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Abstract

We investigate the propagation equations for the expansion, vorticity
and shear for perfect fluid spacetimes which are geodesic. It is assumed
that spacetime admits a conformal Killing vector which is inheriting so
that fluid flows lines are mapped conformally. We establish that the
vorticity and the electric part of the Weyl tensor cannot coexist, 1.e.
they cannot be simultaneously nonzero. For a nonhomothetic vector
field the propagation of the quantity ln(Rabu“ub) along the the integral

curves of the symmetry vector is homogeneous.
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1 Introduction

Many of the classical exact solutions in general relativity are spacetimes pos-
sessing a high degree of symmetry. In this paper we impose the condition
that the spacetime manifold admits a conformal Killing vector. The advan-
tage of this symmetry requirement are two-fold: it provides a deeper insight
into the spacetime geometry, and it facilitates generation of exact solutions to
the field equations, some of which may be new, e.g. the conformally invariant
models of Herrera et al. {1], Maartens and Maharaj [2], Castejon Amenedo and
Coley [3] and Maartens and Mellin [4]. Conformat Killing vectors generate con-
stants of the motion along null geodesics for massless particles; this associates
the conformal symmetry with a well-defined, physically meaningful conserved
quantity.

The geometric and dynamic features, with perfect fluid and anisotropic mat-
ter tensors, for spacetimes with a conformal symmetry X have been extensively
studied by Maartens et al. [5] and Coley and Tupper [6, 7]. An additional re-
quirement imposed, by Coley and Tupper [6, 7}, on the fluid 4-velocity u is
that it must be inheriting so that fluid flow lines are mapped conformally onto
fluid flow lines. These analyses indicate that perfect fluid spacetimes admitting
inheriting conformal Killing vectors are rare. This has led Coley and Tupper
to conjecture that the only perfect fluid spacetimes, with reasonable physi-
cal conditions, admitting inheriting conformal Killing vectors are: spacetimes
conformal to flat spacetime, spacetimes with X parallel to u, and spacetimes
with X orthogonal to u, apart from Robertson-Walker spacetimes and some
other simple, symmetric exceptional cases. This suggests that there is room for
further investigation of perfect fluids with an inheriting conformal symmetry.

Our specific objective in this study is to investigate the behaviour of the

kinematic and dynamic variables of spacetimes that admit an inheriting con-




formal Killing vector. We assume that the matter distribution is that of a
perfect fluid but we do not specify the spacetime geometry. The propagation
equations are considered in particular for geodesic flows. In Section 2 we define
an inheriting conformal symmetry. The Lie derivative of the kinematical and
dynamical quantities are found. In Section 3 we take the Lie derivative of the
expansion, shear and vorticity propagation equations. A number of results per-
taining to the active gravitational mass, the shear and the vorticity are found.
In particular we establish that the vorticity and the electric part of the Weyl
tensor cannot coexist. Finally in Section 4 we discuss the significance of the

results obtained, and briefly consider possibilities for future work.

2 Inheriting perfect fluids
For the fluid 4-velocity u we write
Ugp = Oab + 3Ohap + wap — Ualls

where © = u®, is the rate of expansion, hap = gap + UaUs is the symmetric
projection tensor (Agpt® = 0), Oap = 3{Uaichs+Upche)—3Ohg is the symmetric
shear tensor (ompu® = 0 = 0%), Wa = hcahdbu[m,ﬂ is the skew-symmetric
vorticity tensor (wepu® = 0), and %, = ugpu?® is the acceleration vector (uqu® =
0). The overhead dot denotes covariant differentiation along a fluid particle
worldline. Square brackets denote skew-symmetrisation. We can decompose
the matter tensor in terms of u, and consequently the Einstein field equations

take the form

Rap — 3RGap = (1 + P)uats + PYas (1)

for a perfect fluid with energy density u and isotropic pressure p.




Manifolds with structure may admit groups of transformations which pre-
serve this structure. A conformal motion preserves the metric up to a factor.

A conformal Killing vector X is defined by
Exgab - 21/)90’) (2)

where ¢ = ¢(x*) is the conformal factor. The existence of a conformal Killing

vector X is subject to the integrability condition

LxClpea =0 (3)

which indicates that the Weyl tensor C is conformally invariant. Equation (3)
is identically satisfied for conformally flat spacetimes, e.g. Robertson-Walker

spacetimes [8]. A vector X is said to be an inheriting conformal Killing vector

if, in addition to (2), it satisfies

.Cx'ua = ’Q.")uu (4)

Hence inheriting conformal Killing vectors map fluid flow lines onto fluid flow
lines. The physical significance of the assumption (1) has been extensively in-

vestigated by Maartens et al. {5} and Coley and Tupper [6, 7]. As a consequence
of (2) and (4) we observe that

Lxha = 2tphg (5)

so that the inheriting vector X is a conformal motion of the projection tensor. If
u is also orthogonal to X then the conformal vector is intrinsic to the projected
hypersurfaces containing h as the metric tensor. The role of the intrinsic
symmetries will be considered elsewhere.

If X is an inheriting conformal Killing vector then (2) and (4) hold, and we

can establish the following relations

[—:Xﬂa - T[),a+ua'¢.! (6)



Lx® = —¥O+3¢ (7)
Lxowp = YOab (8)

E'Xwab = wwab (9)

The inheriting vector X is a conformal motion of the shear and the vorticity, but
not of the acceleration and expansion in general. Equations (6)-(9) govern the
evolution of the kinematical quantities for an inheriting conformal symmetry

X We find the Lie derivative of the Riccei tensor
LxRay = =206 — 9BV (10)

where T = g°%C 4. Contracting the Lie derivative of the Ricci tensor in (10)

gives the Lie derivative of the Ricci scalar
LxR = —2¢R — 60y (11)

Then we find that the the Lie derivative of the Einstein field equations (1)

becomes
uaub[:X,UJ + habﬁxp + 2w(ﬂuaub + ph‘ab) = 2Dwgab - 2’q[/';ab

on utilising (10) and (11). Contracting this equation with ueu?, hot, ueh’,

hecpbd — 1hebhed, vields the following set of equations:

Lxp = —2¢p—20¢ — 20U’ (12)
3Lxp = 400 —6Yp — 2u'e’ e (13)
0 = 2u®Yac+ utuPu.ap (14)

0 = wgab(h“hw _ %habhcd) (15)

The inheriting vector X is not a conformal motion of the energy density and
pressure in general. Equations (12)-(15) govern the evolution of the dynamical

quantities for a geodesic inheriting symmetry X. This system severely restricts




the behaviour of the gravitational field g. It may be noted that if X is homo-
thetic, i.e. ¥» = constant # 0, then the acceleration %° is conserved along the
integral curves, and the other kinematic and dynamic quantities turn inherit-

ing. However observe that 4® is conserved even for ¥ = ¥(t).

3 Geodesic flows

We make the assumption that the acceleration vanishes so that fluid flow is
geodesic. When 4® = 0 we observe from (6) that two cases arise:
(a) ¥ = constant # 0, (b) ¥ # 0.
When ¢, # 0, then
Y

a — — T 16
u v (16)

and the 4-velocity u is specified completely by the conformal factor. We note
that (16) is consistent with the unit, timelike requirement u%u, = —1.

We now analyse the geodesic propagation equations for the expansion ©, the
shear 0,44, and the vorticity wep, in an attempt to obtain general results govern-

ing the evolution of the relativistic perfect fluid. The expansion propagation

equation is given by
0,1’ = =307 — 040" + wapw™ — Ruputu’ (17)

This propagation equation is also called the Raychaudhuri equation. The shear

propagation equation can be written as

c 2 c c oot
TapcUh™ = _geaab = Tac0 " p — Waewy + Copoqttut

+%hub (chacd - deWCd) + %RCd (ha(‘hbd - %hubhf_d) (18)
The vorticity propagation equation is given by

Wap U = —%@wab + WG q — WaeT (19)




In (17)-(19) we have followed the motivation and conventions of Wald [9].

3.1 Expansion propagation

We first consider the expansion propagation equation. Taking the Lie derivative
of (17) along an inheriting conformal Killing vector X, and using equations (4),

(7)-(9) we obtain
Lx Ropu®u’ = =30 — ¥O + 2¢ (@ + 392 — oo™ + wabwab) + 0v

Then on substituting the Raychaudhuri equation (17) into the above equation

we generate the result
[y Rupu = —20Rapuu’ = 3% = 4O + 0y (20)
The quantity
1
Rapu®u’ = 5+ 3p)

is related to the active gravitational mass. Consequently {20) provides us with
an indication of how the active gravitational mass changes along the integral
curves of the inheriting conformal Killing vector X.

We observe that

L',xRabu“ub = —2iRapt® ub

o 3+ 90—y

il

0

which provides the condition for X to be a conformal motion of the active gravi-
tational mass Rucu’. Fora homothetic vector the condition 3{@—%—1]}@— Oy =0
is identically satisfied. When ¥, £ 0, vorticity vanishes, as will be shown in
equation (23) below, and this condition provides an additional constraint on the
expansion. Then the 4-velocity becomes comoving and hypersurface orthogo-

nal leading to v = w(t), and the conformal factor is explicitly determined b;



(vV2gy°) o = 0, and u* = §;. The line element can then be written in the

orthogonal synchronous form
ds* = —dt* + Hapdx"da?

where the H,s can depend on the spacetime coordinates z® but |H| = det Hug
is a function of ¢ alone. Note that Coley and Tupper [6] have demonstrated
that orthogonal synchronous perfect fluid spacetimes (other than Robertson-
Walker) do not admit any proper (¢, % 0) inheriting conformal symmetry.
Our argument shows that the propagation of in(u + 3p) along the intergal

curves of X is homogeneous.

3.2 Shear propagation

We now consider the shear propagation equation. Taking the Lie derivative of
(18) along an inheriting conformal Killing vector X, and using (3)-(5), (7)-(10)

we obtain after some simplification
30w = — 2 Copaqunt — 3 (QTJJ;Cd + QCdEh/J) [hachbd - %habhed]
Substituting the dynamical equation (15) into the above we obtain
3p0ap = —29Copaquul
for perfect fluids. We note from Wald [9] that
Eap = Cocpauu®

is the electric part of the Weyl tensor. Hence we can write

Spog = 20 E (21)

for geodesic flows.




For a homothetic vector we must have E, = 0; however the magnetic part
of the Weyl tensor may not be zero. When 1, # 0, we obtain from (21) the
expression

29

Oab = 3_11')Eab | (22)

for the shear as measured by an observer with 4-velocity (16). Thus the shear
propagation equation for a geodesic inheriting symmetry relates shear with the

electric part of the Weyl tensor by (22).

3.3 Vorticity propagation

Finally we consider the vorticity propagation equation. Taking the Lie deriva-
tive of (19) along an inheriting conformal Killing vector X, and using (4),
(7)-(9) we generate the result

P =0 (23)

for perfect fluid spacetimes. Equation (23) is identically satisfied for homothetic

vectors leaving wey, free. When v, # 0, we have
Wop = 0

so that the vorticity vanishes as measured by an observer with 4-velocity (16).
Thus the vorticity propagation equation is highly restrictive for a geodesic
inheriting symmetry.

We can summarise our results in terms of the following theorem:
Theorem I For inheriting geodesic flows the propagation equations imply:

(i) For homothetic vectors

Egp =0

with shear and vorticity being free.

(ii) For nonhomothetic vectors

10




3t ¥,
Woph = 05 Eab = = Tahy Ug = _j

2
and thus implying that both E,; and wg, cannot be both nonzero simultane-
ously. ' .
This is an important result bringing out a kind of complementary relation

between F,; and wgp.

4 Discussion

We have studied the propagation equations for geodesic flows in perfect fluid
spacetimes. The restrictions that the inheriting conformal symmetry X places
on spacetime manifold are given in Theorem I, which essentially states that
the electric part of the Weyl tensor and the vorticity cannot coexist. We
observe that the electric part of the Weyl tensor is constrained, however the
magnetic part is not directly affected by the inheriting conformal symmetry.
We have demonstrated that general results may be found, without specifving
the spacetime geometry, by utilising the propagation equations. In future work
we intend to generalise these results for nongeodesic flows. This is a nontrivial
task as the propagation equations are not as easy to cope with when 4* # 0.
Also, the matter tensor could be generalised to include anisotropic terms. The
analyses of Maartens et al. [5] and Coley and Tupper [6, 7, 10, 11] indicate
that a wider range of possibilities are permitted if the condition of a perfect
fluid is relaxed.

Finally we briefly comment on the condition E,;; = 0 for pure magnetic fields.
Our results indicate that solutions with FE,; = 0 are possible in perfect fluid
spacetimes with a homothetic vector. In this context we observe that recently

Lozanovski and Aarons [12] found a purely magnetic solution for a perfect
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fluid which satisfies the weak, strong and dominant energy conditions. In this
class of spacetimes, the expansion and the shear are nonvanishing but the
fluid is irrotational and nonaccelerating. In addition there have been various
attempts to study tlie dynamics of purely magnetic spacetimes in the case of
dust [13, 14, 15]. It has been shown that such “anti-Newtonian universes”
are subject to severe integrability conditions, and it is conjectured that no
physically acceptable solution exists. Mars [16] has comprehensively studied
the existence of magnetic solutions in Petrov type I vacuum spacetimes, and

established a uniqueness result.
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