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Abstract
Genome-wide association studies (GWAS) has been in the heart
of medical research for the last 5 years. These studies seek for
common variants in the genome that are linked to risk for common
complex diseases (CCDs). Although GWAS has defined a number
of interesting genetic loci for a range of CCDs, the current GWAS
analysis has limitation such as investigating the DNA variants
one-by-one focusing on the most significant DNA variants. As a
consequence, most risk variants for CCDs are, in my belief, still
hidden in the GWAS data. Herein, I use a method of GWAS
analysis that considers risk-enrichment for groups of functionally
associated genes defined by for example gene networks, believed
to play a role in CCDs.

In this method, a set of expression SNP (single nucleotide
polymorphism) was selected from genes which are known to be
related to coronary artery disease (CAD) in a way that a single
eSNP was chosen for each gene. Then using the data available
from the International HapMap Project and a GWAS data avail-
able, it is possible to find SNPs which are in strong linkage with
the initial set, which we call it expanded set. Depending on the
association of the initial set to the CAD, expanded set can show
an enrichment score greater or smaller compared to the null dis-
tribution set of SNPs with same properties of the expanded set.

In conclusions, CCDs are not a consequence of isolated genetic
variants/genes in isolated pathways but instead sets of genetic
variants/genes acting in conjunction, cause CAD. Genetic risk
enrichment analysis is a fairly simple and straightforward method
to determine to what extent a group of functionally associated
genetic variants/genes are enriched for a given CCD. In addition,
this analysis can perhaps help to decipher some of the 90-85% of
risk variation in populations that remains unaccounted.
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Chapter 1

Introduction

1.1 Background

Our current understanding of common complex diseases (CCDs) has mainly
been established from using a candidate gene approach where one or a few
genes in a given pathway are studied in relation to a common disease pheno-
type [31]. This type of reductionist approach has been in the heart of medical
research for decades. However, given the level of complexity of gene interac-
tions and regulations that are underlying these types of diseases [30], it is now
evident that using the candidate gene approach alone will not give us enough
clues to how these diseases can be best battled and treated. In fact, given the
current estimates of the number of gene and molecule interactions underlying
CCDs [27, 28], we have most likely only been looking at the tip of the iceberg.
However, with emerging high-throughput methods such as DNA microarrays
and increasingly efficient genome-wide sequencing technologies [22], it is now
possible to conduct studies of CCDs from the perspective of the whole-genome
generating datasets covering the full scale of molecular activities underlying
CCDs.

In principal, DNA stores all information needed to create and maintain na-
ture. In humans, the DNA code contains 3 billion DNA letters consisting of
pairwise A-Ts or C-Gs. In most instances, the information in the DNA is acti-
vated through DNA transcription into RNA (figure 1.1). The type and number
of RNA in a given cell is deciding its molecular task and therefore biological
function. Particularly the mRNAs (messenger RNAs) are important since
these strings of RNA are translated into proteins. Proteins are the molecular
components that execute cellular functions. Although there are major efforts
to understand all forms of molecules in the cell (e.g. proteins, metabolites,
fatty acids and protein modifications), the technology development for whole-
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CHAPTER 1. INTRODUCTION

genome reads of cellular DNA and RNA are the most advanced. Since the
DNA code is identical in all cells within one individual (besides spontaneous
mutations), it is enough to determine the DNA code in one individual once
(most commonly being isolated from blood).

Figure 1.1: Central Dogma of Biology

In contrast, the transcription of DNA into RNA is marked differently in
cells belonging to different organs. In fact, the transcription is to a large
extent deciding the role of a given cell,tissue or organ. For example, the total
RNA profile of a cell that is to become a liver cell is quite different from a cell
in the vascular wall despite sharing basic molecular functions. To understand
CCDs from a systemic perspective, it is necessary to isolate RNA from the
range of organs/tissues believed to underlie the development of the CCD. The
rational idea is that the type and concentration of cellular RNA are altered in a
normal cell when it becomes part of developing CCDs. However, from the new
technologies it is only possible to determine how the types and concentrations
of RNA are changing in cells involved in a CCD but it is also necessary to
understand how these changes come about.

For this particular purpose, new sophisticated algorithms have been de-
veloped enabling to compute gene interactions in networks from genome-wide
DNA and RNA datasets. For DNA, there is an estimation of 0.1 % differences
between any two individual [35]. Despite representing a small fraction, these
DNA variants are believed to underlie most of the differences between hu-
mans. Besides functional differences (such as type of skeletal muscle , i.e. fast
or slow muscle fibers), there are DNA variants among them that are thought
to underlie risks for developing diseases. By searching for these variants using
the new high-throughput technologies, it is possible to define those that are
coupled to diseases. These variants can be in coding region (sections of the
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1.1. BACKGROUND

DNA coding for genes) that are transcribed into mRNA and thereafter trans-
lated into proteins (figure 1.1) as well as in non-coding region. The latter is
believed to affect risk for diseases by altering gene regulation.

In this report the idea is to look at DNA genotyping data, which can come
from so called genome-wide association studies (GWAS) and it has been in the
center of medical research for the last 5 years, revealing disease-coupled DNA
variants, or as they are called in the field of genetics, genetic loci, that are
highly associated with common complex diseases. GWAS have been paid a
lot of attention since they have, in most instances, been performed on several
thousand patients suffering disease as well as controls without disease. Thus,
the genetic loci defined from whole-genome scans of up to 1 million DNA
variants (selected among the 30 million that varies between individuals) are
thought to be of high relevance to achieve a better understanding CCDs.
Coronary artery disease (CAD), which is the CCD in focus in this thesis, is
a disease of the vessel wall underlying myocardial infarction (MI) and 20% of
strokes. CAD, MI and stroke are responsible for one third of total mortality
rate in 2004 (i.e. 15-20 million deathes per year) and is believed to become
one of the deadliest CCD (including infectious diseases like Malaria) this year
(predicted to reach 30 million death annually by 2030) [17].

Although GWAS have defined a number of interesting genetic loci for
CAD/MI , there are some important shortcomings with the design of how
genomic data in GWA datasets conventionally is analyzed. These can be find
from GWAS catalogue [10, 9]. The choices of analytic approaches underlies
only a minor fraction of the total risk for CCDs have been accounted for (5-
15% of total risk variation for most CCDs). In this thesis, I suggest a parallel
track to conventional analysis of GWA dataset to reveal a greater portion of
risk and thereby the etiologies of CAD/MI than what has been achieved by
traditional GWAS analysis alone.

Instead of solely seeking the most significantly related DNA variants as-
sociated to CAD/MI by analysis of DNA variants one by one, we suggest
to use GWA databases of CAD/MI (such as Wellcome Trust Case Control
Consortium [36]) to analyze groups of DNA variants (e.g. single nucleotide
polymorphism SNP ). These SNPs are defined by groups of functionally re-
lated genes associated to CAD/MI, identified from analyzing mRNA data.
These groups of genes can simply be lists of differentially expressed genes or
gene clusters but in most instances it can be identified by gene networks asso-
ciated to CAD/MI. From experience of network inference in type II diabetes
and obesity [27], gene networks can be defined from genome-wide liver and fat
mRNA data isolated from patients suffering these diseases. From these previ-
ous examples, networks may harbor important disease mechanisms underlying
CAD (or any other CCD). By linking genes in networks to SNPs that affect
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CHAPTER 1. INTRODUCTION

their expression level (i.e. mRNA levels), also referred to as eSNPs (expression
SNPs), we can analyze their combined enrichment of inherited risk for CAD
using GWAS data sets. In this fashion we hope that a larger portion of the
variations which are responsible for risk of developing CAD can be revealed.

1.2 Genome-Wide Association Studies

Basically, a genome-wide association study (GWAS) is a study in which varia-
tions of two groups of cohorts (individuals with a trait (i.e. cases) and individ-
uals without that trait (i.e. controls)) are compared in search for association
with a particular disease. GWAS builds on an approach to find disease-linked
variants by analyzing the whole genome. When the first GWAS study result
was published in 2005, the result was more than 110,000 SNPs linked to com-
plement factor H polymorphism [12]. In fact this was the first GWAS study
to use commercial genotyping platforms representing SNPs in genes. Using
the commercial genotyping platforms has one downside, it only reflects the
common variants and eventually focusing on common variants for CCD [29].
Indeed, the idea behind developing GWAS is based on common disease com-
mon variant (CDCV) hypothesis [29], so it should not apply any shortcomings
for GWAS analysis.

Later, with availability of more advanced technologies, many GWAS have
been performed. A list for recent and as well as older GWAS is gathered
at National Human Genome Research Institute GWAS catalog [10] There are
several data sets available, but in this thesis, the Wellcome Trust Case Control
Consortium (WTCCC) GWAS data has been used [36].

It should be mentioned that although SNPs can explain a fair amount of
inherited risk for a disease [14], there are also non-SNP variants, such as: copy
number variation (CNV), structural variants, deletion, insertion, etc [35]. In
fact the number of non-SNP variants by total number of nucleotides is believed
to be more than SNP-variants, but SNP-variants are still considered the most
common type of variation in human genome.

1.3 International HapMap Project

Variations in human genome are mostly the result of genomic events, such
as recombination and demographic events, therefore a population is neither
typical nor genetically exceptional compared to other populations (e.g. Cau-
casion (CEU) vs Japanese (JPN) ) [6]. Any two individuals have 99.9%
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1.3. INTERNATIONAL HAPMAP PROJECT

identical genome, 0.1% difference means almost one variant per 1,000 bases
[15, 4, 37, 35].

I wrote that the SNP is the most common type of DNA variants, an es-
timation of total human population variation is almost 10 million SNP sites.
This means roughly one SNP per 300 bases in DNA and they constitute 90%
of total variation in the human population[13] [25]. In this thesis, non-SNP
variants are out of scope and the term variant and the word variation will be
reserved for SNP-variants only.

Because of historical genomic events, nearby SNPs are associated with each
other. Each of these SNPs constitute a form of allele, which in turn is form
of a genetic locus [19]. (Figure 1.2). For example, at a SNP site, a particular
gene can be C allele or T allele [33]. A set of alleles that is on a single chro-
mosome is called a haplotype [33, 19]. Haplotype formation and changes are
caused by mutations and/or recombination. Therefore these haplotype blocks
will include certain nearby SNP alleles. These SNPs will have association to
each other and tend to co-vary over the same haploblock. In other words,
genotypes of a pairs of SNPs are not independent of each other. This non-
random association of SNPs is defined as linkage disequilibrium (LD) [24].
LD is very dependant on distance and recombination rate in each population,
and it can range from 60 kb (kilo base pairs) up to 200 kb long. Mappings of
these associations between pairs of SNPs form block like structures that span
throughout the genome. Many genomic events affect the extension of LD
blocks. A long LD block can be because of population bottleneck or founder
effect, and shorter LD block, on the other hand, can be because of high re-
combination rate in a population. In LD blocks, there are so called tag SNPs.
These tag SNPs are used to determine haploblocks [33].

There are several software packages available to calculate and visualize the
LD correlation data. Two examples are Haploview [3] and PLINK (Population-
based LINKage analysis) [21]. But there are pre-calculated LD correlation
values provided by HapMap, in which Haploview was used in the calculation.
An example of LD blocks is illustrated in figure 1.3.

During the two phases of The International Hapmap Project more than 4
million SNPs were genotyped [35]. In phase I, at least one SNP per approx-
imately 5kb was genotyped with a targeted minor allele frequency (MAF)
of 0.05 [34]. However, during the second phase there were a few changes to
increase the SNP density, higher SNP density means more coverage of the
common variations. The result was differences between phase I and II, some
of these differences are lower MAF and different LD statistics [35]. Lower
MAF is good in the sense that more rare variants will be covered in phase
II compared to phase I. It should be noted that in this thesis release 27 of
HapMap dataset will be used, which can be found at:
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CHAPTER 1. INTRODUCTION

Figure 1.2: Reproduced from International Hapmap Project [33]

ftp://ftp.ncbi.nlm.nih.gov/hapmap/ld_data/2009-04_rel27/
From here on the term LD block will be used in the context of 200kb

upstream and downstream of each SNP and those SNP that are in this range
and are in LD with the the central SNP. This coverage is defined based on LD
span in Caucasian which is provided by HapMap.

1.4 Atherosclerosis and Coronary Artery Disease

Atherosclerosis is the underlying cause for CAD/MI and it is a good example
of CCD. In this disease, different molecular events, cells, tissues and envi-
ronmental factors influence its progress [23] [30]. Atherosclerosis affects the
arteries and the atherosclerotic lesions are result of accumulated lipids, in-
flammatory cells and fibrous elements [16]. Large arteries consists of (three)
different layers. The top covering layer cells, Endothelial cells (EC), provide a
selective permeable barrier for blood and arteries inner layers [16]. In large ar-
teries, specially in branching points, blood turbulence affects the shape of ECs
which in turn will change their permeability, which will allow large molecules
such as low-density lipoprotein (LDL) pass through tight junctions. This will
be the initiation of atherosclerotic lesions in such sites. After passive diffusion
through tight junctions, LDL molecules are modified by reactive oxidative
species to generate oxidized LDL (oxLDL) [16].
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1.4. ATHEROSCLEROSIS AND CORONARY ARTERY DISEASE

Figure 1.3: An example of LD structure produced by Haploview software [3]

An inflammatory response is then triggered by oxLDL, attracting mono-
cytes and other inflammatory cells [16]. The monocytes differentiate into
macrophages in the vessel wall and will therefore take up LDL rapidly and
turn into foam cells. After initial inflammatory response and the foam cell
formation, smooth muscle cells (SMC) start to migrate from the media 1 and
SMC-derived extracellular matrix formation occurs. This will lead to forma-
tion of fibrous plaques. In later stages, calcification occurs (similar to bone
formation) which will affect the stability of the plaque. Unstable plaques or
plaques with thin EC layer with high degrees of lipids and macrophages, tend
to rupture frequently at the edges. If rupture happens, it can cause thrombo-
sis, which in turn can result in myocardial infraction (MI) and stroke.

In summary, atherosclerosis is a complex disease. On one hand we men-
tioned that many different cell types, molecular and non-environmental factors
affect the disease development and progress. These non-environmental factors
are high LDL, low HDL, family history (inheritance), gender (male), inflam-
mation, etc [2] [30] [7]. On the other hand environmental factors such as high
fat diet, smoking, lack of physical activity, etc. exist which can increase the
risk for this disease [30].

1Media is the middle layer of an artery
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CHAPTER 1. INTRODUCTION

1.4.1 Atherosclerosis Module

The STockholm Atherosclerosis Gene Expression (STAGE) study was one of
the first efforts ever using a systems approach to identify functionally asso-
ciated genes related to coronary artery disease (CAD) using whole-genome
expression profiles from multiple organs [8]. The STAGE study consisted of
114 patients with gene-expression profiles from five CAD related organs. In
this study, 128 genes were found to be enriched with genetic risk of CAD
and linked to the extent of coronary atherosclerosis (i.e. “coronary stenosis”).
This set of genes was therefore referred to as the Atherosclerosis Module (A-
module).

eSNP Discovery

Basically, there are two types of eSNPs: cis-acting and trans-acting. They
are divided based on physical distance to the gene that they are correlated
with. Cis-acting expression SNPs are defined as those situated 1Mb upstream
or downstream of the transcription start site of every gene. Cis-acting SNPs,
are necessarily those reside on the same chromosome. In contrast trans-acting
SNPs are either > 1Mb up- or downstream of any gene on the same chromo-
some or on different chromosomes than the regulated gene. One immediate
explanation for the choice of 1Mb is the total number of genes and size of
human genome. The way the eSNPs were chosen to be defined as cis- vs
trans-acting eSNPs, are consistent with previous works [28]. Expression SNP
calculation is not covered in this report.
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Chapter 2

Methods

2.1 Causality and eSNPs

According to the definition of LD explained in the introduction, by having
genotyped data for a set of known and common variants related to a partic-
ular CCD, with proper data mining, it is possible to expand the eSNP set
corresponding to a set of genes in search for correlations with disease SNPs.
But a question remains whether they will be causally related to the disease or
not.

Causality refers to the relationship between a locus and traits, in such a
way that a variation in locus can affect expression of a gene or genetic locus
which in turn contributes to the complex trait [27]. Schadt et al 2008 [28],
proposed different models for how these can be related to each other. Causal
model is the model where a DNA locus (L) affects the gene expression levels
(R) which in turn affects a complex trait (C) , in other words ”simplest causal
model is: L acts on C through transcript R” [27]. However, a parallel reactive
model was also suggested (i.e. “R is modulated by C”).

Using these models, Schadt showed that by combining whole genome DNA
variation data (i.e. global SNP profiles) with gene expression (i.e. in RNA
expression levels) isolated from a patient cohort with a common complex trait
(C), it is possible to ”decipher” those loci that are casually related to the
trait. However, the approach explained above needs the construction of gene
co-expression networks that is beyond the scope of this thesis. Instead I will
use LD statistics to analyze the relatedness of given set of eSNP to a common
complex trait (C), which is in our case is CAD, and present a measure to be
able to compare different eSNP sets from different tissue sample from different
cohorts.
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CHAPTER 2. METHODS

2.1.1 LD Blocks and Statisctics

I said that LD blocks in human genome are not continuous. This lack of
continuity in LD block is mainly because of recombination hot spots [34]. For
this reason some SNPs can be in comparably smaller blocks than other SNPs,
and it will limit the number of SNPs they are in LD with. But the length of
LD block is one factor. The other factor is the strength of correlation between
two SNPs in the same LD.

There are some insights in the nature of the segmentation and block-like
structures of LD. First, it will make it possible to define a tag SNP1 for each
haplotype and take it as a representative for the other SNPs under certain
conditions (LD statistics). Second, is the possibility to find other common
variants related to a disease by finding disease SNPs that are in a strong
correlation with SNPs previously identified as to be related to the disease (i.e.
eSNPs). This can help to identify novel loci associated with the disease. Last
but not least, the strength of correlation between SNPs in the same LD block
can help us define certain proxy SNPs [34], this is not the same as tag SNP.
Tag SNP represent the whole block, but proxy SNPs are just representing
those SNPs that they are in strong correlation with.

When it comes to the statistics of LD, there are several measures available
for LD statistics[11], here we choose r2 (0 < r2 < 1). Since LD blocks are
disrupted by historical events, it is also reflected in r2 measures (e.g. recombi-
nation rates [5]).r2 is the square of correlation coefficient between two SNPs,
shows a distorted pattern in an LD block with decay towards the furhter SNPs
[34, 11]. The values for it are independent of physical distance, and adjusted
for allele frequency.

It seems r2 is a good measure when looking for SNPs to represent other
SNPs. Because in the results that was shown in the International Hapmap
Project’s last two published articles they show that by having certain number
of SNPs at a r2 ≥ 0.8, it is possible to capture all common SNPs at minor
allele frequency (MAF) ≥ 0.05 (i.e. tag SNPs) [34, 35]. This number for
Caucasian population (CEU) is approximately 552,000, this means capturing
a small subset of SNPs can act as surrogates for a large set of SNPs. They
defined the term proxy SNP as a SNP which shows a strong correlation with
one or several other SNPs. The term perfect proxy refers to the complete LD
between one proxy SNP and others, i.e. r2 = 1.0 [33, 34]. Here the term
expanded SNP list will be used to refer to those SNPs that are in LD to any
of the proxy SNPs at at defined r2, the value of r2 can change depending on
the type of analysis. This will be further clarified in the following chapters.

1Tag SNPs set is the minimum number of SNPs to identify a haplotype
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2.2. DISEASE RISK ENRICHMENT ANALYSIS METHOD

2.1.2 Combining GWAS with International HapMap
Project

GWA studies are important because they make it possible to identify the
most significant loci associated with a CCD. However, they fail to define the
majority of the risk for disease. In the description for LD statistics, we dis-
cussed the proxy SNPs and expanded SNP list. If we have a set of SNPs that
are functionally associated with a disease through genes and genetic loci (i.e.
eSNPs), we can use the LD data available in HapMap, to expand our list to
bigger set of SNPs that are in strong LD with significant disease SNPs (dSNP)
represented by a GWAS.

Figure 2.1: Combining GWAS and HapMap

It is clear that some eSNPs that don’t fall into the coding region of a gene,
which is the case for most of the eSNPs, are instead located in introns or
intergenic loci. GWAS studies can capture only a subset of the variations in the
DNA[32, 38]. Some of the uncaptured variation may be important for CCD.
Also there could be rare variants (MAF < 0.05%) that remain undetected
due to the density of SNPs on the microarrays. Using LD measures (r2 in this
thesis) provided by HapMap, helps linking those SNPs that are not present
on the microarray used by different GWAS.

2.2 Disease Risk Enrichment Analysis Method

2.2.1 Enrichment of disease genes

So far we have been discussing how SNPs can be correlated to each other, and
how eSNPs can represent the genes they regulate and eventually how these
eSNPs can be correlated to CCDs.

13



CHAPTER 2. METHODS

Based on these principles there are only a few steps for enrichment analysis
of inherited risk for CCDs:

1. Gene Selection: Selection refers to choosing a set of genes that are
under investigation to be in association with disease (an example is a set
of genes defined by a network). One example can be the data available
by genetics of gene expression studies (like the STAGE dataset).

2. eSNP calculation: In this step eSNPs are calculated for the selected
gene list using Genetics of Gene Expression (GGE) studies data, where
SNPs for each gene is selected based on their allelic association with the
mRNA levels, to define eSNPs.

3. Expansion: Expansion refers to expanding the set of eSNPs using LD
measures and HapMap. After this step, the eSNP set is referred to as
expanded SNP set.

4. Enrichment: The expanded SNP set is examined for their enrichment
of SNPs associated with CCD according to GWAS dataset.

There are some criteria that needs to be considered here. First of all, there
are cases that either one SNP is in LD with several eSNPs or one eSNP is in
LD with multiple SNPs. If this happens, the strongest correlation will be
chosen (i.e. stongest LD value for SNP-eSNP pairs). Secondly, there could be
cases where some eSNPs are in LD with other eSNPs, and it is not inevitable,
since eSNPs by definition are those SNPs that affect the expression of genes.
In addition there could be multiple eSNPs for the same gene [39], in these
cases the best (strongest) eSNP is choosen. Alternatively, there could be
several genes that share same eSNP, however this will not affect the enrichment
analysis. Because after step two, the list that can affect the enrichment is the
list of eSNPs and not genes.

2.2.2 Enrichment Score relative to background random
SNP sets

In order to assign an enrichment score for each set of genes and corresponding
eSNPs, the number of SNPs with p-value < 0.05 was compared to the number
of SNPs with p-value < 0.05 in a competitive null hypothesis2. To construct
the competetive null hypothesis 10,000 random sets SNPs, equal to the number

2Competitive null hypothesis here is that random set of SNPs will at most have the
same number of SNPs with p-value < 0.05 as the non-random set.
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2.2. DISEASE RISK ENRICHMENT ANALYSIS METHOD

of eSNP sets, are generated. Then the expansion and enrichment step is
applied to each of the sets. To achieve a higher accuracy in this method, it is
best to mimic the initial SNP set as much as possible. In general the selection
of SNPs in random set are based on: (i) similar LD structures as of initial
SNP set (i.e. if two SNPs are in LD with each other, no matter how strong
this LD is, the random set should also at least contain two SNPs that are in
LD with eachother), (ii) the chromosomal distribution of initial SNP set (iii)
same minor allele frequency3 cut-off, and (iv) last but not least, number of
SNPs in random set should match as of initial SNP set.

After applying these criteria there is no guarantee that the final set (after
step four) will be the same number of SNPs as the final set for initial SNP
set. To over come this, the enrichment score is defined as below:

F =

NH1(p<0.05)

NH1

NH0(p<0.05)

NH0

(2.1)

F stands for fold enrichment, NH1 and NH0 are the number of SNPs in
the enriched set for initial SNP set and random set, respectively. NH1(p<0.05)

and NH0(p<0.05) are the number of SNPs in enriched set at p-value < 0.05 for
initial SNP set and random set, respectively. The above equation is applied
to each of random sets, and as a result 10,000 F values are generated. The
final F value will be the mean value of all of them.

3Minor allele frequency (MAF) refers to lowest possible allele frequency of a SNP in a
given population
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Chapter 3

Results

3.1 Validation of Method

To investigate the efficiency of the method, a list of SNPs known to be related
to CAD was first chosen. Thus, this list represent positive controls to confirm
the validity of the method. This list was generated from GWAS catalog [9, 10],
by selecting all main categories that were related to CAD (i.e. coronary heart
disease, myocardial infarction). GWAS catalog list is consisting of 123 SNPs.
Then inherited risk-enrichment analysis explained in Methods (chapter 2) was
applied to this set of SNPs. What we are expecting here is a high enrichment
score. As expected, high enrichment scores for this set of CAD associated
SNPs was observed (tables3.1). Summary of expansion and enrichment steps
are in tables 3.2,3.3.

Number of SNPs

SNP set Initial size Expanded Set

GWAS Catalog 123 36291
A-module 1 Mb 1247 71389
eSNP STAGE 448 29082

Table 3.1: Number of SNPs in initial sets and corresponding expanded sets.
After selecting the SNPs/eSNPs for each set, each of them was expanded
according to step three in the method described in section 2.2.1.
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Number of disease associated SNPs

SNP set r2 = 0 0.6 0.7 0.8 0.9

GWAS Catalog 5576 311 253 199 166
A-module 1 Mb 10171 1250 1102 933 809
eSNP STAGE 4226 521 484 462 451

Table 3.2: Number of SNPs in each set at different r2 thresholds
according to one GWAS dataset and each set’s corresponding ex-
panded list (step three in 2.2.1). This was done based on step four in the
method described in section 2.2.1. Given the definition of LD, the ones that
show higher F value at higher r2 thresholds, will be the ones include SNPs
with higher inherited risk.

Enrichment Score (F)

SNP set r2 = 0 0.6 0.7 0.8 0.9

GWAS Catalog 1.72 8.11 8.62 7.91 7.76
A-module 1 Mbp 1.12 0.92 0.99 1.09 1.06
eSNP STAGE 1.25 1.58 1.59 1.63 1.67

Table 3.3: Fold-enrichment score of disease association for each set.
This score is calculated according to the method described in 2.2.2. Scores
with F > 1 represent an existing association to disease, and the higher is F,
the stronger will be the association.

3.2 STAGE cohort and eSNP
Next the inherited risk enrichment procedure was applied to data generated
from STAGE dataset. As it was discussed in the introduction, A-module
consists of 128 genes, which are believed to be related to atherosclerosis. Thus,
this list was used to perform the inherited risk-enrichment for a group of SNPs
postulated to be associated with CAD [8]. From this a list of 128 genes, a list of
1247 tag SNPs within 1 Mbp of each gene was selected. A second set consisting
of eSNPs, calculated from the STAGE cohort [8], was also tested. Since A-
module has been shown to be associated with CAD [8], the enrichment results
for the associated SNPs and/or the eSNPs should possibly confirm that. these
eSNPs should also confirm that. The summary of the results are in tables 3.1,
3.2, 3.3.
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As shown in tables 3.1 - 3.3, eSNPs for the A-module genes were enriched
for inherited risk of CAD according to the GWAS cohort of WTCCC. In con-
trast, SNPs selected for the same genes (A-module genes) based on proximity
alone (i.e. ± 1Mb) were not (i.e. 1.06 at r2 ≥ 0.9). These results show the im-
portance of choosing accurate SNP (i.e. eSNPs) to represent groups of genes
that are under investigation.

3.3 P-value Distribution and Discussion of
Results

We saw that the selection of SNPs can affect the risk enrichment results, the
stronger the association between SNPs and genes (i.e. eSNPs), the higher
the enrichment score (F) will be. High values of F reflect higher association
of initial SNP/gene set with disease. So the set of highly associated SNPs
(e.g. gathered from previous GWAS studies) should show an increased risk
enrichment for CAD. This can be observed in a histogram of the p-value
distribution (figures 3.1, 3.2, 3.3), the more risk-enriched the more shifted to
the left.

In figures 3.1, 3.2, 3.3, the number of SNPs in each bar is normalized
based on a total number of SNPs in each set. A clear shift to the left, i.e.
lower p-values, is an alternative measure for the association of the set with
the disease.

By increasing the threshold for r2 (i.e. 0.0 → 0.9), we capture those
genotypes that are in stronger LD with disease SNPs. The value for r2 is, in
this way, depending on how strong the correlation is with disease. Differences
in genotype platforms, and as well as differences in type of patient cohorts and
microarray, are the factors that decide the choice of r2. However, it is also
important to mention that if by increasing r2 threshold greater than 0.0, a
decline in F is observed, it represents a poor (or no) association to the current
GWAS, specifically, as disease risk model and to disease in general.

In conclusion, there are some limitations that needs to be considered whilst
performing disease-risk enrichment analysis. However, with current advances
in genotyping and gene expression technologies (i.e. gain from microarrays
to sequencing) huge amounts of data leading to increasing matches between
platforms will lead to that these limitations will become negligible.
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Figure 3.1: P-value distribution at r2 ≥ 0. Notice the shift to the lower
p-values is in accordance with the higher values of F. The shift to the left,
however, is not an accurate measure.
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(a) r2 ≥ 0.6

(b) r2 ≥ 0.7

Figure 3.2: P-value distribution at different r2 thresholds. The general
shift to the more significant p-values is not strong anymore in the A-module
set. Note the different scale of Y-axis in the left most plots
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(a) r2 ≥ 0.8

(b) r2 ≥ 0.9

Figure 3.3: P-value distribution at different r2 thresholds. The general
shift to the more significant p-values is not clear anymore in the A-module
set. Note the different scale of Y-axis in the left most plots
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Chapter 4

Discussion

4.1 Interacting genotype with intermediate
phenotypes to better understand disease
phenotypes

Inherited risk enrichment analysis of gene sets believed to be important for
CCDs are making new use of the GWAS datasets. The proposed method can
be used for any candidate gene list, independent of how this list has been
generated (i.e. from disease networks, gene clusters or lists of differentially
expressed genes either from human or mouse models where disease driving
genes have been deleted (i.e. knockout mice)).

The method can also be used to determine whether a group of genes are
causally linked to disease or not (i.e. not reactively linked genes; altering their
expression levels secondary to disease development, see chapter 2.1). Reactive
genes will not be risk-enriched whereas causal genes are expected to. The
extent of risk-enrichment can help to rank gene lists based on their degree of
risk enrichments and thus relevance for disease. When several different CCD-
type of GWAS datasets are available, the risk-enrichment analysis can help to
show what type of CCD a given gene list is most relevant.

In order to perform risk-enrichment analysis, access to some type of data
is essential. First, it is vital to access the entire datasets of GWAS (not just
the top hits which are available at GWAS catalog [10, 9]). To exclude bias and
cover lack of power from one GWAS several GWAS per CCD (or at least two)
is preferable [1, 20]. Next, and as demonstrated, when assigning SNPs to a
given gene list, the best way is to use actual eSNPs. Now, to compute eSNPs,
GGE datasets are required. Preferably, these datasets should also have been
retained from the same CCD as the GWAS. One cannot rule out that the
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repertoire of eSNPs is changing (at least in part) with different CCDs. This
notion is supported by the fact the majority of eSNPs that we have identi-
fied (unpublished data) are tissue-specific (only affecting mRNA of a gene in
one tissue). We interpret this as the local environment in a given tissue is
affecting the combinations of DNA binding proteins and transcription factors
which in turn will alter which DNA sites (i.e. SNPs) are having an effects on
transcription or not. Since CCDs at least in some tissues are changing this
microenvironment [26], it is likely that some eSNPs are CCD-specific as well.

The current computation challenges in choosing random sets to assess the
enrichment score (F) and eSNP calculation demand access to larger computing
power in form of computer clusteres or some cloud solution. However, NIH is
building a repertoire of tissue mRNA profiles with associated DNA genotype
profiles that can be used to define SNPs (i.e. eSNPs) for a set of genes to enable
risk-enrichment analysis. If eSNPs are not available, SNPs within 400kb up to
1 Mb can be selected based on HapMap, as described. Using this less selective
SNP-selection approach may, however, lead to false negative results and strong
enrichments shall also be considered with caution. Thus, it is preferable to
use eSNPs.

The risk-enrichment analysis stands in great contrast to the traditional
analysis of GWAS where SNPs (and other genetic loci) are analyzed one-
by-one. This has lead to a vast multiple testing problem where the level of
significance for “true” hits is very high (P<10−8). Surely many of the disease
SNPs in the range of 10−8 - 10−3 may also be true disease loci. Also, and
more importantly, many risk variants with relative low disease-association if
analyzed one-by-one may very well when analyzed as part of a group of func-
tionally linked genes (and corresponding eSNPs) contribute strongly to disease
[27]. Using risk-enrichment analysis, these combinations of risk-variants can
be revealed allowing CCDs to be analyzed from the perspective of groups of
genes linked to disease in their capacity of taking part in common disease
process. In our view, this is highly desirable.

A current drawback in the risk-enrichment analysis is the existence of
many different genotyping array densities and platforms. Some of these are
not sufficiently large to actually be truly “genome-wide”. For problems of
this nature, the international HapMap project, who identified approximately
4 Million SNP for the Caucasian (CEU) population [34, 35] provides the help
needed enabling to expand the initial eSNP set to cover a larger portion of
disease linked SNPs, as described previously.

The same problems also concern the GWAS datasets. However, in our
case since the WTCCC dataset is based on the same population panel[36] but
screened less number of SNPs (n = 500 000), it can actually be viewed as a
subset of the HapMap dataset. However, caution need to be taken to match
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GGE and GWAS datasets as to technical platform used (i.e. microarrays)
and the ethnicity of the cohorts screened (making sure that ethnicities are the
same in GGE and GWAS).

Figure 4.1: From candidate genes to phenotypes using eSNPs and surrogate
SNPs.

In the longer perspective, GWAS is expected to be screened using DNA
sequencing. A larger cohort of CAD patients consisting of 700 CAD patients
is intended to be screened with DNA and RNA sequencing to establish a
data intensive GGE cohort. Although, this will present with a substantial
data-handling challenge, the need for expanding sets of genes/eSNPs using
surrogate SNPs to explain observed phenotype (figure 4.1) will be largely
avoided when full details of entire genomes and transcriptomes are available.

4.2 Future work and Final words

At the time when GWAS were designed, inheritance for CCDs was believed to
follow a similar pattern as Mendelian rare diseases. It is now evident that this
was a false assumption. Instead CCDs are influenced by many genetic loci af-
fecting the expression of many genes as well as many disease processes active in
specific tissues as well as across tissues shifting over time. The missing 85% of
the heritability that is not explained by common variants already identified by
GWAS (15% of total risk variation in most instances), I believe remain “hid-
den” in the GWAS datasets among the less significant disease-associated SNPs
(as well as other variants). Applying the proposed risk-enrichment analysis,
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the portion of these that are indeed contributing to CCD risk can be iden-
tified as part of groups of functionally linked SNPs/genes. Such groups can
efficiently be investigated for their risk-enrichments as proposed in this the-
sis using CAD as the example disease. Previous studies of Diabetes Mellitus
Type 2 and obesity show the viability of this approach [27]. In addition, the
proposed risk-enrichment analysis holds promises to make better use of the
large GWAS investments made over the last 5 years.

Of note, risk inheritance is also increasingly believed to be mediated by
epigenetic alterations to particularly DNA (e.g. DNA methylation) and CCD
inheritance may also be mediated through non-RNA intermediate phenotypes
like proteins and metabolites. These sources of risk inheritance and risk me-
diators need also to be considered in the risk-enrichment analysis if we are
aiming to map the entire variation of risk for CCDs in different populations.
Currently, there is no strategy for this using the method presented in this thesis
but as GWAS are being complemented with epigenetic screens, the principals
of the risk-enrichment analysis can be applied also to non-DNA genotypes as
well as non-RNA intermediate phenotypes.

After this thesis, I am pursuing PhD studies in the same laboratory with
the overall goal to map and rank groups of functionally-associated genes in
CAD based on their risk enrichments using the WTCCC ([36]) and MI-Gen
([18]) GWAS datasets together the STAGE GGE cohort to define eSNPs.
In addition, I will seek access to additional GWAS datasets and imputation
methods to improve coverage [38]. During these 4 years, the sequence data of
the expanded STAGE cohort (from 124 patients to 700) will become available.
This will, in our belief, serve to enable us mapping a large portion of the entire
landscape of inheritable risk for CAD.
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