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ABSTRACT 

Age is the dominant risk factor for most chronic human diseases; yet the mechanisms by which aging 

confers this risk are largely unknown.1 Recently, the age-related acquisition of somatic mutations in 

regenerating hematopoietic stem cell populations was associated with both hematologic cancer 

incidence2–4 and coronary heart disease prevalence.5 Somatic mutations with leukemogenic potential 

may confer selective cellular advantages leading to clonal expansion, a phenomenon termed ‘Clonal 

Hematopoiesis of Indeterminate Potential’ (CHIP).6 Simultaneous germline and somatic whole 

genome sequence analysis now provides the opportunity to identify root causes of CHIP. Here, we 

analyze high-coverage whole genome sequences from 97,691 participants of diverse ancestries in the 

NHLBI TOPMed program and identify 4,229 individuals with CHIP. We identify associations with blood 

cell, lipid, and inflammatory traits specific to different CHIP genes. Association of a genome-wide set 

of germline genetic variants identified three genetic loci associated with CHIP status, including one 

locus at TET2 that was African ancestry specific. In silico-informed in vitro evaluation of the TET2 

germline locus identified a causal variant that disrupts a TET2 distal enhancer. Aggregates of rare 

germline loss-of-function variants in CHEK2, a DNA damage repair gene, predisposed to CHIP 

acquisition. Overall, we observe that germline genetic variation altering hematopoietic stem cell 

function and the fidelity of DNA-damage repair increase the likelihood of somatic mutations leading 

to CHIP.  
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The U.S. National Heart, Lung, and Blood Institute (NHLBI) Trans-omics for Precision Medicine (TOPMed) 

project seeks to use high-coverage (>35x) whole genome sequencing (WGS) and molecular profiling to 

improve fundamental understanding of heart, lung, blood, and sleep disorders.7 Within the TOPMed 

program, we designed a study to detect CHIP from blood DNA-derived WGS in 97,691 individuals across 

52 largely observational epidemiologic studies to discover the inherited genetic causes and phenotypic 

consequences of CHIP (Supplementary Table 1).  

To confidently identify somatic mutations in blood-derived DNA, we analyzed TOPMed WGS data with 

the GATK MuTECT2 somatic variant caller.8 We performed several quality control steps to identify and 

remove sequencing artifacts and germline mutations from the call set (see Methods). We used 

previously described methods to identify CHIP carriers on the basis of a pre-specified list of 

leukemogenic driver mutations in genes known to promote clonal expansion of hematopoietic stem 

cells (Supplementary Table 2).5  

In total, we identified 4,938 CHIP mutations in 4,229 individuals (Supplementary Table 3). Consistent 

with prior reports, >75% of these CHIP mutations were in one of three genes, DNMT3A, TET2, and 

ASXL1. Approximately 15% of these CHIP mutations were in the five next most frequent genes (PPM1D, 

JAK2, SF3B1, SRSF2 and TP53, Figure 1a). Amongst these 8 most commonly mutated genes, there was 

marked heterogeneity in clonal fraction. For example, among the top three genes, DNMT3A CHIP clonal 

fraction of the peripheral blood  was ~25% smaller (p= 1.3 x 10-15) and TET2 clones were ~14% smaller 

(p=2.1 x 10-4) than ASXL1, implicating the presence of driver mutation gene-specific differences in clonal 

selection (Figure 1b). Amongst the 4,229 individuals with CHIP driver mutations, 3,822 (90%) had a 

single mutation identified, and only 54 individuals (1%) had 3 or more CHIP driver mutations (Figure 1c). 

CHIP prevalence was strongly correlated with age at blood draw (p < 10-300, Figure 1d). The CHIP-age 

association was highly consistent across studies (Extended Data Figure 1) and comparable to previous 

reports2–4 which detected CHIP by whole exome sequencing (Extended Data Figure 2). Consistent with 

prior studies, history of smoking was associated with increased CHIP odds (OR = 1.18, p=5 x 10-5) 

whereas Hispanic ancestry and East Asian ancestry were each associated with reduced CHIP odds (OR = 

0.50, p=0.008 and OR = 0.56, p=0.001 respectively). Male sex was associated with increased CHIP in 

univariate models, but this association did not persist in multi-variate models (Supplementary Table 4) 

We considered whether there were differences in the CHIP age distributions by mutational mechanisms 

and driver gene. Carriers of frameshift CHIP mutations were on average older individuals than carriers of 

single nucleotide CHIP mutations (Wilcox rank sum test: p=0.01). JAK2 CHIP carriers were the youngest. 

Relative to JAK2, ASXL1 and TET2 carriers were 3.3 and 3.9 years older respectively (p=0.01, p=9.1 x 10-

4), while PPM1D, SF3B1 and SRSF2 carriers were  5.0, 6.9 and 7.7 years older (p=5.7 x 10-4, 1.8 x 10-6, 1.3 

x 10-4)  (Extended Data Figure 3). 

CHIP is typically distinguished from other clonal hematologic disorders based on the absence of 

cytopenia, dysplasia, and neoplasia.6 We considered whether there were sub-clinical hematologic 

correlates of CHIP that might have utility in identifying CHIP carriers.  We observed a modest increase in 

total white blood cell count (p=1.1 x 10-5) and a modest decrease in hemoglobin (p=0.04), among those 

with CHIP compared to those without (Figure 2a, Supplemental Table 5). In aggregate, CHIP driver 

mutations were associated with increased red blood cell distribution width (RDW, p=3.0 x 10-5) 

consistent with prior observations.9 Notably, RDW is a hematologic parameter that increases with age 

and predicts overall mortality and poor clinical outcomes in the setting of CVD and in older adults.10 
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Disaggregating by the 8 most common driver genes, we noted consistently elevated blood cell counts 

and specifically associations with increased platelets (p=2.5 x 10-77), basophils (p= 6.0 x 10-18) and 

neutrophils (p=8.7 x 10-9) in JAK2 CHIP mutation carriers. 

Given the prior association of CHIP with atherosclerotic cardiovascular disease5, we asked whether CHIP 

carriers had altered lipid profiles. Consistent with prior reports5, we observed negative correlations 

between JAK2 and total cholesterol (p=5.1 x10-4) and LDL (p=0.0014) but no other significant 

associations (Figure 2a, Supplemental Table 6).  

Hypercholesterolemic mice receiving Tet2-/- bone marrow have marked upregulation of macrophage 

cytokine signaling compared to hypercholesterolemic mice receiving wild-type bone marrow and 

pharmacologic manipulation of the IL-6/IL-1b axis mediates atherogenesis in mice.5,11 As a result, we 

sought to define the human inflammatory profile of CHIP carriers (Figure 2a, Supplemental Table 7). In 

aggregate, CHIP was associated with increased IL-6 (p=0.0035) and nominally associated with increased 

IL-1b (p=0.026). There was no association of CHIP with quantitative C-reactive protein (CRP) levels and 

elevated CRP did not reliably identify carriers of CHIP (AUC: 0.55; for cutoff of CRP>2: PPV=6.3%, 

sensitivity=60%). CHIP driver gene-specific analyses highlighted notable differences. For example, TET2 

CHIP carriers were associated with significantly increased IL-1b (p=2.4 x 10-4). Carriers of JAK2 CHIP and 

SF3B1 had increased circulating IL-18 (p=1.3x10-4 and 1.27 x10-20 respectively).  

Germline genetic variants have been previously associated with clonal hematopoiesis, defined either by 

somatic mosaicism of SNVs and indels12 or by chromosomal rearrangements with appreciable clonal 

fraction13, in individuals of European ancestry, and identified variants at a single locus, TERT, that 

associates with clonal hematopoiesis. Given the distinct association of clonal hematopoiesis with known 

leukemogenic mutations (i.e., CHIP) with both cancer14 and atherosclerotic cardiovascular disease5, we 

sought to specifically discover germline genetic variations conferring increased risk for CHIP acquisition. 

We performed a single variant genome-wide association analysis in a subset of 65,405 individuals (3,831 

CHIP driver cases) where the likelihood of having a CHIP mutation was >1% (see Methods). The trait 

heritability explained by the analysis with LD score-regression was 3.6%.  

Our WGS-based association analysis of CHIP replicated the lead variant of the single locus previously 

associated at genome wide significance with clonal hematopoiesis (defined based on somatic mosaicism 

of SNVs and indels),12 rs34002450 (OR 1.2, p=2.0 x 10-13). rs34002450 is in strong LD (r2=0.55) with our 

lead variant at this locus rs7705526, a common variant (MAF 0.29) in the 5th intron of TERT, which 

encodes telomere enzyme reverse transcriptase. In TOPMed, carriers of the rs34002450 A (minor) allele 

have a 1.3-fold risk of developing CHIP (p=8.4x10-24). This variant was previously significantly associated 

with increased leukocyte telomere length.15 This variant was also associated with myeloproliferative 

neoplasms (MPN, see Bao et al, co-submitted manuscript) and clonal chromosomal mosaicism13. In a 

phenome-wide association analysis (PheWAS) of rs34002450 in UK Biobank, we identified significant 

increased risk of MPN  (p=2.6 x 10-13), uterine leiomyoma (p=3.2 x 10-9), brain cancer (p=3.6 x 10-8) and a 

decreased risk of Seborrheic keratosis (p=1.4 x 10-7).  

We performed a conditional analysis of the 14 other genome-wide significant SNPs at the TERT locus, 

conditioning on the lead SNP, to see if there were any additional signals that were independent of 

rs7705526. We identified a second intronic TERT variant rs13167280 (MAF 0.11, r2=0.2 with rs7705526) 

that independently associates with CHIP status (OR 1.3, p=6.1x10-10; conditional OR: 1.1, p=4.7 x 10-4).  
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In the TOPMed single-variant association analysis, we additionally identified 2 other novel genome-wide 

significant genetic loci, including one locus on chromosome 3 in an intergenic region spanning 

KPNA4/TRIM59 and one locus on chromosome 4 near TET2 (Figure 3, Extended Data figure 4, 

Supplementary Table 8).  

rs1210060191 is a common variant (MAF 0.54) in a locus with an association signal that spans a 300kb 

region that includes KPNA4, TRIM59, IFT80, and SMC4.The lead variant is a 1 bp intronic deletion in 

TRIM59. Carriers of the del(T) allele have a 1.16-fold increased risk of CHIP (p=5.3x10-10) Variants in LD 

with this variant have been identified as associated with MPN (Bao et al, co-submitted manuscript) No 

other significant phenotype associations were noted in UK Biobank PheWAS analyses. 

rs144418061 is an African ancestry specific variant (MAF 0.035 in African Ancestry samples, not present 

in non-African-ancestry samplies) in an intergenic region near TET2. Carriers of the A allele, have a 2.4-

fold increased risk for CHIP (p=4.0x10-9). The association is equally robust for DNMT3A CHIP, TET2 CHIP 

and ASXL1 CHIP, suggesting that the germline variant does not specifically predispose to TET2 CHIP. 

Although other variants in the vicinity of TET2 have been associated with MPN (Bao et al, co-submitted 

manuscript), this variant has not been previously identified as associated with any traits in the literature.  

We considered whether there might be germline variants that predispose to specific CHIP driver 

mutations by performing a GWAS on DNMT3A and TET2 CHIP. We identified a single novel locus for 

DNMT3A chip at rs2887399 in an intron of T-cell leukemia/lymphoma 1A (TCL1A). Carriers of the T allele 

(MAF 0.26) are at 1.23 fold increased risk of acquiring a DNMT3A CHIP mutation (p=3.9 x 10-9). 

Intriguingly carriers of the T allele are at decreased risk of acquiring a TET2 CHIP mutation (OR: 0.82, 

p=.0012), and consequently it was not identified in the primary CHIP GWAS analysis. This variant has 

also recently been associated with mosaic loss of chromosome Y.16 

As single-variant analyses have limited power to detect rare-variant associations, we next performed 

several types of variant aggregation association tests. We performed a transcriptome-wide association 

analysis to quantify the relationship between changes in gene expression and genetic predisposition to 

CHIP.17,18 This approach identified the Chr3 KPNA4/TRIM59 locus and six additional loci including: AHRR, 

ASL, KREMN2, LEAP2, JSRP1, RASEF. (Extended Data Fig. 5-6) AHRR directs hematopoietic progenitor cell 

expansion and differentiation.19 

We also performed gene-based association tests for aggregations of rare (MAF<0.1%) putative loss-of-

function (pLOF) germline variants within genes for CHIP presence. We considered all genes where at 

least ten individuals in the dataset were pLOF carriers. (15,031 genes with at least 10 LoF carriers, 

alpha=3.3 x 10-6) We filtered out all variants that were putatively somatic from the germline call set. 

Although no genes reached exome-wide significance, the top associated gene was DNA damage repair 

gene CHEK2 (OR 1.7, p=1.3x10-5, Supplementary Table 9). Rare germline variants in CHEK2 are 

implicated in the pathogenesis of a diverse set of hematologic and solid tumor malignancies.17,18 

Common variants in CHEK2 have previously been associated with MPN19 and a low frequency frameshift 

CHEK2 mutation has been associated with somatic chromosomal mosaicism13. In recent experimental 

work, suppression of CHEK2 in human cord blood Lin-CD34+
 cells increased cellular proliferation in long 

term culture. (Bao et al, co-submitted manuscript) These results suggest that while CHEK2 while may 

ordinarily limit hematopoietic stem cell expansion, loss of CHEK2 function may promote self-renewal 

increasing risk of CHIP. 
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We next sought to determine whether rare variants in non-coding regions associate with CHIP 

acquisition. We used a chromatin-state model to predict gene-enhancer pairs in hematopoietic stem 

cells and aggregated rare variants in these enhancer elements by target gene.20 There were 2453 sets of 

enhancer regions with at least 10 individuals carrying a predicted damaging variant (alpha=2.03 x 10-5, 

see Methods). One set of variants in HAPLN1 enhancers exceeded a p-value threshold of p<0.05 after 

Bonferroni-correction (OR: 6.8, p=1.96 x 10-5, Supplementary Table 10). HAPLN1 is an extracellular 

matrix protein, produced in bone marrow stromal cells that has previously been implicated in NF-κB 
signaling.21 

We then asked whether rare non-synonymous coding variants might be associated with clonal fraction 

when CHIP was present in individuals with single identified driver mutation (N = 4188). There were 

19,351 genes where at least 10 individuals had one or more non-synonymous variant (alpha=2.5 x 10-6). 

While no genes exceeded Bonferroni significance, the top gene was Interferon Alpha 1 (IFNA1, p= 2.13 x 

10-5, Supplementary Table 11-12).  

Lastly, we bioinformatically and experimentally characterized the mechanism by which the non-coding 

African American-specific variant at the TET2 locus influenced risk for CHIP. First, iterative conditional 

analysis at the locus suggested that there was most likely only a single causal variant. Fine-mapping 

prioritized 25 variants in the credible set (>99% posterior probability), none of which overlaps the coding 

sequence or promoter of a protein-coding gene. We hypothesized that the causal variant affects an 

enhancer for TET2 in hematopoietic stem cells, because heterozygous Tet2 knockout in mice increases 

the self-renewal of hematopoietic stem cells in vivo and recapitulates the clonal expansion observed in 

humans with somatic mutations in TET2. 5,9 Accordingly, we used the Activity-by-Contact (ABC) model to 

predict which noncoding elements act as enhancers in CD34+ hematopoietic progenitors (see Methods). 

Only a single variant (rs79901204) in this credible set overlapped an element predicted to regulate any 

gene, and that element was indeed predicted to regulate TET2 expression. (Figure 4a, Supplementary 

Table 13) To test whether this variant affects enhancer activity, we tested a 600 base pair region 

containing the regulatory element using a plasmid-based luciferase enhancer assay in CD34+ human 

hematopoietic progenitor cells (Figure 4b,c). The reference sequence activated luciferase expression by 

40-fold (versus control constructs with no enhancer sequence), while the T risk allele activated 

expression by only 10-fold (Figure 4d). Indeed, the T risk allele disrupts a consensus GATA/E-Box motif, 

likely resulting in reduced binding of the activating transcription factor complex GATA1/GATA2. 

Together, these results suggest that the T risk allele acts to decrease the activity of this enhancer, which 

in turn reduces expression of TET2 to promote self-renewal and proliferation of HSPCs. Thus, in this 

locus both germline noncoding variation and somatic coding variation converge to affect TET2 and 

influence the development of CHIP. 

Given the role of TET2 in DNA de-methylation, we hypothesized that carriers of rs79901204 T allele may 

have differential methylation at the TET2 locus. We performed a methylation-QTL analysis of a subset of 

1592 African Americans and identified significant differential TET2 locus methylation (Extended Data 

Fig. 7, Supplementary Table 14)   

Our observations permit several conclusions. First, our sample size which is nearly an order of 

magnitude larger than prior CHIP analyses2,3,12 enables refinement of CHIP phenotype associations at the 

level of CHIP driver genes. We find that considerable heterogeneity exists across CHIP phenotypes by 

driver gene. For example, IL-1b and IL-18 both activate through the inflammasome and increase IL-6. 
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However, while TET2 CHIP is associated with increased levels of IL-1b, JAK2 and SF3B1 CHIP are 

associated with IL-18. Second, we identify a convergence of common and rare germline genetic 

predisposition to leukocyte telomere length, MPN, somatic chromosomal mosaicism and CHIP, 

suggesting shared causal mechanisms.   

Importantly, to date, only CHIP with leukemogenic driver mutations (as opposed to somatic 

chromosomal mosaicism13 or CHIP with unknown driver mutations12) has been robustly associated with 

non-oncologic diseases independently of age. The partially overlapping genetic predisposition we 

observe across these three clonal phenomena suggest that although there may be similar genetic 

architecture that predispose individuals to acquiring a somatic mutation, the specific change may be 

particularly relevant to atherosclerotic disease as opposed to the general phenomenon of clonal 

hematopoiesis itself. 

Important limitations of our study include reduced sensitivity for detecting CHIP with low allele fractions 

even with high-coverage whole genome sequencing. Ultrasensitive targeted sequencing can facilitate 

detection of such events but CHIP below the sensitivity of WGS detection (VAF < 5%) may not 

significantly alter risk for clinical outcomes.7 Furthermore, the cross-sectional analyses of CHIP with non-

genetic risk factors and biomarkers limit conclusions regarding temporal relationships between CHIP and 

these features; however, these observations still permit risk prediction for CHIP presence. Notably, 

inflammatory biomarker analyses are concordant with prior model experiments indicating elevations of 

observed inflammatory biomarkers as a consequence of CHIP.5,9 Lastly, given the age-dependence of 

CHIP, it is likely that many individuals not observed to have CHIP in this study will develop CHIP in the 

future.  

Overall, comprehensive simultaneous germline and somatic analyses of blood-derived whole genome 

sequence data demonstrates that germline variation influences the acquisition of somatic mutations in 

blood cells. Importantly, we anticipate that the TOPMed CHIP dataset defined here will be a valuable 

tool in establishing associations of CHIP with diverse heart, lung, blood and sleep traits. 

Methods 

Study Samples 

Whole genome sequencing (WGS) was performed on 97,691 samples sequenced as part of 52 studies 

contributing to the NHLBI TOPMed research program as previously described.7 Each of the constituent 

studies provided informed consent on the participating samples. Details on participating cohorts and 

samples is provided in Supplemental Table S1. The age of participants at time of blood draw was 

obtained for a subset of 82,807 of the samples. The median age was 55, the mean age 52.5, and the 

maximum age 98. The age distribution varied across the constituent cohorts (Supplemental Table S1).  

WGS Processing, Variant Calling and CHIP annotation 

BAM files were remapped and harmonized through a previously described unified protocol.23 SNPs and 

short indels were jointly discovered and genotyped across the TOPMed samples using the GotCloud 

pipeline.24  An SVM filter was trained to discriminate between true variants and low-quality sites. 

Sample quality was assessed through pedigree errors, contamination estimates, and concordance 

between self-reported sex and genotype inferred sex. Variants were annotated using snpEff 4.3.  
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Putative somatic SNPs and short indels were called with GATK Mutect2 

(https://software.broadinstitute.org/gatk). Briefly, Mutect2 searches for sites where there is evidence 

for variation, and then performs local reassembly. It uses an external reference of recurrent sequencing 

artifacts termed a “panel of normal” to filter out these sites, and calls variants at sites where there is 

evidence for somatic variation. An external reference of germline variants25 was provided to filter out 

likely germline calls. We deployed this variant calling process on Google Cloud using Cromwell 

(https://github.com/broadinstitute/cromwell).  The caller was run individually for each sample with the 

same settings. The Cromwell WDL configuration file is available from the authors upon request.  

Samples were annotated as having CHIP if the Mutect2 output contained one or more of a pre-specified 

list of putative CHIP variants as previously described2,5 (Supplemental Table S2).  

Blood traits 

Conventionally measured blood cell counts and indices were selected for analysis including: hemoglobin, 

hematocrit, red blood cell count, white blood cell count, basophil count, eosinophil count, neutrophil 

count, lymphocyte count, monocyte count, platelet count, mean corpuscular hemoglobin, mean 

corpuscular hemoglobin concentration,  mean corpuscular volume, mean platelet volume and red cell 

distribution width. Phenotypes were collected by each cohort, centrally harmonized by the TOPMed Data 

Coordinating Center (DCC). Additional documentation about harmonization algorithms for each specific 

trait is available from the TOPMed DCC and accompanies the data on the dbGaP TOPMed Exchange 

area. Up to 37,653 individuals from 10 cohorts where utilized for this analysis that had one or more 

blood traits measured concurrently or following the blood draw used for CHIP ascertainment. Traits 

were first log2 normalized and then analyzed using a general linear regression model with CHIP status, 

age, sex, study and the first 10 ancestry principal components as covariates. 

Lipid phenotypes 

Conventionally measured plasma lipids, including total cholesterol, LDL-C, HDL-C, and triglycerides, were 

included for analysis. LDL-C was either calculated by the Friedewald equation when triglycerides were 

<400 mg/dl or directly measured. Given the average effect of statins, when statins were present, total 
cholesterol was adjusted by dividing by 0.8 and LDL-C by dividing by 0.7. Triglycerides were natural log 

transformed for analysis. Phenotypes were harmonized by each cohort and deposited into dbGaP 

TOPMed Exchange area as previously described.26 Up to 28,310 individuals from 19 cohorts where 

utilized for this analysis that had one or more lipid trait measured concurrently or following the blood 

draw used for CHIP ascertainment. Lipid traits were first normalized for age, sex and ancestry principal 

components and then analyzed using a general linear regression model with CHIP status, age, sex, study 

and the first 10 ancestry principal components as covariates. 

Inflammatory Markers 

A set of makers previously implicated in mediating cardiometabolic disease were analyzed including: CD-

40, CRP, E-Selectin, ICAM-1, IL-1b, IL-6, IL-10, IL-18, 8-epi PGF2a, Lp-PLA2 mass and activity, MCP1, 

MMP9, MPO, OPG, P-selectin, TNF-Alpha, TNF-Alpha Receptor 1, TNF-receptor 2. Phenotypes were 

collected by each cohort, centrally harmonized by the TOPMed DCC and then deposited into dbGaP 

TOPMed Exchange area. Additional documentation about harmonization algorithms for each specific 

trait is available from the TOPMed DCC and accompanies the data on dbGaP. Up to 22,092 individuals 
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from 10 cohorts where utilized for this analysis that had one or more inflammatory marker measured 

concurrently or following the blood draw used for CHIP ascertainment. Inflammatory markers were first 

normalized using a log2(x+1) transformation and then analyzed using a general linear regression model 

with CHIP status, age, sex, study and the first 10 ancestry principal components as covariates. 

Single Variant Association 

Single variant association for each variant in Freeze 8 with MAF > 0.1% and MAC > 20 was performed 

with SAIGE23, and analysis was performed using the TOPMed Encore analysis server 

(https://encore.sph.umich.edu). CHIP driver status was dichotomized into a case-control phenotype 

based on the presence of at least one driver mutation. Prior to running single variant association tests, a 

logistic mixed model was fit using the lme4 R package24 to estimate the probability of the CHIP case 

control status conditional on a spline transformation of the centered age, genotype inferred sex, and 

cohort. The cohort was included as a random intercept which represents study specific contributions to 

the log-odds of CHIP at the mean sample age. Age was modeled with a spline to capture the non-

linearity of the relationship between age and CHIP. This model was chosen over comparable models 

based on its AIC. Combining the age, inferred sex, and study into a single quantity aided the 

convergence of SAIGE compared to the inclusion of these terms separately. The first 10 principal 

components were also included as covariates.  

Given that CHIP is unlikely to manifest in younger individuals, these individuals are effectively censored 

in our analysis set – that is, a young individual that does not presently have CHIP may still develop CHIP 

in the future. To avoid the power loss associated with misclassification of controls, we pruned these 

individuals from our analysis set. The single variant association analysis was run on a pruned set of 

samples that excluded those which had less than a 1% probability CHIP as estimated by the 

aforementioned model. This excluded 21,712 samples leading to a final analysis set of 65,405 which was 

used for downstream association analyses.  

Fine mapping 

We applied FINEMAP to the summary statistics from SAIGE, using the z-score and LD matrices as input. 

We fine-mapped the TET2 locus using the summary statistics from the African ancestry single variant 

summary statistics and estimated LD on the same set of samples using plink. We set the maximum 

number of causal SNPs in the region to 10 and used a shotgun stochastic search.  

Rare Variant Analyses 

Collapsing burden tests were applied to specific variant grouping schemes using EPACTS.  The same 

covariates as the single variant tests were used on the same set of samples. We used burden tests due 

to their limited compute requirements, which were considerable for the number of variants and 

samples tested. Two grouping schemes were specified: the first groups coding variation, and the second 

groups putative regulatory elements in a relevant cell line. The first used all putative LOF variants as 

identified by snpEff. Given that some variants were present in both the Mutect2 calls and the germline 

variant calls, we pruned the LOF variants to exclude variants that were present in both call sets. The 

second grouping scheme used all variants in regions that were predicted enhancers for CD34 cells that 

had CADD scores of at least 10. Predicted enhancers were identified by the activity-by-contact model.20 

Predicting enhancer-gene regulation for TET2. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 27, 2019. ; https://doi.org/10.1101/782748doi: bioRxiv preprint 

https://encore.sph.umich.edu/
https://doi.org/10.1101/782748


We used the Activity-by-Contact (ABC) model to predict which enhancers regulate which genes in CD34+ 

hematopoietic progenitor cells as previously described20, with minor modifications as follows. 

Briefly, this model predicts the effect of each putative regulatory element (defined as a DNase peak 

within 5Mb of a given promoter) by multiplying the Activity of each element (estimated from DNase-seq 

and H3K27ac ChIP-seq) by its Contact with a target promoter (estimated from Hi-C data). The ABC score 

of a single element on a gene’s expression is the predicted effect of that element divided by the sum of 

the predicted effects of all elements for a given gene. 

We identified putative regulatory elements by using MACS2 to call peaks in DNase-seq data from 

mobilized CD34+ hematopoietic progenitor cells from the Roadmap Epigenome Project (downloaded 

from http://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E050-

DNase.tagAlign.gz) Initially we considered all peaks with p-value < 0.1. To further refine this list, we kept 

the 100,000 peaks with the highest number of DNase-seq reads. We then resized these peaks to be 500 

bp in length centered on the peak summit, merging any overlapping peaks, and removed any peaks 

overlapping ENCODE “blacklisted regions”27 (regions of the genome previously observed to accumulate 

anomalous numbers of reads in epigenetic sequencing experiments; downloaded from 

https://sites.google.com/site/anshulkundaje/projects/blacklists). To this peak list, we added 500 bp 

regions centered on the transcription start site of all genes. Any overlapping regions resulting from 

these additions or extensions were merged.   

Within each putative regulatory element, we estimated enhancer Activity as the geometric mean of read 

counts from DNase-seq and H3K27ac ChIP-seq data from the Roadmap Epigenome Project 

(http://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E050-DNase.tagAlign.gz, 

and E050-H3K27ac.tagAlign.gz).  

We estimated enhancer-promoter Contact from the KR-normalized Hi-C contact maps in primary CD34+ 

cells. we then calculated effect of each putative enhancer-gene connection by multiplying the Activity 

and Contact for that element and gene. Dividing the effect of each element by the sum of effects for all 

elements for a given gene yields the ABC score: 

 

 

To call predicted enhancer-gene connections, we used a threshold on the ABC score of 0.015. The 

rs79901204 variant overlapped an enhancer with ABC score of 0.0308 for TET2, which, based on 

comparison of ABC scores to large-scale enhancer perturbation datasets, corresponds to a positive 

predictive value of approximately 61%.  

Functional Evaluation of TET2 locus 
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The genomic region containing risk and non-risk allele of the variant rs79901204 (600bp) was 

synthesized as gblocks (IDT Technologies) and cloned into the Firefly luciferase reporter constructs 

(pGL4.24) using NheI and EcoRV sites. The Firefly constructs (500ng) were co-transfected with pRL-SV40 

Renilla luciferase constructs (50ng) into 100,000 K562 cells using Lipofectamine LTX (Invitrogen) 

according to manufacturer’s protocols. Cells were harvested after 48 hours and the luciferase activity 

measured by Dual-Glo Luciferase Assay system (Promega). 

Methylation-QTL analysis of TET2 locus 

Illumina MethylationEPIC 850K array data interrogating over 850,000 CpG DNA methylation sites was 

generated at the University of Washington’s Northwest Genomic Center from blood samples collected 

from African Americans at the Jackson Heart Study baseline exam. Fluorescent signal intensities were 

preprocessed with the R package minfi28 using the normal-exponential out-of-band (noob) background 

correction method with dye-bias normalization. N = 1756 total samples (1203 women and 653 men) 

remained after severe outliers were identified and removed. Methylation levels at each CpG site were 

then quantified as β values, defined as the ratio of intensities between methylated (M) and 
unmethylated (U) signals where β = M/(M+U+100). Values therefore ranged from β = 0 (completely 

unmethylated) to β = 1 (completely methylated). Batch correction for assay plate position was 
performed on the β values via ComBat.29 Relative leukocyte cell counts (CD8+ T-lymphocytes, CD4+ T-

lymphocytes, Natural Killer cells, B cells, Monocytes, and Granulocytes) were estimated as previously 

described by Houseman30 and Horvath31. 

To investigate local methylation in the CXXC4/TET2 locus, a region of interest +/- 1Mb of the 

variant rs79901204 was considered containing a total of 311 CpG sites for analysis. The analysis included 

a subset of 1587 African Americans from the Jackson Heart Study. Of these individuals, 48 had CHIP and 

103 were carriers of the rs79901204 variant. A linear mixed effects model was fitted using CpGassoc32 in 

R 3.6.0 with rs79901204 as the predictor and the batch-corrected methylation β levels as the dependent 
variable, adjusting for age, sex, estimated cell counts, and CHIP status. A Bonferroni corrected threshold 

of P = 1.6 x 10-4 was used to establish statistical significance. 

DATA AVAILABILITY 

Individual whole-genome sequence data for TOPMed whole genomes, individual-level harmonized 

phenotypes and the CHIP variant call sets used in this analysis are available through restricted access via 

the dbGaP TOPMed Exchange Area available to TOPMed investigators. Controlled-access release to the 

general scientific community via dbGaP is ongoing. Accession numbers for these datasets are: 

phs001237, phs000951, phs001416, phs001515, phs000974, phs001644, phs001211, phs000964, 

phs001612, phs001467, phs000988, phs001368, phs000920, phs001468, phs001387, phs001446, 

phs001217, phs001215, phs001293, phs001218, phs001395, phs001472, phs000921, phs001402, 

phs000972, phs001624, phs001345, phs001032, phs000956, phs001062, phs001726, phs001143, 

phs000954, phs001359, phs001466, phs001207, phs000993, phs001661, phs001607, phs001542, 

phs001608, phs001545, phs001601, phs001412, phs001189, phs001598, phs001543, phs001725, 

phs000946, phs001435, phs000997, phs001434, phs001546. Summary-level genotype data are available 

through the BRAVO browser (https://bravo.sph.umich.edu/). 
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Fig. 1| Characterizing CHIP in TOPMed Genomes. a, 97,631 peripheral blood samples 

were whole genome sequenced and called with a somatic variant caller. CHIP was 

identified through the curation of CHIP driver variants. Driver variants in DNMT3A and 

TET comprised more than half of the CHIP calls. b, There was marked heterogeneity of 

CHIP clone size as measured by allele fraction (y axis) by CHIP driver gene. c, 90% of 

individuals with CHIP had only one CHIP driver mutation identified. d, CHIP prevalence 

increased with age (p<10-300). 
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Fig. 2| CHIP associates with Blood, Lipid, and Inflammatory traits. a, CHIP consistently associated with 

increased Red Cell Distribution Width (RDW). JAK2, SF3B1 and SRSF2 showed driver gene specific 

effects on blood traits. b, CHIP status was not consistently associated with lipid traits, other than JAK2

CHIP which was associated with decreased total cholesterol and a trend towards decreased LDL and 

Triglycerides. c, CHIP status is associated with inflammatory markers, however notable heterogeneity 

existed across CHIP mutations. 
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Fig. 3| Genetic Determinants of CHIP. Single variant genetic association 

analyses of CHIP identified three genome wide significant loci. 
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Fig. 4| African ancestry specific TET2 locus risk variant disrupts hematopoietic 

stem cell TET2 enhancer. a, the TET2 locus with fine-mapped risk variants, 

Activity-by-Contact (ABC) hematopoietic stem cell (HSPC) enhancers, DNase-Seq 

CD34+ HSPC and RefSeq genes. ABC model predicts that rs79901204 disrupts a 

TET2 enhancer resulting in decreased TET2 expression. b, expanded view of TET2 

enhancer element. c, rs79901204 disrupts a GATA motif/E-Box motif. d, luciferase 

assay in CD34+ primary cells demonstrates four-fold attenuation of enhancer 

activity by the rs79901204 risk allele relative to the non-risk allele.
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Extended Data Fig. 1| CHIP prevalence by study, CHIP prevalence with age at blood draw was highly 

concordant across sequenced cohorts
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Extended Data Fig. 2| CHIP prevalence in comparison to prior reports, CHIP prevalence with age in this 

study (blue triangles) was highly consistent with previously observed CHIP prevalence. 
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Extended Data Fig. 3| CHIP age association by mutational mechanism and gene. a, cumulative density 

plot of CHIP incidence with age stratified by single nucleotide variant (SNV) vs frameshift mutations. SNVs  

were observed in younger individuals than Frameshift mutations (Wilcox

rank sum test: p=0.01). b, cumulative density plot of CHIP incidence with age stratified by driver gene
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Extended Data Fig. 4| CHIP Single variant association regional association plots. a, TERT locus b,

TRIM59/KPNA4 locus c, TET2 locus
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Extended Data Fig. 5| UTMOST combined CHIP TWAS results across 48 tissues identified 7 

significant loci (p<2.9 x 10-6)
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Extended Data Fig. 6| Tissue-specific results from the top 9 overall UTMOST-significant genes. 

eQTL z-scores for associations with P<0.05 are displayed in each bar
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Extended Data Fig. 7 | African ancestry specific TET2 locus risk variant rs79901204 associated 

with altered TET2 locus methylation. top, Methylation Quantitative Trait association of 

rs79901204 variant with cpg methylation probes in the TET2 locus demonstrate that carriers of 

rs79901204 have an altered peripheral leukocyte methylation profile most notably for the TET2

gene as well as for near by genes ARHGEF38 and PPA2.  bottom, Hi-C domains from GM12878 

(GEO ID: GSM1551688) visualized with higlass.io
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