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Antibiotics, once considered the lifeline for treating bacterial infections, are under threat

due to the emergence of threatening antimicrobial resistance (AMR). These drug-resistant

microbes (or superbugs) are non-responsive to most of the commonly used antibiotics

leaving us with few treatment options and escalating mortality-rates and treatment

costs. The problem is further aggravated by the drying-pipeline of new and potent

antibiotics effective particularly against the drug-resistant strains. Multidrug efflux pumps

(EPs) are established as principal determinants of AMR, extruding multiple antibiotics

out of the cell, mostly in non-specific manner and have therefore emerged as potent

drug-targets for combating AMR. Plants being the reservoir of bioactive compounds

can serve as a source of potent EP inhibitors (EPIs). The phyto-therapeutics with

noteworthy drug-resistance-reversal or re-sensitizing activities may prove significant for

reviving the otherwise fading antibiotics arsenal and making this combination-therapy

effective. Contemporary attempts to potentiate the antibiotics with plant extracts and

pure phytomolecules have gained momentum though with relatively less success against

Gram-negative bacteria. Plant-based EPIs hold promise as potent drug-leads to combat

the EPI-mediated AMR. This review presents an account of major bacterial multidrug

EPs, their roles in imparting AMR, effective strategies for inhibiting drug EPs with

phytomolecules, and current account of research on developing novel and potent

plant-based EPIs for reversing their AMR characteristics. Recent developments including

emergence of in silico tools, major success stories, challenges and future prospects are

also discussed.

Keywords: antimicrobial resistance, efflux pumps, efflux pump inhibitors, phyto-therapeutics, drug resistance

reversal

INTRODUCTION

Antimicrobial resistance (AMR) or ineffectiveness of commonly used drugs/antibiotics against
specific bacteria has emerged as one of the most threatening human health concerns and a major
challenge for global drug discovery programs. AMR (also known as drug resistance) has been
reported at three increasing levels, multidrug resistance (MDR), extensive drug resistance (XDR)
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and pan-drug resistance (PDR). By definition, MDR stands
for acquisition of non-susceptibility to at least one agent in
three or more antimicrobial classes, while XDR shows the non-
susceptibility to at least one agent in all, except two or fewer
antimicrobial classes, while PDR implies non-susceptibility to
all antimicrobial agents from all available classes (Exner et al.,
2017; Spengler et al., 2017). AMR is threatening millions of lives
worldwide, and is rightly declared as a global risk by the World
Economic Forum (World Economic Forum, 2013). Since the very
first report on AMR in Enterobacteria in 1950s (Watanabe, 1963;
Levy, 2001), many drug-resistant strains have been reported
and their number as well as the resistance level is on the rise.
Though several classes of antibiotics were discovered in the
antibiotic era (Table 1), we are heading to a post-antibiotic era,
where an increasing number of previously curable infections are
turning into non-curable and life-threatening (Spengler et al.,
2017). Though development of AMR or antibiotic resistance is a
natural phenomenon, irrational use of antibiotics speed-ups the
emergence of drug-resistant strains (World Health Organization,
2014). Once the AMR is gained by the bacteria, it is successively
transmitted to the next progeny via vertical gene transfer or other
bacteria through horizontal gene transfer process, making their
treatment more difficult (Chandra et al., 2017).

The drug resistance characteristics may be attributed to the
abilities of such strains in fast altering their genetic make-
up or inducing epigenetic changes (Davies and Davies, 2010;
Motta et al., 2015; Rahman et al., 2017). Necessary adaptations
are achieved by bacteria to-respond-to and to counteract the
antibiotics either via procurement of foreign genetic material
encoding resistance via horizontal gene transfer or mutations
in drug-targets / antibiotics-degrading enzymes and alterations
in permeability of the outer bacterial membrane. There is
an unprecedented upsurge in bacterial strains with elevated
AMR in both Gram-negative and Gram-positive phenotypes.
The ESKAPE (Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter species) pathogens have emerged
with high degree of AMR and are major cause of life-threatening
nosocomial infections (Santajit and Indrawattana, 2016). Even
other strains like Escherichia coli, Shigella species, Neisseria
gonorrhoeae, and Proteus mirabilis have shown significant levels
of AMR (Fair and Tor, 2014; Prasch and Bucar, 2015; Cerceo
et al., 2016). Development of resistance against the carbapenem,
a class of highly effective antibiotics and regarded as the last line
of defense against pathogenic Gram-negative bacteria hints at
the alarming situation (Kumarasamy et al., 2010; Dwivedi et al.,
2015).

Intrinsically, AMR is more prevalent and severe in Gram-
negative bacteria than their Gram-positive counterparts due
mainly to the outer membranes serving as permeability barrier
for drug-influx into the Gram-negative bacteria (Silhavy et al.,
2010; Exner et al., 2017). To attain low sensitivity against
biocidal compounds, Gram-negative bacteria reduce their outer
membrane permeability by reducing the number of porins
and inducing drug efflux pumps (EPs) for outward transport
of drug molecules, often in a non-specific manner making
the bacterial cells resistant to multiple antibiotics (Masi et al.,

2017). However, despite these morphological differences, Gram-
positive bacteria cannot be ignored or underestimated and
noteworthy examples include methicillin resistant S. aureus
(MRSA) and vancomycin resistant S. aureus (VRSA), coagulase
negative Staphylococci members including S. epidermidis and S.
haemolyticus, Streptococcus pneumonia, E. faecalis, E. faecium,
and Clostridium difficile (Schindler and Kaatz, 2016). Figure 1
shows a gradual upsurge in the number of research articles
focused on most-prevalent MDR strains.

In recent years, EPs have emerged as key drivers for
AMR in Gram-negative and Gram-positive bacteria, and
therefore, are looked upon as potent and universal targets
for containing the drug-resistant phenotypes. EPs are vital in
other physiological processes also including stress-adaptations,
virulence, pathogenicity and transportation of essential nutrients
(Piddock, 2006; Fernandez and Hancock, 2012; Costa et al.,
2013; Kourtesi et al., 2013; Sun et al., 2014). Identifying novel
and potent EP inhibitors (EPIs) to revert the AMR is therefore
gaining momentum. EPIs are the compounds with capability
to reduce resistance or a complete reversal of AMR against
otherwise ineffective antibiotics via inhibiting the EPs (Sun et al.,
2014; Gill et al., 2015; Wright, 2016; Spengler et al., 2017). The
first EPI against RND-type EPs was reported by Lomovskaya
et al. (2001) a phenylalanine-arginine β-naphthylamide (PAβN)
effective against Mex pumps in P. aeruginosa and AcrAB-
TolC pump in E. coli. Since then, various synthetic and
natural compounds have been screened for their EPI capabilities
(reviewed by Prasch and Bucar, 2015; Spengler et al., 2017; Shin
et al., 2018; Yang et al., 2018). Figure 2 illustrates the inhibition
of microbial drug efflux via synthetic and natural EPIs.

Medicinal plants with antimicrobial properties have the
potential to serve as the reservoir of novel and effective
EPIs (Newman and Cragg, 2012). Though there are several
reports on assessing medicinal plants for their antimicrobial
properties (crude extracts and occasionally pure molecules), few
investigations were aimed against MDR/XDR strains and fewer
on deciphering the underlying resistance mechanisms targeted
by the plant products (Kumar et al., 2013). But newer studies
are coming up for identifying novel phytomolecules capable
of reversing EP-mediated AMR. Some striking phytochemicals
which have recently been identified for their EPI potentials
include catechol, pinene, gingerol, capsaicin, resveratrol and the
number is increasing (Prasch and Bucar, 2015).

In this review, we are presenting an account of major EPs,
their roles in imparting bacterial AMR, strategies for identifying
plant-based EPIs emphasizing on the potent phyto-EPIs active
at relatively lower concentrations, reported during the last 8
years. High throughput screening and in silico approaches for
predicting the EPIs and their binding targets/sites are also
discussed.

PHYSIOLOGICAL ROLES PLAYED BY
BACTERIAL EFFLUX PUMPS

Bacterial genome comprises of EP genes, expressed under
tight regulation of global/local transcription factors (e.g., BmrR:
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TABLE 1 | Classes of commonly used antibiotics along with their examples and corresponding modes of action.

Class of antibiotics Examples Mode of action

Beta Lactams Beta lactamase inhibitors Sulbactam, Tazobactam, Clavulanic acid, Avibactam Cell wall synthesis

inhibitorsPenicillins Penicillinase sensible Aminopenicillins Ampicillin, Amoxicillin

Natural penicillins Penicillin G, Penicillin VK

Penicillinase resistant Nafcillin, Dicloxacillin, Oxacillin

Anti-pseudomonal Carboxypenicillins Ticarcillin, Carbenicillin

Ureidopenicillins Piperacillin, Mezlocillin, Azlocillin

Cephalo-sporins 1st generation Cephalexine, Cefadroxil, Cefazolin, Cephradrine

2nd generation Cefuroxime, Cefoxitin, Cefaclor, Loracarbef, Cefprozil

3rd generation Cefoperazone, Cefpodoxime, Ceftriaxone, Cefotaxime, Ceftazidime

4th generation Cefepime, Cefpirome

5th generation Ceftaroline, Ceftolozane

Carbapenems Meropenem, Doripenem, Ertapenem, Imipenem

Monobactams Aztreonam

No lactams Glycopeptides Vancomycin, Dalbavancin, Telavancin, Oritavancin

Other Colistin, Daptomycin, Polymixin B, Isoniazid

Amino-glycosides Amikacin, Streptomycin, Neomycin, Gentamicin,

Tobramycin

Protein synthesis

inhibitors

Tetracyclins Doxycyclin, Tetracyclin, Democlocyclin, Minocyclin,

Tigecyclin

Oxazolidonones Linezolid, Tidezolid

Streptogramins Quinupristin

Chloramphenicol

Macrolides Erythromycin, Clarithromycin, Azithromycin

Lincosamides Clindamycin, Lincomycin

Fluorquinolones Ciprofloxacin, Sparfloxacin, Levofloxacin, , Norfloxacin DNA

Quinolones Nalidixic acid topoisomerases

inhibitors

Sulfonamides Sulfamethoxazole, Sulfasalazine, Ag sulfadiazine,

Sulfisoxazole

Folic acid synthesis

inhibitor

DHFR inhibitors Trimethoprim, Pyrimethamine

Nitroimidazoles Metronidazole, Tinidazole DNA Damage

Rifampin mRNA synthesis

transcriptional regulator of efflux pump Bmr in B. subtilis;
QacR: transcriptional repressor of QacA transporter in S. aureus;
AcrR: transcription repressor of acrB efflux pump in E. coli)
proposing the important physiological roles the EPs play during
cell development, stress adaptations and bacterial pathogenesis
(Sun et al., 2014). The knowledge about these regulatory
mechanisms may advance the understandings of physiologically
originated AMR, frequently observed in nature (Sun et al.,
2014). As discussed above, bacterial EPs have a tremendous
capacity to extrude the variety of toxic compounds, needed for
the cell survival in a given physiological niche and are vital
for maintaining pathogenicity. This is further supported by the
studies showing reduced pathogenicity in the bacterial strains
lacking EPs. Buckley et al. (2006) showed that S. typhimurium
acrB or tolC deficient mutant poorly colonized in the avian gut,
highlighting the requirement of complete AcrAB-TolC system
for virulence. The S. typhimurium strain lacking all the drug
efflux assemblies became avirulent, when tested in a mouse

model (Nishino et al., 2006). To confirm the role of EPs
in bacterial pathogenesis, Hirakata et al. (2002) assessed the
ability of EP (MexAB-OprM, MexCD-OprJ, MexEF-OprM, and
MexXY-OprM) mutants of P. aeruginosa to invade Madin-Darby
canine kidney cells. The findings revealed that except mexCD-
OprJ, all other systems evidenced decreased bacterial invasion
abilities.

EPs are also known to effect the bacterial cell communication
during the stress-responses, especially in the quorum-sensing
(González and Keshavan, 2006). As transportation of auto-
inducers (chemical signals generated during quorum sensing)
is a key-event during cell-cell interactions via quorum-sensing,
drug EPs assist their transport across the membrane (Liang
et al., 2016). Moore et al. (2014) confirmed a vital role
played by MexAB-OprM efflux system in the secretion of
a major auto-inducer N-acylated L-homoserine lactone by P.
aeruginosa cells. The study also postulated this auto-inducer
as a substrate for MexAB-OprM system (Moore et al., 2014).
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FIGURE 1 | Number of research articles reported from 2013 to 2017 focusing on MDR bacterial strains. [Source: PubMed; Key words used: Multidrug resistant

“Genus name”].

FIGURE 2 | Examples of synthetic and natural efflux pump inhibitors (EPIs); PAβN: phenyl-arginine-β-naphthylamide, NMP: 1-(1- naphthylmethyl)-piperazine, PSSRIs:

phenylpiperidine selective serotonin re-uptake inhibitors (German et al., 2008; Hannula and Hänninen, 2008; Li et al., 2015; Ni et al., 2016; Willers et al., 2016;

Sabatini et al., 2017). Abs, antibiotics; EPs, efflux pumps.

Further, Martinez et al. (2009) advocated the EP-mediated
ceasing of quorum-sensing via augmented efflux of auto-
inducers, facilitating quick bacterial response to stress signals.
One more physiological role attributed to EPs is in the biofilm
formation. Recent studies confirm the involvement of many

well-characterized efflux systems, AcrAB-TolC of E. coli, AcrD
of S. enterica, AdeFGH of A. baumannii and MexAB-OpeM
of P. aeruginosa in biofilm formation (Alav et al., 2018). Kvist
et al. (2008) reported an up-regulation of 20 genes encoding
EP-transporters in E. coli during the growth of biofilm. Similarly,
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the EP-mediated export of colanic acid for capsule-matrix
formation was observed along with up-regulated TetA(C) in
E. coli, facilitating the biofilm formation (May et al., 2009).
Collectively, the physiological roles of EPs are vital for pathogenic
stability and virulence maintenance in bacteria.

The synthetic EPIs namely carbonylcyanide m-
chlorophenylhydrazone (CCCP), chlorpromazine and PAβN
were reported to prevent biofilm formation in E. coli, P.
aeruginosa and S. aureus (Baugh et al., 2014). However,
investigations on evaluating phytochemicals for their anti-
biofilm potencies via inhibiting EPs are few. Fiamegos et al.
(2011) isolated 4,5-O-dicaffeoylquinic acid from Artemisia
absinthium which was proved to be a potent inhibitor of
MFS pumps in E. coli and E. faecalis and as an anti-biofilm
agent (Fiamegos et al., 2011). Recent reports advocate that
nanomaterials in combination with phyto-EPIs can also be an
effective therapy for containing drug-resistant infections (Gupta
et al., 2017).

BACTERIAL EFFLUX PUMPS: THE
WARHEADS IN AMR STRAINS

Though bacterial AMR has several origins and many adaptive
mechanisms are employed by drug-resistant strains against
the antibiotics, the intrinsic EPs hold the key. Recent clinical
and laboratory data establish that bacterial EPs are not only
critical for drug-extrusion but also contribute to their virulence
and adaptive responses (Du et al., 2018). Often, antimicrobial
drug exposure induces intricate bacterial reactions including
altered expressions of several genes encoding the transporters,
as revealed by the phenotypic profiling of E. coli (Nichols et al.,
2011).

Bacterial EPs are acknowledged either as primary active
transporters using ATPs as an energy source, or as secondary
active transporters acquired due to electrochemical potential
difference created by pumping out Na+ and H+ outside the
membrane (Dwivedi et al., 2017a).

This may be considered for classifying EPs into two broad
super-families namely; ATP-binding cassette (ABC) multidrug
transporters and secondary transporters using proton motive
force (PMF) as an energy source (Putman et al., 2000).
The second super-family can again be categorized in four
subclasses, the major facilitator superfamily (MFS), resistance-
nodulation-cell division (RND), multidrug and toxic compound
extrusion (MATE) and small-MDR (SMR) family (Fernandez
and Hancock, 2012; Sun et al., 2014). RND and MFS pumps are
the most common in bacteria. With relatively narrow spectrum
of specificity, MFS pumps are found in both Gram-negative
and Gram-positive bacteria; while poly-selective RND pumps
are exclusive to Gram-negative bacteria (Ward et al., 2001;
Molnár et al., 2010). The SMR transporters show specificity for
broad-spectrum polyaromatic cations convening resistance for
compounds sharing similar chemical description. The MATE
transporters are similar in size to MFS transporters but they
do not share any sequence similarity with them (Jack et al.,
2001). Apart from the classified super-families and sub-families,

the MATE, SMR, and RND classes are distributed uniquely to
prokaryotes whereas MFS and ABC transporters are dispersed in
both prokaryotes and eukaryotes.

The large MFS is one of the most functionally diverse
transporter families comprising multiple transportation types for
drugs as well as sugars. These transporters comprise∼400 amino
acids arranged as membrane-spanning helices (Saier et al., 1998).
Based on the helical structure, MFS transporters can be classified
as either 12-[e.g., TatA(B): class B tetracyclin transporter from
E. coli] or 14-helix transporters [e.g., TatA(K): class K tetracyclin
transporter from S. aureus], and TetA(B) is one of the most
extensively studied members of the family (Lynch, 2006).

The SMR pumps represent smallest multidrug transporters,
possessing only four trans-membrane helices without any extra
membrane domain. But single minimal functional SMR unit
represents eight helices as these are functionally active in dimeric
form (Higgins, 2007).Well-illustrated example from this family is
the electromagnetic antiporter EmrE from E. coli, responsible for
resistance to a range of cationic-hydrophobic entities including
antibiotics.

The latest structurally characterized class of EPs is MATE,
involved in various vital biological functions (He et al., 2010).
These transporters are equivalent to MFS transporters with a
typical composition of ∼450 amino acids putatively arranged in
12 helices; but with no sequence similarity withMFS counterparts
(Jack et al., 2001). Some characterized MATE members include
NorM from N. gonorrhoeae and N. meningitides and YdhE from
E. coli. However, limited structural and functional knowledge is
available about this family (Dwivedi et al., 2017a).

Though EPs from other families contribute to the AMR
against certain antibiotics, RND pumps are the most potent
drug efflux systems conferring resistance against clinically
important antibiotics and biocides. Members of this family
are known for their roles against a wide range of molecules
with dissimilar structures including antibiotics, biocides, organic
solvents, antimicrobial peptides, detergents, dyes, and bile salts
(Poole, 2004). The tripartite complex of pumps from this family
comprises inner membrane protein (IMP), outer membrane
protein (OMP) along with a periplasmic membrane fusion
protein (MFP) as a connector (Venter et al., 2015). The
best understood tripartite complexes include AcrA-AcrB-TolC
from E. coli and MexA-MexB-OprM from P. aeruginosa (Du
et al., 2013, 2014). Greater structural and functional similarities
between IMPs of these two systems are described by Welch et al.
(2010). Exploration on biochemical and structural aspects of
AcrB has revealed that these IMPs contain proximal and distal
binding pockets, divided by G-loop (with 614–621 residues).
Conformational flexibility of G-loop is crucial for movement of
substrate along the binding site (Eicher et al., 2012; Cha et al.,
2014). Table 2 lists various EPs belonging to the major families
from prevalent pathogenic bacteria.

Collectively, the complex EP assemblies are critical for
bacterial pathogenesis, virulence, biofilm formation, and
adaptive-responses ultimately conferring and defining bacterial
AMR (Piddock, 2006; Martinez et al., 2009; Baugh et al.,
2012, 2014; Du et al., 2018). EPs are critical for bacterial
AMR as they exclude most of the unwanted entities
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TABLE 2 | Examples of various efflux pumps belonging to major efflux pump families from prevalent pathogenic bacterial strains.

Pathogen EP Family Example Substrate References

Acinetobacter baumannii ABC MacAB-TolC ML Okada et al., 2017

MATE AbeM ACR, AG, DAU, DOR, FQ Su et al., 2005

MFS CraA CHL Roca et al., 2009

RND AdeABC, AdeFGH, AdeIJK AG, BL, FQ, ML, TET, BIO Coyne et al., 2010,

Rajamohan et al., 2010

Campylobacter jejuni RND CmeABC, CmeDEF AG, BL, CHL, FQ, ML, RIF, TET, EB Lin et al., 2002; Akiba et al., 2006

Enterococcus faecalis ABC EfrAB ACR, CIP, DAU, DOR, DOX, NOR, TPP Lee et al., 2003

Escherichia coli ABC MacAB-TolC ML Kobayashi et al., 2001

MFS MdfA CHL, DOR, NOR, TET Nishino et al., 2006

QepA/QepA2 FQ Cattoir et al., 2008

RND AcrAB-TolC BL, CHL, FQ, ML, NOV, RIF, TET, TGC,

R6G

Swick et al., 2011,

Lennen et al., 2013

OqxAB CHL, FQ Hansen et al., 2004

SMR EmrE ACR, EB, QAC Schuldiner, 2009,

Beketskaia et al., 2014

Klebsiella pneumoniae MATE KetM DAPI Ogawa et al., 2015

MFS KpnGH CAZ, CEF, STR, TET Srinivasan et al., 2014

RND OqxAB CHL, FQ Hansen et al., 2004

SMR KnpEF BAC, CEF, CHX, ERY, STR, TET, TRI Srinivasan and Rajamohan, 2013

Mycobacterium tuberculosis ABC Rv1218c BAP, BPD, PRI, PYR Balganesh et al., 2010,

Balganesh et al., 2012

MFS Tap PAS, SPE, TET Ramón-García et al., 2012

SMR Mmr CAB, CLA, TPP Balganesh et al., 2012,

Rodrigues et al., 2013

Pseudomonas aeruginosa RND MexAB-OprM,

MexXY-OprM/A,

MexCD-OprJ, MexEF-OprN

AG, BL, CHL, FQ, ML, SUL, TET, TGC,

TMP, BIO, EB

Poole et al., 1996,

Köhler et al., 1997

Staphylococcus aureus ABC Isa(E) LIN, PLE, STA Wendlandt et al., 2015

Msr(A) ML, TEL Vimberg et al., 2015

MATE MepA BIO, EB, FQ, TIG Kaatz et al., 2005

MFS NorA FQ Yoshida et al., 1990

QacA ACR, CHX, EB, QAC Littlejohn et al., 1992

Streptococcus pneumoniae ABC PatAB FQ Marrer et al., 2006

MFS MefE ML Tait-Kamradt et al., 1997

Vibrio spp. ABC VcaM CIP, DAU, DOR, NOR, TET Huda et al., 2003

MATE NorM AG, EB, FQ Morita et al., 1998

MFS EmrD-3 EB, LNZ, ERY, CHL Bruns et al., 2017

ACR, acriflavine; AG, aminoglycosides; BAC, benzalkonium chloride; BAP, biaryl-piperazines; BL, β-lactams; BIO, biocides; BPD, bisanilino-pyridines; CAB, cetyl-trimethyl-

ammoniumbromide; CAP, cationic antibacterial peptides; CAZ, ceftazidime; CEF:cefepime; CHL, chloramphenicol; CHX, chlorhexidine; CIP, ciprofloxacin; CLA, clofazimine; DAU,

daunomycin; DAPI, 4’,6-diamidino-2-phenyl indole; DOR, doxorubicin; DOX, doxycycline; EB, ethidium bromide; ERY, erythromycin; FQ, fluoroquinolones; FUA, fusidic acid;

LIN:lincosamide; LNZ, linezolid; ML, macrolides; NOR, norfloxacin; NOV, novobiocin; PAS, p-aminosalicylate; PLE, pleuromutilin; PRI, pridones; PYR, pyrroles; QAC, quaternary

ammonium compounds; SPE, spectinomycin; STA, streptogramin A; STR, streptomycin; SUL, sulfonamides; TEL, telithromycin; TET, tetracycline; TGC, tigecycline; TMP, trimethoprim;

TPP, tetraphenylphosphonium,TRI, triclosan.

until the cell gets required time for acquiring resistance
(Piddock, 2014; Venter et al., 2015).

BACTERIAL EFFLUX PUMPS: THE
URGENT THREATS REQUIRING
IMMEDIATE REMEDY

It is well-established that EPs comprise one of the most vital
systems in bacteria responsible for both innate and acquired

AMR (Blair et al., 2015). There are reports of EPs from different
superfamilies and the occurrence of various types of EPs from
the same superfamily in a single bacterial species (Piddock,
2006). For instance, whole genome sequencing of the colistin
resistant Enterobacter cloacae showed presence of multiple EPs
(Norgan et al., 2016). Differential substrate profiles of EPs are
also a characteristic feature which may diverge between or
within the superfamily (Poole, 2005, 2007). Although the core
motive of EPs related studies is focused on AMR, several reports
however confirmed other but significant functions of bacterial
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EPs including quorum-sensing, biofilm formation, virulence,
pathogenicity and bacterial behavior (Piddock, 2006; Yang et al.,
2006; Fahmy et al., 2016).

Up-regulation of gene expression levels are one of the
main drivers for chromosomally acquired AMR. This can be
triggered due to the gene induction, activated transcription, or
due to regulatory mutations (Grkovic et al., 2002). The coding
region for an EP is usually found contiguous to the regulatory
proteins controlling the expression levels of pump gene in
response to substrates. For example, AdeL, an LTTR (LysR-type
transcriptional regulator) family protein exists opposite to the
adeFGH operon that regulates the expression of genes encoding
RND efflux system in A. baumannii (Liu et al., 2018). The
expression levels of EP-associated proteins along with porins
is mutually controlled by several global regulatory elements,
modifying the transcription patterns of EP-family transcripts
either directly or through a cascade of regulatory events (Warner
and Levy, 2010; Sun et al., 2014). Further, the expression of
MexAB-OprM efflux system is governed by repressor protein
mexR, encoded by a gene located upstream of the mexAB-oprM
operon in P. aeruginosa (Suresh et al., 2018). Similarly, the acrAB
operon system is regulated by regulator acrR in E. coli, located
140 bp up-stream of the acrAB operon (Ma et al., 1996).

Another striking bacterial character adding to the AMRnature
is heteroresistance, the occurrence of differential responses to
antibiotics by the bacterial cells from the same population, a
phenomenon first reported in S. aureus (Kayser et al., 1970).
Interestingly, drug resistant and sensitive bacterial cells may co-
exist in a single culture (Morand and Mühlemann, 2007). The
mechanism underlying heteroresistance acquirements are yet to
be fully understood, however, the active EPs are strongly linked
to heteroresistance (Chen et al., 2017). Designing a treatment
course against such strains is difficult as there are high chances
of increase in the frequency of resistant-bacterial-population and
stimulation of cross-resistance to antimicrobial lysozymes of the
host system (Napier et al., 2014; Telke et al., 2017). Up-regulation
of OpxAB gene in Salmonella typhimurium (Chen et al., 2017)
and AdeABC gene in A. calcoaceticus-A. baumannii (Ruzin et al.,
2007) are attributed for mediating the tigecyclin heteroresistance.
Similarly, colistin associated heteroresistance is also reported
in E. asburiae LH74 and E. cloacae NH52 (Telke et al., 2017),
showing its association with overexpression of acrAB-tolC EPs
under the regulation of soxRS genes.

AMR phenotypes may result from concurrent acquisition
of several AMR mechanisms simultaneously. It may include
a combination of phenomena like chromosomally acquired
resistance, multiple chromosomal changes with time, and/or
a single mutational event activating the AMR mechanisms
including the EPs (Lister et al., 2009). The over-expressions of EPs
and their corresponding genes have been reported to contribute
to MDR in P. aeruginosa (Shigemura et al., 2015). Recent studies
have confirmed the role of EPs in fluoroquinolone resistant E. coli
(Amabile-Cuevas et al., 2010; Swick et al., 2011; Yasufuku et al.,
2011). Similarly, two fluoroquinolone resistant clinical isolates
of Shigella showed overexpression of the TolC channels, part of
AcrAB-TolC tripartite responsive to ciprofloxacin (Kim et al.,
2008). These findings confirm that the up-regulation of EP genes

contribute significantly to diminish intracellular antibiotics level,
with a selectivity of the efflux transporter.

Overall, the poly-specificity of EPs, their overexpression
in response to drugs along with the phenomenon of
heteroresistance seem key factors responsible for drug-resistance
in a wide-range of bacterial species, especially in Gram-negative
bacteria making them difficult to treat with conventional
drug arsenal. The drug-efflux mediated bacterial AMR is a
mounting threat to global healthcare, therefore EPs are gaining
unprecedented attention not only from the perspectives of basic
understandings that how they work and impart drug-resistance
but also as emerging targets for development of novel and
potent adjunct-therapies for combating AMR in community
and nosocomial infections. As a result, inhibition of drug efflux
from bacterial cells via inhibiting or disrupting the EPs is an
emerging approach for combating the threatening AMR. Various
approaches have been developed in recent past and a schematic
for these strategies for inhibition or disruption of bacterial drug
efflux is illustrated in Figure 3.

PHYTOTHERAPEUTICS–THE POTENT
EFFLUX PUMP INHIBITORS

Phytochemicals are critical for human health-care since
ancient times. Medicinal plants are hailed as a reservoir for
phytochemicals capable of providing new and potent drug leads
to contain the AMR via targeting the principal determinants
of drug-resistance including EPs (Newman and Cragg, 2012;
Prasch and Bucar, 2015). This review focuses mainly on EPIs
of plant origin (phyto-EPIs) reported in the running decade.
We are discussing some important and successful case studies
on phyto-EPIs effective against AMR phenotypes. Table 3

summarizes the list of phytochemicals, their source and effective
concentrations used for inhibiting the efflux pumps of AMR
bacterial strains.

One of the potent EPIs, the anti-hypersensitive alkaloid
reserpine was isolated from Rauwolfia vomitoria (Stavri et al.,
2007). Similarly, EP inhibitory activity of gallotannin (1,2,6-
tri-O-galloyl-b-D-glucopyranose) isolated from hydro-alcoholic
extracts of Terminalia chebula fruits was demonstrated by
Bag and Chattopadhyay (2014) against MDR uropathogenic E.
coli. Gallotannin induced a 2- to 4-fold reduction in minimal
inhibitory concentration (MIC) of test antibiotics via inhibiting
the ethidium bromide (EtBr) pump (Table 3). As EtBr is a known
EP-substrate, inhibition of EtBr efflux backs the postulated EP-
inhibitory activity of gallotannin (Bag and Chattopadhyay, 2014).
Methanolic sap extracts of Acer saccharum was evaluated for its
drug efflux inhibitory potentials against P. aeruginosa (ATCC
15692 and UCBPPPA14), E. coli (ATCC 700928) and P. mirabilis
(HI4320) confirmed via monitoring the EtBr efflux (Maisuria
et al., 2015).

A clavine alkaloid lysergol from Ipomoea muricata was
evaluated against AMR E. coli strains (MTCC1652 and KG4)
to test its EP inhibitory potentials, and strong activities (higher
than the standard reserpine) were exhibited by lysergol and
its derivative, 17-O-3′′,4′′,5′′-trimethoxybenzoyllysergol (Maurya
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FIGURE 3 | Various strategies for inhibition of drug efflux from bacterial cells for combating antimicrobial resistance (Based on reviews by Pagès and Amaral, 2009;

Venter et al., 2015).

et al., 2013). Authors also reported the inhibitory activities of
this compound against ABC pump YojI in E. coli (Maurya
et al., 2013). Similarly, falcarindiol, isolated from Levisticum
officinale exhibited EPI activities against the Gram-negative
strains (Garvey et al., 2011).

On the similar lines, Dwivedi et al. (2017b) reported the
antibiotic-potentiating activities of catharanthine against
superbug P. aeruginosa. The investigation involved in silico
docking followed by the in vitro evaluation revealed that
catharanthine potentiates the activity of tetracyclin and
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TABLE 3 | A summarized list of phytochemicals, their source and effective concentrations for inhibiting efflux pumps from antimicrobial resistant bacteria.

Active Compound Verified effective

concentration/s

Plant Antimicrobial resistant

microbes

Targeted efflux

pumps

References

1′-S-1′-acetoxyeugenol

acetate

3.12–25mg L−1 Alpinia galanga Mycobacterium smegmatis

mc2 155

EtBr EP Roy et al., 2012

4-hydroxy-α-tetralone 125 µg mL−1 Ammannia spp. MDR E. coli YojI Dwivedi et al., 2014b

Baicalein 16 µg mL−1 Scutellaria baicalensis S. aureus SA-1199B NorA Chan et al., 2011

Berberine and

Palmatine

250–1,000 µg mL−1

500–100 µg mL−1
Berberis vulgaris MDR P. aeruginosa (clinical

isolates)

MexAB-OprM Aghayan et al., 2017

Capsaicin 25 µg mL−1 Capsicum spp. S. aureus SA-1199B NorA Kalia et al., 2012

Catechol 5 and 10mg mL−1 Acer saccharum P. aerugenosa ATCC 15692

and UCBPPPA14,

E. coli ATCC 700928,

P. mirabilis HI4320

EtBr EP Maisuria et al., 2015

Catharanthine 25mg L−1 Catharanthus roseus P. aeruginosa EtBr EP Dwivedi et al., 2017b

Conessine 20mg L−1 Holarrhena antidysenterica P. aeruginosa MexAB-OprM Siriyong et al., 2017

Cumin-methanol extract 5mg mL−1 Cuminum cyminum S. aureus MRSA OM505 LmrS Kakarla et al., 2016

Essential oil 5 µl mL−1 Salvia fruticosa S. epidermidis (clinical

isolates)

Tet(K) EP Chovanova et al., 2015

Essential oil 170.6 µl mL−1 Chenopodium Ambrosioides Staphylococcus aureus

IS-58

Tet(K) EP Limaverde et al., 2017

Gallotannin 12.1–97.5 µg mL−1 Terminalia chebula MDR uropathogenic E. coli EtBr EP Bag and

Chattopadhyay, 2014

Indirubin 1.25 and 2.5mg L−1 Wrightia tinctoria S. aureus SA-1199B NorA Ponnusamy et al., 2010

Kaempferolrhamnoside 1.56mg L−1 Persea lingue S. aureus SA-1199B NorA Holler et al., 2012

Lysergol 10 µg mL−1 Ipomoea muricata E. coli MTCC1652 and KG4 YojI Maurya et al., 2013

Olympicin A 50µM Hypericum olympicum S. aureus 1199B NorA Shiu et al., 2013

Sarothrin 100µM Alkanna orientalis Staphylococcus aureus

NCTC 8325-4

NorA Bame et al., 2013

Ursolic acid and derivatives 25 and 50 µg mL−1 Eucalyptus tereticornis MDR E. coli (KG4) AcrA/B, MacB,

TolC and YojI

Dwivedi et al., 2014a

streptomycin, as confirmed by a reduced MIC, and acts as a
potent EPI (Dwivedi et al., 2017b). A pentacyclic triterpenoid
ursolic acid from leaves of Eucalyptus tereticornis described
as a precursor of putative EPI was evaluated against MDR E.
coli (KG4), two promising semi-synthetic, esterified derivatives
of ursolic acid, 3-O-acetyl-urs-12-en-28-isopropyl ester and
3-O-acetyl-urs-12-en-28-n-butyl ester and the parent compound
exhibited better EP inhibitory potencies than the standard
reserpine (Dwivedi et al., 2014a). The molecular docking
confirmed the targets of these compounds as AcrA/B, MacB,
TolC, and YojI (Dwivedi et al., 2014a). Similarly, two alkaloids
isolated from roots and rhizomes of Berberis vulgaris, the
barberine and palmatine showed potent EP inhibitory efficacies
against P. aeruginosa isolated from burn infections (Aghayan
et al., 2017).

Phenylpropanoids from the n-hexane and chloroform
fractions of Alpinia galanga exhibited EP inhibitory activities
against Mycobacterium smegmatis mc2 155ATCC 700084
(Roy et al., 2012). A dose-dependent EP inhibition was
observed with 1′-S-1′-acetoxyeugenol acetate (Roy et al., 2012).
Mukanganyama et al. (2012) examined another mycobacterial
member Mycobacterium aurum A+ against a naphthoquinone
diospyrine isolated from Diospyros montana along with its

derivatives. Two derivatives proved highly potent EPI and
allowed bacterial cells to accumulate high concentrations of
ciprofloxacin (Mukanganyama et al., 2012).

The acylphloroglucinol isolated from n-hexane fractions
from Hypericum olympicum, olympicin-A showed promising
activities against S. aureus (Shiu et al., 2013). The radiometric
accumulation assay of the strain overexpressing NorA pump
indicated the enhanced accumulation of (14)C-enoxacin,
thus confirming efflux inhibition (Shiu et al., 2013). Two
coumarins [5,7-dihydroxy-6-(2-methylbutanoyl)-8-(3-
methylbut-2-enyl)-4-phenyl-2H-chromen-2-one and 5,7
-dihydroxy-8-(2-methylbutanoyl)-6-(3-methylbut-2-enyl)-4-
phenyl-2H-chromen-2-one] obtained from floral buds of Mesua
ferrea were assessed against NorA-overexpressing S. aureus
1199B and the clinical isolate MRSA 831 (Roy et al., 2013).
Linoleic acid isolated from ethanolic extracts of Portulaca
oleracea showed efflux inhibitory potential at 64mg L−1

concentration, equivalent to reserpine when quantified against
MRSA (RN4220/pUL5054: erythromycin resistant, over-
expressing MsrA ABC EP, Chan et al., 2015). In search of the
drug-resistance reversal agents, dos Santos et al. (2018) assessed
caffeic acid and gallic acid against four strains of S. aureus; 1199
as a wild type strain, 1199B as NorA harboring fluroquinolone
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resistant, IS-58 possessing TetK pump and RN4220 possessing
MrsA pump. The study confirmed caffeic acid as a potent
AMR-reversal agent, as it effectively inhibited MrsA and NorA
EPs from S. aureus strains RN4220 and 1190B, respectively
(dos Santos et al., 2018). In another interesting study, Kakarla
et al. (2016) reported LmrS inhibitory activities of Cuminum
cyminum. The study revealed that the cumin inhibits the LmrS
mediated transport of drugs resulting in growth inhibition of
MRSA clinical isolate in a dose-dependent manner (Kakarla
et al., 2016).

Traditionally, most of the investigations were aimed at
identifying EPIs for Gram-positive strains for reversing their
AMR characters with very few reports against Gram-negative
members. This can be because Gram-negative bacteria are
more difficult targets then their positive counterparts due
mainly to the presence of powerful EPs and other effective
membrane barriers (lipophilic layer) averting them from external
impacts (Stavri et al., 2007; Prasch and Bucar, 2015). Though,
some approaches have emerged in recent years for improving
antibiotic-penetration across the permeability membranes of
Gram-negative bacteria such as the inhibition of new accessible
target, identification of uptake pathways and the “Trojan
Horse” approach (achieving fast or facilitated antibiotics uptake),
establishing the rules of permeation (for predicting whether
elevated uptake or reduced efflux would be the most efficient
way for increasing the potency of specific antimicrobial class) and
identifying potent EPIs, last one being probably the most potent
(Zgurskaya et al., 2015).

Recently, Bruns et al. (2017) successfully inhibited EmrD-
3 pump-mediated drug efflux from a Gram-negative bacterium
Vibrio cholerae by garlic extract and its bioactive compound,
allyl sulfide. At relatively low concentrations, the extract seems
to target the EmrD-3 pump, but at higher garlic extract
concentrations, the respiratory chain was affected. This example
confirms targeting the energization of the efflux system by plant
compounds as a potential strategy for drug efflux inhibition
(Bruns et al., 2017).

Further, the MFS conserved sequence motifs, present across
the entire superfamily, provide vital information regarding
alignments of MFS transporter sequences (at least motif
containing region), which may help in understanding the
structural templates and actual binding events achieved via
these transporters. Molecular dynamic simulation (MDS) studies
of VMAT2 multidrug transporter (MFS family) revealed the
presence of two domains of six trans-membrane helices (Yaffe
et al., 2013). The trans-membrane residues at anchoring sites
are identified as hinge points, at which straightening and flexing
movement of helices occur, required for transport. These anchor
point residues are highly conserved throughout the MFS family
(Yaffe et al., 2013) and are emerging targets for drug efflux
inhibition. Recent advances in scientific and technological arena
have added significant in-depth understandings of the structural
and biochemical basis of drug efflux, substrate profiles, molecular
regulation and inhibition of major EPs.

Active EPs play a critical role in intrinsic and elevated
drug resistance acquired via overproduction or over-activation
of pumps in Gram-negative bacteria, and the development of

clinically useful EPIs or new antibiotics to bypass pump-effects
continues to be a challenge in combating Gram-negative bacterial
infections (Li et al., 2015). As practically all the antibiotics are
susceptible to active drug efflux, the potent EPIs can target
these pumps antagonistically and can make old antibiotics
effective again (the phenomenon known as re-sensitization).
Besides, considering the fact that several antimicrobial agents
like lipophilic penicilines, many glycopeptides, oxazolidinones,
macrolides and lipopeptide daptomycin are effective in treating
only Gram-positive bacterial infections and their poor potencies
against Gram-negative pathogens is at least partially due to
their active drug efflux, novel and potent EPIs are needed to
significantly broaden the range of these antimicrobial agents.
All this clearly indicates that EPIs have tremendous potential
in adjunctive therapies along with the known but otherwise
ineffective antibiotics ultimately reducing the emergence of AMR
and virulence (Opperman and Nguyen, 2015). But developing
novel and potent EPI is difficult and needs to overcome several
hurdles such as choice of antibiotics for potentiation and
matching the pharmacological properties of EPI-antibiotics pair
(Opperman and Nguyen, 2015; Zgurskaya et al., 2015).

Considering the serious threats posed by the Gram-negative
bacteria and their drug-resistance nature, more investigations
aiming to target them with the novel, alternative and effective
approaches including exploration of natural products are coming
up. Though there are limited success stories, but they may lay
the foundation for developing potent EPIs to avert the AMR
phenotypes with the help of natural sources.

IN SILICO MOLECULAR DYNAMICS
SIMULATIONS (MDS) TO SCREEN AND
DEVELOP EPIS

The MDS is a commanding approach for computational
validation and to support the hypothesized mechanisms of
EPs and EPIs (Nikaido and Takatsuka, 2009). It has made
possible to simulate the membrane protein complex structures
with micro-second time-scales. The MDS approach along with
molecular docking and other in silico tools are successfully
utilized for screening and prediction of molecular interactions
between potential EPs and their corresponding inhibitors
(Jamshidi et al., 2016). This has led to the unraveling of the
mechanism how drug efflux systems recognize and transfer
specific molecules; thus helping researchers in challenging the
efflux-mediated resistance and finding appropriate EPIs for
improvement in antibiotics efficacy during AMR (MDR/XDR)
infections (Collu et al., 2012; Nakashima et al., 2013).
There are several recent reports describing the successful
applications of these in silico approaches for screening and
identifying potent EPIs of plant origin (Bhaskar et al., 2016;
Jamshidi et al., 2016; Mangiaterra et al., 2017; Verma et al.,
2017).

A general scheme for MDS-based approaches is depicted
in Figure 4. Briefly, it starts with the identification of three-
dimensional structures of potential EP-binding sites (pockets).
The next step is the prediction of trans-membrane segments
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FIGURE 4 | A general scheme for in silico molecular dynamics simulations approach for screening and developing plant based efflux pump inhibitors.

from protein sequences. The predicted structure can then be
checked for its stereochemical properties by analyzing the
overall and residue-by-residue geometry. The modeled protein
structure is then reduced with the solvent implied by chimera
programs (http://www.cgl.ucsf.edu/chimera/, Pettersen et al.,
2004) and the projected protein structure can be used for its
interaction with potential EPI molecules. The three-dimensional
structure of the EPI is then explored to attain perfect and
stable EPI-EP complex. Potent tools for docking studies include
AutoDock (http://autodock.scripps.edu/,Morris et al., 2009), and
SwissDock (http://www.swissdock.ch/, Grosdidier et al., 2011).
Such automated docking tools can predict the exact binding
position of the candidate drug-molecule to the receptors, and
provides vital information about exact amino residues taking part
in bond-formation with potential drug(s), their bond lengths and
type and other interactions adding to the stability of the docking
complexes.

Recently, Kesherwani et al. (2017) used high throughput
virtual screening of natural compounds against NorM, a MATE
transporter from N. gonorrhea followed by flexible docking.
Authors performed molecular simulation in a membrane
environment for investigating the stability and binding energy
of top lead compounds, and identified a phytomolecule from
Terminalia chebula with higher binding free energy than
the substrates (rhodamine 6 g, ethidium). The compound
successfully blocked the disruption of Na+-coordination along
with an equilibrium state bias toward occlude state of NorM
transporter, ultimately blocking the extrusion of antimicrobial
drugs via inhibiting the NorM transporter in drug-resistant
N. gonorrhea.

Similarly, Suriyanarayanan and Sarojini (2015) analyzed EPI
potentials of plant-derived flavonoid quercetin in bringing down

the drug efflux via inhibiting the EmrE, a transporter belonging
to SMR family from E. coli. Authors used in silico approaches
and molecule docking approaches. The docking analysis of
quercetin with EP-protein showed the importance of residues
for function and stability, and notably quercetin showed best
interactions as compared to the compounds like verapamil,
reserpine, chlorpromazine, and carbonyl cyanide m-chloro
phenylhydrazone. MDS confirmed the stability of quercetin-
Mmr complex, which insights the potential of quercetin as a
non-antibiotics adjuvant for treatment of bacterial infection via
reducing the drug efflux from bacteria.

Mangiaterra et al. (2017) identified two phyto-EPIs using
in silico high-throughput virtual screening. Molecular docking
revealed these two compounds morelloflavone and pregnan-20-
one derivative as inhibitors ofMexAB-OprMEPs of P. aeruginosa
and supportive in vitro assays confirmed their synergism with
ciprofloxacin (Mangiaterra et al., 2017).

Molecular docking plays a crucial role and help in defining
drug-protein interactions which determines whether compounds
act as substrates for EP proteins. Therefore, inhibitors or
modulators of EPs are well-recognized along with their
comparative binding efficiencies via detailed docking analyses
(Collu et al., 2012). Putative EPI activities of quercetin,
plumbagin, nordihydroguaretic acid, shikonion and mangiferin
were confirmed (Ohene-Agyei et al., 2014). Similarly, docking
of reserpine, salvin, totarol, ferruginol along with known
antibiotics to NorA revealed that all the tested compounds
showed binding at large hydrophobic cleft, suggesting the
substantial interactions with key-residues (Bhaskar et al., 2016).
Notably, all these investigations were backed by the bioassays
confirming the validity of information generated via in silico
screening.
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Owing to the importance of an instantaneous requirement of
curing the XDR/MDR strains with utmost specificity, a greater
understanding of exact drug-identification and its transport by
MDR-EPs is important. The in silico MDS approach along with
virtual docking and wet laboratory validation therefore can be
considered as an imperative path in identifying potent phyto-
EPIs.

MOLECULAR INTERACTIONS
UNDERLYING INHIBITION OF EFFLUX
PUMPS BY PHYTO-THERAPEUTICS

The inhibition of active drug efflux by EPIs results into the
elevated intracellular antimicrobial concentrations, and lowered
or complete reversal of efflux-mediated bacterial drug resistance,
prevention of microbial invasiveness by inhibiting the export
of virulence-factors and shortened adaptation-time required
for bacteria, prohibiting the emergence of mutant strains with
high AMR (Bhardwaj and Mohanty, 2012; Sun et al., 2014).
Major strategies developed for drug efflux inactivation are, first,
alterations in regulatory mechanisms for activation/repression
of EP gene expressions (Purssell and Poole, 2013), second,
deprivation of motive forces required for working of pumps
by diminishing the proton gradient (Viveiros et al., 2005;
Martins et al., 2008), third structural modifications in existing
antimicrobials to bypass the chemophore recognition by the EPs
(Chollet et al., 2004; Rice et al., 2005), fourth disrupting the
pump-functionality by averting assembly of pumps by targeting
protein interfaces (Tikhonova et al., 2011); interaction between
protein motifs (Hobbs et al., 2012); obstructing the exit duct
(Zeng et al., 2010), and fifth, the trapping of EPs in the inactivated
form by competitive binding of EPIs and cytoplasmic membrane
proteins (Nakashima et al., 2013; Opperman et al., 2014; Nguyen
et al., 2015; Opperman and Nguyen, 2015; Figure 3). In addition,
targeting the molecular hinge structures by the conserved
sequence motifs is also an emerging strategy for EP inhibition
(Abdali et al., 2017). The conserved sequence motifs (7–13
residues) are characteristics of MFS family and these motifs on
c-terminal end of trans-membrane helix are rich in glycine and
proline, vital for promotion of hinge formation. These conserved
residues are considered as major contributors in binding and
transportation of respective substrates (Luo and Parsons, 2010),
and therefore targeting them holds significance for drug efflux
inhibition.

To identify the phyto-EPIs, some authors tried to decipher
the physiological and molecular interactions involved in EP
dysfunction. Sharma et al. (2010) described piperine as an
inhibitor of Rv1258c, an efflux protein transporter present on
cytoplasmicmembrane [encoding for tetracyclin/aminoglycoside
resistance (TAP-2)-like EP] in M. tuberculosis H37Rv. After
structural prediction of the protein, further investigation revealed
the binding pocket of Rv1258c. Authors showed H-bond
interaction (2.06 Å) with Arg141 residue and piperine provided
stable protein-ligand interaction. The findings confirmed the
role of piperine in augmenting rifampicin sensitivity in M.
tuberculosis (Sharma et al., 2010). Capsaicin also proved a potent

EPI, inhibiting NorA pump of S. aureus (Kalia et al., 2012). The
study showed the involvement of Arg98 and Ile23 residues from
active binding site in the key binding interactions. The stable
interaction between capsaicin and active site at the proposed
orientation allows an aliphatic chain of capsaicin, extending
in a hydrophobic cleft (containing residues Pro24, Phe140,
Ile244, and Phe303) permitting strong hydrophobic interactions
due to a lesser distance between ligand and molecule (1.7–3.2
Å). A weak H-bond formation between OH-group (from aryl
moiety of capsaicin) and Arg98 was attributed for providing
extra-stability to capsaicin/NorA complex (Kalia et al., 2012).
Another study by Zhang et al. (2014) described the interactions
between ginsenoside 20(S)-Rh2 and NorA from S. aureus. The
stable H-bond formation between ginsenoside 20(S)-Rh2 and
Gln51/Asn340/Ser226 residues at active binding site in the
central cavity of protein was attributed for the inhibition of NorA
pump, thus promoting accumulation of ciprofloxacin inside the
bacterial cell (Zhang et al., 2014). In the similar vein, Ohene-
Agyei et al. (2014) assessed five phytochemicals (plumbagin,
shikonin, quercetin, mangiferin and nordihydroguaretic acid)
for their EPI potentials against AcrB protein from AcrAB-
TolC drug transporter. The stable H-bond formation between T
monomer of AcrB with minocycline attached to binding pocket
and phytochemicals was responsible for efflux inhibition by the
phytochemicals (Ohene-Agyei et al., 2014). Further, the authors
also postulated that the considered natural compound act as a
substrate and compete with the antibiotics for drug-resistance
reversal (similar to PAβN). Therefore, these natural products act
as high-affinity substrate inhibitors rather than substances for
trapping the EPs in an inactive state.

CONCLUDING REMARKS

Increasing AMR in community and nosocomial settings is a big
threat to human healthcare and accounts for a large number of
mortalities and morbidities globally. Bacterial EPs make up a
major warhead of the drug-resistant pathogens and increase and
maintain the AMR via extruding or reducing the intracellular
concentrations of applied antibiotics, often in a non-specific
manner. The drug EPs are also emerging as chemical tools to
understand molecular mechanisms underlying drug extrusion
from the bacterial cells. EPs play several important physiological
andmolecular roles in bacterial cell survival and stress-responses.
The necessity to overcome AMR has encouraged investigators to
characterize resistance-inhibiting or modulating EPIs to block
the drug extrusion, restoring antibacterial susceptibility and
returning existing antibiotics into the clinic. The severity of the
AMR is higher in Gram-negative bacteria, owing to their superior
capabilities in maintaining high drug efflux levels coupled with
lower intracellular levels of toxic drugs including antibiotics.
MDR/XDR strains maintain their intrinsic and acquired
resistance via overproduction of pumps. The development of
clinically useful EPIs to bypass pump effects continues to be
a challenge. Though there are some noteworthy developments
in recent past aimed at reversing the AMR phenotypes
including facilitation of better drug-penetration across the outer
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membranes of Gram-negative bacteria, and establishing new
rules of permeation, identifying new and powerful EPIs seems
best approach that can be explored as drug leads or in adjunctive
therapies.

Several recent developments in in-silicoMDS approaches have
enabled the researchers to computationally validate and support
the hypothesized mechanisms of EPs and EPIs (Suriyanarayanan
and Sarojini, 2015; Ramaswamy et al., 2017; Vargiu et al.,
2018). It is now possible to simulate membrane protein complex
structures with micro-second time-scales. The MDS approach
along with molecular docking and other in silico tools are
successfully utilized for screening and prediction of themolecular
interactions between potential EPs and their corresponding EPIs,
ultimately helping in identification of the potent EPIs particularly
from plant origin. However, this field is yet to be explored
fully.

Considering the fact that practically all the antibiotics are
susceptible to active drug-efflux, use of the potent EPIs to
target and block these pumps can help in potentiating the
old antibiotics effective again against a range of drug-resistant
bacteria. EPIs are being looked as promising adjunctive therapies
with the known antibiotics to improve their antibacterial potency
at low concentrations, reduce the emergence of AMR and
virulence. But developing novel and potent EPI is not easy
and needs to overcome several hurdles such as choice of
antibiotics for potentiation and matching the pharmacological
properties of EPI-antibiotic(s) pair. More comprehensive and

deeper investigations are therefore needed that involve the
exploring the high-throughput screening assisted by in silico
tools for identifying the potent EPI phytomolecules and their
corresponding targets. Newer studies are being undertaken for
identifying phytomolecules effective in inhibiting bacterial efflux
pumps via potentiation of antibiotics against pathogenic bacteria
including Gram-negative pathogens. This may pave the way
for identification of phyto-EPIs that can head toward clinical
phases and ultimately clinical practices with an aim to contain
the AMR.
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