of the hierarchies in medium (DITMAX 5-6) and 96% of deep
(DITMAX 7-10) hierarchies – indicating that branching is usually

required for depth. Of the 497 (24%) hierarchies with a width
(BITMAX) greater than four, 53% (263) of these are Subtrees (31%

are Fan), if we consider hierarchies larger than width 19, the
proportion that are Subtrees increases to 79% - so not only do wide

hierarchies branch, their branches branch.
e Subtree category constitutes 15% of hierarchies examined,

but contains 63% of all hierarchy members due to the size of these

hierarchies. is has implications for the perception of inheritance
in a system. With almost two thirds of hierarchy members being

part of wider, deeper, overall larger hierarchies, this may be the
default impression of inheritance usage, even though these

members represent only 15% of hierarchies.

4.5 Abstract Classes

Fieen percent (3408) of hierarchy members are abstract classes,
roughly half of these as hierarchy roots (1760) and half appearing

inside a hierarchy (1648). Fiy four percent (1325) of the
inheritance hierarchies examined contain at least one abstract

class – with 50% (1207) containing one to three abstract classes.
However, there is noticeable variation between systems with

extremes of none and many – jdk notably has a high number of

abstract class hierarchy roots, but many of these implement no

interfaces.
Hierarchies are seen to have either a contiguous backbone

where all the abstract classes in the hierarchy form a contiguous
structure, or a fragmented backbone where gaps appear in the

structure of abstract classes. In the hierarchies observed, only 3%
(70 of 2440) of the hierarchies have abstract classes that are not in

a contiguous sub-graph within the containing hierarchy. When
broken down by hierarchy shape, 93% (65) of these fragmented

hierarchies have a Subtree shape, with the other shape categories
having only a few fragmented hierarchies.

e yellow nodes in Figure 4 represent abstract classes,
therefore the hierarchy shown there is an example of a

‘contiguous abstract backbone’.
A hierarchy is considered out-of-order if it contains a sequence

of types where one type inherits from a less abstract type – this is

direct breach of the DIP - where an abstract class inherits from a

concrete class. Only 6% (146) of hierarchies are out-of-order.
Subtrees again account for 75% (109) of these – so in larger

hierarchies, where a continuous chain of abstractions may be of
most use in managing a complex abstraction, there is more chance

of a breach of dependency inversion (DIP) occurring.

4.6 Method Invocation

If a hierarchy design is intended for type substitution then it

would be expected that most method invocations are to methods
defined by the hierarchy root type. On the other hand, non-root

type method invocation could suggest that the hierarchy members
are making more use of the hierarchy as a reuse mechanism –

though it could also be that non-root methods are legitimately
being used in different design sub-contexts. Forty-five percent of

hierarchy members have no direct method calls (excluding
constructors), perhaps suggesting that they are being accessed

polymorphically – or perhaps they are ‘reuse placemarkers’ in the
hierarchy. In all but one system (freecol) a high majority of

method calls to hierarchy members are either via root types
themselves or via root type methods. 31%-93% (median 71%) of all

hierarchy member method calls were via the root type. e
remainder of method calls are on subtypes split between inherited

methods and local, novel, methods.
Each hierarchy member can be classified as one of: never

directly accessed, accessed only via root-type method calls,

invoked only via local (novel) methods, or invoked using a
mixture of root and local. It is possible to automatically classify

hierarchies using these different access mechanisms: Strict
Polymorphism – all accesses to hierarchy members are via root

type references; Common Interface Polymorphism – all accesses to
hierarchy members are via root type methods; Balanced Reuse –

uses novel methods and at least one invocation of a root method;
Aggressive Reuse – members only accessed via novel methods;

Fragmented – a mixture of the previous.

While it is obvious in the case of Strict and Common Interface

Polymorphism that substitutability is important, the other
categories are less clear. With increasing invocations of non-root

methods, the hierarchies in the reuse-categories appear to be less
well defined by the root of the hierarchy, indicating that

polymorphism is perhaps less important in these cases. With
decreasing method invocations to root methods, these have been

distinguished by the severity of this ‘distance’ from the root type.
Finally, the fragmented category is assigned where there is no

other suitable category.
Fiy-four percent of hierarchies are in the Strict or Common

Interface Polymorphism categories indicating that access to just
over half of hierarchies is exclusively polymorphic. Of these, 47%

are accounted for by Fan and Line hierarchies. Again, it is the
larger hierarchies that tend to be non-polymorphic, suggesting

they are more likely to be driven by reuse (or a mixture of
polymorphism and reuse). It is important to note, again, that these

large hierarchies are where most hierarchy members reside –
those with 37 or more members are usually ‘fragmented’. e

larger hierarchies appear to have ‘inconsistent’ usage paerns. It
is important to stress, as above, the skewing effect of large

hierarchies on what might be viewed as ‘normal’.

4.7 Casting

Closely related to polymorphic access is casting – converting one
type to another usually to access methods specifically associated

with the destination type. is is necessary if we have access to a
subtype via a root type reference and wish to invoke methods

specifically defined in the subtype. Casting, or excessive casting,
may be viewed as a sign of weakness in the design of a hierarchy

[33]. Across the systems, 15-34% (median 24%) of hierarchy
members are involved in cast operations. Of these casts, 89% are
within hierarchy – from one hierarchy member to another, 6% are

into a hierarchy from outside, and 4% are out of a hierarchy from

inside. In terms of average cast per hierarchy member there is a
steady decline from root types to leaf types. is may indicate that

root abstractions are frequently insufficient for meeting the needs
of hierarchy clients in these systems. A limitation of this analysis

is the exclusion of interfaces used within hierarchies.

4.8 Large Hierarchies

Forty-eight of the most complex hierarchies were manually

inspected. Twelve of these hierarchies were identified as
‘generalisation (is-a)’ hierarchies. Seven were characterized as

‘grouping’ hierarchies where the root abstraction is small and
well-defined but does not define the subclasses and there is lots of

semantic variation in the hierarchy. Eight are characterized as
‘cross cuing concern’ where the hierarchy represents an aspect

or trait representing an implementation detail or architectural
abstraction e.g. a design paern. e remaining 21 of these large

hierarchies could not be easily classified. It was also found that
25/48 of the large hierarchies were related to recognized

architectural features – mainly design paerns. Two other
motivations for large hierarchies appeared to be as frameworks

hooks [10] – well defined application plugin points – and
‘specification ties’ where the structure appeared closely bound to

an external standard e.g. a document standard.
Forty-five of these large hierarchies show a Fragmented or

Balanced Reuse invocation profile, with only the most generic
hierarchies having Common Interface Polymorphism. Most (36)

also show a mixture of overriding and new methods. Both reuse

and substitutability appear to be strong design factors for some

large hierarchies but not all.
ere is no indication that external motivations for large

hierarchies correspond to empirical properties, indicating that
understanding of both is necessary to assess these hierarchies.

e deepest hierarchy encountered (eclipse EventManager,
DITMAX=10) is an efficient replacement for a common Java

library type (java.util.Observable). However, it appears that many
of the sub-classes of EventManager are “implementation

inheritance” [19] seeking to re-use EventManager public methods
and functionality while, in many cases, ignoring the accumulated

functions of the superclasses. e next two deepest (eclipse
Viewer and eclipse Window) have 85 and 361 members

respectively. eir characteristics include being both wide and
deep, having some continuous abstract backbones, having

fragmented method invocation – some subtypes manipulated

directly (particularly as depth increases) and some via root type

methods.

5 ANSWERS TO RESEARCH QUESTIONS

5.1 RQ1: How is inheritance used in the corpus?

Inheritance is present in significant amounts in the corpus –

typically over 50% of all types are defined using inheritance, over
80% if interface implementation is included, and 64% of concrete

classes are defined using inheritance (median values across the 14
systems). Inheritance is therefore clearly very important to

soware design and construction using Java.

However, most of these hierarchies are very simple in
structure – 80% of hierarchies contain seven members or less,

most inheritance is shallow (71% depth one, 19% depth two), most
hierarchies (64%) are either width one or two. Most hierarchy

members are only extended once or twice. Depth rarely goes
beyond four. Width is less constrained, oen reaching 10 and

oen going beyond this. e simplicity of most hierarchies may
mean that they are relatively easy to understand and maintain and

that there is lile need to be concerned about their overall design
quality.

Large hierarchies were rare, only 2% were depth four or more
(and most of these were in two systems – jdk and eclipse). Only
nine hierarchies out of 2440 were of depth greater than six. Wider

hierarchies are more common – 229 hierarchies of width ten or
more, 44 hierarchies with a width of 44 or more (again eclipse

contributed 50% of these). Although larger hierarchies form a
small percentage of the overall population, these are where the

majority of hierarchy members reside (63% of hierarchy
members). erefore, developers are just as likely, or more likely,

to encounter a class siing in a large hierarchy as a small
hierarchy. In terms of design quality, it seems that it is the small

number of larger hierarchies that warrant close design

consideration.

5.2 RQ2: How can inheritance hierarchies be
characterised?

Hierarchies can be categorised by shape (Line, Fan, Line-Branch,

Branch-Line, Subtrees) – which are present in similar proportions
across the systems analysed here. Many hierarchies are simple

(Line and Fan) reflecting again that much inheritance seems
trivial. Hierarchies can grow arbitrarily wide, indeed, deeper

hierarchies without branching are rare and very deep hierarchies
always branch.

Over half of the hierarchies examined were categorised as
Strict or Common Interface Polymorphism where access is

exclusively polymorphic – via the root type or the root type

defined methods only. Of these, 47% are accounted for by Fan and

Line hierarchies. Hierarchy members with no-novel methods are
usually in shallow hierarchies.

It is the larger hierarchies that tend to be non-polymorphic,
suggesting they are more likely to be driven by reuse. Overriding

declines with depth in a hierarchy, while novel methods continue
to be added, indicating that initial subclasses tend to refine root

behaviour, and deeper subclasses tend to add behaviour.
e most obvious and significant influence on large hierarchies

are elements from the problem or solution domain such as a
protocol, document format, or design paern. ese provide

regularity in the hierarchies which allows faster comprehension
and identification of inconsistent structure. ese are specific to

each hierarchy however, and do not necessarily inform a general
inheritance assessment strategy.

e use of abstract classes to form structures within

hierarchies is common, but not universal. is abstract structure

is generally continuous within a hierarchy or not present at all,
though in very larger hierarchies this structure becomes

fragmented.

Casting is common in the examined systems, including a
significant number of casts involving inheritance hierarchy

members. Root abstractions are commonly being bypassed, which
may mean that reuse has come at the cost of poor abstraction.

Alternatively, it may just be that clean, versatile abstractions are
hard to define in some cases.

5.3 RQ3: To what extent can inheritance usage
patterns be related to design quality?

Much of the design quality guidance relating to inheritance is

structural advice. For example, metrics such as C&K, code smells
and tools such as Sonarbe focus on depth of hierarchy.

Sonarbe by default highlights a depth of six or more. Others
have debated various depths at which potential maintenance

issues can arise. Previous census studies have found the majority
of inheritance is at depth two or less [9]. e results here are

consistent with that finding – here 98% of hierarchies are smaller
than depth four. Wide hierarchies are more common. Arguably,

width is less of a design challenge than depth since subclasses at

the same level can oen be understood independently of their
neighbours. As a simplistic indicator, a depth of more than three

or four seems a good indicator that a hierarchy might warrant
closer examination – especially given the finding that deeper

hierarchies are more likely to add novel methods that cannot be
accessed directly through the hierarchy root type.

e majority of classes defined by inheritance reside in ‘large’
hierarchies – hierarchies of depth four or greater and with tens or

hundreds of members. Design guidance that relates to such
hierarchies includes LSP - polymorphic rather than reuse

hierarchies [20, 22, 28] and DIP – depend on abstractions [21]. e
findings here suggest that analysis of hierarchy method definition,

hierarchy method invocation, use of abstract classes and casting,
together, offer potential insights into the nature and quality of a

hierarchy – in particular the extent to which it is being used
polymorphically or for reuse. Such analyses offer potential

insights into areas within larger hierarchies that are starting to

dri from the root purpose and could be beer broken into

separate hierarchies or achieved using an alternative mechanism
such as interface implementation and composition.

Only 15% of hierarchy members are abstract, a lower
proportion than expected if DIP was being pursued rigorously.

Part of the explanation for this is the small size of the majority of
hierarchies. When abstract classes are present they usually occur

in a ‘continuous backbone’. ere also appears to be an ‘all-or-
nothing’ approach to the use of abstract classes – possibly

indicating different practitioner styles [6]. As hierarchies grow
very large, the abstract backbone tends to become fragmented.

Ninety three percent of ‘fragmented hierarchies’ and 75% ‘out of
order’ hierarchies were Subtrees – again an indicator that it is

these hierarchies that warrant closer design aention.
Meyer’s taxonomy for inheritance [22] describes three broad

categories of inheritance use, depending on the model inspiring

the hierarchy: model inheritance (is-a relationships in the problem

domain), soware inheritance (solution domain relationships),
and variation inheritance (similarity or difference relationships).

ere is evidence that model and soware inheritance are present

in significant amounts in the large hierarchies examined, and that
these supersede the need for some lower level guidance. However,

these were detected via manual inspection and do not have
consistent indicators in the counting metrics. is is consistent

with previous aempts to validate this taxonomy [8].

6. DISCUSSION AND IMPLICATIONS

It is clear from this study and related studies [31] that inheritance
is widely used in real-world objected-oriented systems wrien in

Java. Typically, over 60% of concrete classes were defined using
inheritance in the systems analysed here. Inheritance is therefore

a key topic for object-oriented practitioners and for students
studying soware development. Given both its subtyping and

reuse benefits, but also the risks of associated complexity, it is
therefore important to investigate whether inheritance usage and

teaching could or should be limited to ‘best practice paerns’.

is study confirms findings from previous work that much

inheritance usage is in the form of very simple structures –
structures that can provide subtyping and reuse benefits with lile

danger of adding unnecessary complexity to soware. e large
majority of hierarchies found in this study are depth one or two

and take the form of Line (width one) or Fan (depth one)
hierarchies. e majority of hierarchies had less than seven or less

members. ese shallow depth findings are consistent with
Ferreira et al. who found a ‘typical’ value of depth two [9] and

Tempero et al. who observed that most classes appear in the
shallow parts of hierarchies [31].

e simplicity of this majority of hierarchies is likely to mean
that they are relatively easy to understand and maintain, and that

there may be lile need to be concerned about their overall design
quality while they remain so simple.

A typical example of such a ‘simple’ hierarchy is

org.eclipse.swt.widgets.Dialog. is is a ‘Fan’ hierarchy with seven

leaves. ere is no overriding in this hierarchy – the shared
behaviour from the abstract root type is a ‘minimal’ set of

behaviour/functionality. e lack of overriding makes each leaf in
the hierarchy a simple extension of the root type.

Although large hierarchies are rare, because of their size, these
are where many members that are defined reside. It is this small

number of large hierarchies that warrant close design aention.
How can they be identified and what criteria might be used to

assess their design quality?
A simple source of identification is depth. In the analysed

systems, almost all hierarchies were depth one or two, 98% were
depth four or less. Certainly hierarchies beyond a depth of four

warrant close design aention. Again these depth findings are
reasonably consistent with previous work. In a survey of

practitioners, Gorsheck et al. obtained preferred thresholds of
three or five for inheritance depth [14] (although 20% of

respondents did not care about inheritance maximum depth, and
31% responded “indicating an awareness of depth but a tendency

not to act on this information”). Riel [25], code smells [28] and
Sonarbe [3] have set higher thresholds of depth of six. is

work indicates that such depth are rare, and only occur in the
largest systems.

One issue to be aware of is that, in this study, the largest
systems contained the deepest hierarchies. Although deep

hierarchies were very rare, if the study had included more of these
large systems (those with thousands of user-defined types) then

more large hierarchies may have been found. ere is no reason
to expect the overall percentage of large hierarchies to alter,

however. Also, the two largest systems studied here are mature
frameworks which have been subject to intense design effort over

the last decade or longer.
Almost all the systems in the study corpus had ‘wide’

hierarchies - exceeding the ‘bad smell’ advice of width nine [28].
Although, most hierarchies were also narrower than Johnson and
Foote’s maximum width of 27 [17]. Again, many of these wider

hierarchies are very shallow, and as such are considered unlikely
to cause significant maintenance challenge. Wider hierarchies

may create more paths from root to leaf, but sibling classes at the
same depth do not increase complexity in the way ancestors do. It

is suggested that width, particularly shallow width, is more likely
to be associated with type substitutability rather than reuse – as

demonstrated by the eclipse Dialog example described above.
Other than depth, what other factors may indicate problems

and how can these larger hierarchies be assessed for quality? is

research identified five different hierarchy shapes. Two of these

shapes are the simplest of hierarchy structures Line and Fan, and
again they are the most common. Two related shapes, Branch-

Line and Line-Branch also appear relatively unproblematic, due to
their inherent lack of branch-points. It is the Subtree hierarchies,

with multiple branch-points – see Figure 4, that tended to be the
largest and most complicated. So as well as depth, number of

branch-points may be an indicator that a hierarchy warrants close
design aention.

Examining how a hierarchy defines methods and how those
methods are invoked throughout the system may provide deeper

insights into the fundamental nature and quality of an inheritance
hierarchy. If a hierarchy is being used polymorphically, in keeping

with LSP, it would be expected that access would mainly be
through the hierarchy root type or at least through methods

defined by the root type. Characterisation of hierarchies in this
way may help distinguish hierarchies that are designed with

polymorphism in mind as opposed to those that are designed for
reuse (or both).

For example, a Fan with Strict Polymorphism and uniform
overriding in the leaves is a comprehensible, regular structure

regardless of how wide it becomes. While a structure with
inconsistent paerns of overriding may indicate a poorly defined

abstraction. Assessing local regularity may be more useful than
concern over comparing numerical values between hierarchies.

is may provide guidance for interpreting the ‘fitness for
purpose’ of a hierarchy. If this is generally the case, this may

indicate that once overriding stops in a hierarchy, the deeper
portions which are merely adding new behaviour may instead be

‘composed’ with the shallower parts of the hierarchy. On the
other hand, it seems quite valid to add novel methods which are

only to be used in a localized context within a design while
general usage of the class is restricted to root type method access.

Another finding is that many of the larger complicated
hierarchies are strongly influenced by a problem or solution

domain model. If a hierarchy satisfies other design criteria
(usefulness, domain modelling, low complexity), a depth cut-off

seems arbitrary. ese relationships appear harder to detect
automatically but are oen quite visible under manual analysis. A

problem is that some of the largest hierarchies appeared initially
motivated by such factors but had then grown out of control and

become major legacy issues for their containing designs. is is
where it seems the biggest inheritance design challenges reside –

being able to detect that a hierarchy is losing its original design
motivation and quality, and being able to recognize that an
alternative design structure would be more appropriate.

7. THREATS TO VALIDITY

Using open-source systems as a proxy for real-world development

is a threat to the external validity of this work. Given the difficulty

of analysing propriety program code, open-source is oen used as
a substitute for closed source soware. However, it is important

to be aware that there are real risks in doing so, these open-source
systems are unlikely to be subject to the same design and review

practices associated with commercial soware.
ere are also external validity dangers in the selection of the

corpus used in this study. Care was taken to select a range of
system sizes, problem domains and system maturity levels. It is

argued that the corpus shares similarities with corpora used in
comparable studies. Some of the high level findings such as the

prevalence of inheritance suggest that the corpus properties are
in keeping with related research.

Although many of the findings appear consistent across the
systems, the deeper and more complex inheritance hierarchies

occur in the two largest systems (eclipse and jdk). Tempero et al.

noted in their work that “the depth of classes in the inheritance tree,

does not increase with program size” [31], but here it is the two
largest systems that contain the majority of these rare deep

hierarchies. It is perhaps the case that there is more opportunity
to accommodate deeper hierarchies in larger systems.

In terms of internal validity, the size of the corpus was on the
small side compared to earlier census-style research. e reason

for the relatively small corpus size, 14 systems, was the depth of
analysis performed. Each system had its own particular package

configuration which required understanding. Extracting and fully
analysing the source code for each individual system was a

significant effort.
In terms of construct validity, creating a new tool carries with

it inherent risks. At each stage in the building process the results
from the tool were compared with reference hierarchies in the

testing suite. In addition, spot checks were carried out on the
actual corpus results to confirm that the tool had correctly

recorded inheritance structures. Finally, any easily reachable
measures that could serve as a checksum were used for data

validation e.g. depth of inheritance (DIT) and number of children
(NOC).

8. CONCLUSIONS

It was found that inheritance was heavily used in the corpus. In
most of the systems at least 50% of the concrete classes that are

defined are involved in an inheritance relationship.
Most hierarchies are of depth one, or two maximum. Many

hierarchies are of width one. Width one was described as a Line
shape and depth one as a Fan. Together, these account for 74% of

all hierarchies in the analysed systems. Over 80% of hierarchies
contained seven or less members. It is suggested that most of these

hierarchies are unlikely to cause major comprehension or
maintenance issues - even if they are being used for reuse rather

than type substitutability.
Despite the relatively small number of larger hierarchies, this

is where the majority of classes defined via inheritance reside – as
much as 63% of classes sit in the larger hierarchies. Developers are

therefore just as likely to encounter a class defined in one of these
hierarchies. It is these hierarchies that should be the focus of most

design effort.
How can the design quality of these hierarchies be assessed in

a practical way? It was found that many of the large, apparently
complex hierarchies, were modelling a problem domain or

solution concept such as a document standard or a design paern.
However, these required close manual examination to determine

this.
Depth of hierarchy remains a simple warning of potential

hierarchy design issues. As stated above many hierarchies are

only depth one or two, 98% are depth four or less. Based on this

data, hierarchies that are of depth four and beyond warrant closer
design aention.

A novel contribution of this research is the characterization of
hierarchies by shape. Most hierarchies are Line or Fan in shape.

Many others are Line-Branch or Branch-Line. e deepest, most
complex hierarchies are Subtree in shape, with multiple branch-

points. Along with depth, multiple branch points seems another
practical indication that the design of the hierarchy should be

examined in more detail.
A further new contribution is the characterization of

hierarchies by method definition and method invocation. ese
analyses enable determination of the extent to which a hierarchy

member is being accessed polymorphically – through its root type
or through root type methods. In practice, this would seem to

indicate good quality hierarchy design in keeping with the Liskov

Substitution Principle.

Another new finding is that many hierarchies added novel
methods that could not be accessed directly via the root type, and

that novelty increased noticeably as hierarchy depth increased.
is is another indicator that increased hierarchy depth is more

likely to be a concern. e addition of novel methods may be an
indication that a hierarchy is being used for reuse rather than type

substitution – not necessarily a poor practice, but again a potential
design warning sign. Type casting to access novelty is likely to be

another hierarchy design danger sign.
A topic for further research is the study of inheritance

hierarchy evolution. Some of the key findings here on shape,

particularly branching, and hierarchy characterization in terms of
root method access and novel method addition, could be used as

warning signs as a hierarchy evolves. ere is potential to study
the complexity of the identified inheritance shapes and also any

possible relationship to defect occurrence. Refactoring advice
might be given based on the identified usage paerns and

structures.
Finally, this study did not include interfaces and their

implementation in much of the analysis. Interfaces are oen found
at the roots of hierarchies and, potentially, much of the access to

hierarchy members is through interface-defined types. Future
studies should therefore integrate interface analysis with

inheritance analysis.

9. REFERENCES
[1] Baxter, G., M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser, H.

Melton, and E. Tempero. Understanding the Shape of Java Software.
in ACM Sigplan Notices. 2006. ACM.

[2] Bloch, J., Effective Java. 2008: Pearson Education India.
[3] Campbell, G. and P.P. Papapetrou, Sonarqube in Action. 2013:

Manning Publications Co.
[4] Cass, S., 2017. The 2017 Top Ten Programming Languages. IEEE

Spectrum, July.
[5] Chidamber, S.R. and C.F. Kemerer, 1994. A Metrics Suite for Object

Oriented Design. IEEE Transactions on software engineering. 20(6):
p. 476-493.

[6] Chow, J. and E. Tempero. Stability of Java Interfaces: A Preliminary
Investigation. in Proceedings of the 2nd International Workshop on
Emerging Trends in Software Metrics. 2011. ACM.

[7] Collberg, C., G. Myles, and M. Stepp, 2007. An Empirical Study of
Java Bytecode Programs. Software: Practice and Experience. 37(6): p.
581-641.

[8] English, M., J. Buckley, and T. Cahill. Applying Meyer's Taxonomy to
Object-Oriented Software Systems. in Source Code Analysis and
Manipulation, 2003. Proceedings. Third IEEE International Workshop
on. 2003. IEEE.

[9] Ferreira, K.A., M.A. Bigonha, R.S. Bigonha, L.F. Mendes, and H.C.
Almeida, 2012. Identifying Thresholds for Object-Oriented Software
Metrics. Journal of Systems and Software. 85(2): p. 244-257.

[10] Froehlich, G., H.J. Hoover, L. Liu, and P. Sorenson. Hooking into
Object-Oriented Application Frameworks. in Proceedings of the 19th
international conference on Software engineering. 1997. ACM.

[11] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. 1994: Pearson
Education.

[12] Gill, N.S. and S. Sikka, 2011. Inheritance Hierarchy Based Reuse &
Reusability Metrics in Oosd. International Journal on Computer
Science and Engineering. 3(6): p. 2300-2309.

[13] Gîrba, T., M. Lanza, and S. Ducasse. Characterizing the Evolution of
Class Hierarchies. in Ninth European Conference on Software
Maintenance and Reengineering. 2005. IEEE.

[14] Gorschek, T., E. Tempero, and L. Angelis. A Large-Scale Empirical
Study of Practitioners' Use of Object-Oriented Concepts. in 32nd
International Conference on Software Engineering. 2010. IEEE.

[15] Harrison, R., S. Counsell, and R. Nithi, 2000. Experimental
Assessment of the Effect of Inheritance on the Maintainability of
Object-Oriented Systems. Journal of Systems and Software. 52(2): p.
173-179.

[16] ISO, Iec/Ieee 24765: 2010 Systems and Software Engineering-
Vocabulary. 2010, Technical report, Institute of Electrical and
Electronics Engineers, Inc.

[17] Johnson, R.E. and B. Foote, 1988. Designing Reusable Classes. Journal
of object-oriented programming. 1(2): p. 22-35.

[18] Lanza, M., 2003. Object-Oriented Reverse Engineering Coarse-
Grained, Fine-Grained, and Evolutionary Software Visualization.

[19] Liskov, B., 1988. Keynote Address-Data Abstraction and Hierarchy.
ACM Sigplan Notices. 23(5): p. 17-34.

[20] Liskov, B.H. and J.M. Wing, 1994. A Behavioral Notion of Subtyping.
ACM Transactions on Programming Languages and Systems
(TOPLAS). 16(6): p. 1811-1841.

[21] Martin, R.C., Agile Software Development: Principles, Patterns, and
Practices. 2003: Prentice Hall PTR.

[22] Meyer, B., 1996. The Many Faces of Inheritance: A Taxonomy of
Taxonomy. Computer. 29(5): p. 105-108.

[23] Mikhajlov, L. and E. Sekerinski, 1998. A Study of the Fragile Base
Class Problem. ECOOP’98—Object-Oriented Programming. p. 355-
382.

[24] Radjenović, D., M. Heričko, R. Torkar, and A. Živkovič, 2013.
Software Fault Prediction Metrics: A Systematic Literature Review.
Information and Software Technology. 55(8): p. 1397-1418.

[25] Riel, A.J., Object-Oriented Design Heuristics. 1996: Addison-Wesley
Longman Publishing Co., Inc.

[26] Sabané, A., Y.-G. Guéhéneuc, V. Arnaoudova, and G. Antoniol,
2016. Fragile Base-Class Problem, Problem? Empirical Software
Engineering. 22(5): p. 2612–2657.

[27] Stevenson, J. and M.I. Wood, 2017. Recognising Object-Oriented
Software Design Quality: A Practitioner-Based Questionnaire Survey.
Software Quality Journal.

[28] Suryanarayana, G., G. Samarthyam, and T. Sharma, Refactoring for
Software Design Smells: Managing Technical Debt. 2014: Morgan
Kaufmann.

[29] Taenzer, D.H., M. Ganti, and S. Podar. Problems in Object-Oriented
Software Reuse. in ECOOP. 1989.

[30] Tempero, E., C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H.
Melton, and J. Noble. The Qualitas Corpus: A Curated Collection of
Java Code for Empirical Studies. in Software Engineering Conference
(APSEC), 2010 17th Asia Pacific. 2010. IEEE.

[31] Tempero, E., J. Noble, and H. Melton, How Do Java Programs Use
Inheritance? An Empirical Study of Inheritance in Java Software, in
Ecoop 2008–Object-Oriented Programming. 2008, Springer. p. 667-
691.

[32] Tempero, E., H.Y. Yang, and J. Noble. What Programmers Do with
Inheritance in Java. in European Conference on Object-Oriented
Programming. 2013. Springer.

[33] Van Emden, E. and L. Moonen. Java Quality Assurance by Detecting
Code Smells. in Ninth Working Conference on Reverse Engineering.
2002. IEEE.

[34] Yue, K.-B., T.A. Yang, W. Ding, and P. Chen, 2004. Open Courseware
and Computer Science Education. Journal of Computing Sciences in
Colleges. 20(1): p. 178-186.

