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Abstract

Aspergillus fumigatus (Af) and Pseudomonas aeruginosa (Pa) are leading fungal and bacte-

rial pathogens, respectively, in many clinical situations. Relevant to this, their interface and

co-existence has been studied. In some experiments in vitro, Pa products have been

defined that are inhibitory to Af. In some clinical situations, both can be biofilm producers,

and biofilm could alter their physiology and affect their interaction. That may be most rele-

vant to airways in cystic fibrosis (CF), where both are often prominent residents.

We have studied clinical Pa isolates from several sources for their effects on Af, including

testing involving their biofilms. We show that the described inhibition of Af is related to the

source and phenotype of the Pa isolate. Pa cells inhibited the growth and formation of Af bio-

film from conidia, with CF isolates more inhibitory than non-CF isolates, and non-mucoid CF

isolates most inhibitory. Inhibition did not require live Pa contact, as culture filtrates were

also inhibitory, and again non-mucoid>mucoid CF>non-CF. Preformed Af biofilm was more

resistant to Pa, and inhibition that occurred could be reproduced with filtrates. Inhibition of

Af biofilm appears also dependent on bacterial growth conditions; filtrates from Pa grown as

biofilm were more inhibitory than from Pa grown planktonically. The differences in Pa shown

from these different sources are consistent with the extensive evolutionary Pa changes that

have been described in association with chronic residence in CF airways, and may reflect

adaptive changes to life in a polymicrobial environment.
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Introduction

Cystic fibrosis (CF) is the result of mutations in the CF transmembrane conductance regulator

affecting epithelial chloride and bicarbonate transport. One result is development of thick

respiratory secretions, which results in airway obstruction and recurrent episodes of lung

inflammation and infection, leading to acute and chronic deterioration of lung function and a

shortened lifespan [1]. The affected persons have defective mucociliary clearance and produc-

tion of thick sticky mucus in which various pathogens can become entrapped. This is a suitable

environment for microbial growth and colonization, and these organisms or their soluble

metabolites contribute to airway inflammation and subsequent damage.

The most common bacterium and fungus infecting these airways are Pseudomonas aerugi-

nosa (Pa) [2] and Aspergillus fumigatus (Af) [3–7], respectively, particularly in the chronically

infected older patients. Pa evolves in CF airways, producing variants, such as those resulting in

mucoid colony types, which are adapted to chronic residence there [2,8,9]. Af is ubiquitous in

ambient air and the environment, and thus can be inhaled and subsequently establish resi-

dency. Both organisms are proficient adapters to environmental stress and relatively resistant

to current antimicrobials. They are suspected as important agents in promoting mucus plug

formation in the airways, and both are known to form biofilms in vitro and in vivo [2,9–20].

Microbes in biofilms have altered metabolism compared to the same organisms growing plank-

tonically, and biofilms provide microbes with protection from host defenses as well as tolerance

to some antimicrobial drugs [21]. The attribution of a role for these microbes in mucus plug-

ging and biofilms stems from the known extracellular production of glycan polymers by Af

[22] and alginate by Pa [2,9,17]. In addition to infection, Af can cause allergic bronchopulmon-

ary aspergillosis in up to 15% of CF patients, a complication that causes repeated acute exacer-

bations, institution of immunosuppressive therapy, and accelerated decline in lung function

[23]. As is the case with Pa, Af also produces secondary metabolites, in the environment as well

as in vivo, which are known tissue toxins and also have immunosuppressive actions on the host

response [24]. Infection with Pa or Af has been associated with a more rapid decline in CF pul-

monary function [17,25–33], with the co-infected patients having the worst prognosis [32,34].

Both pathogens are also important because either can be an opportunist, causing invasive dis-

ease [35–39] or other complications [40,41], in lung transplantation, a therapeutic modality

offered in debilitating CF.

It is therefore important to study the interactions between these two pathogens. Pa-secreted

molecules have been well studied for their antifungal activities, a property that has been dem-

onstrated in vitro [42–47]. These inhibitory molecules include homoserine lactones, pyocyanin

and other phenazine derivates, pyrrolnitrin and fluorescent green pigments. However, these

studies were performed with one or few Pa isolates, none representatives of variants that estab-

lish chronic residency in CF airways. Moreover, Pa-associated factors involved in this inter-

kingdom inhibition continue to be elucidated [48]. The aim of this study was to evaluate the

effect of different clinical Pa phenotypic variants obtained from CF and non-CF patients on Af

biofilm formation and preformed Af biofilm.

Materials and Methods

Isolates

Any CF isolates from patient respiratory cultures were obtained after written informed con-

sent, for biobanking of the patients’ specimens and subsequent use, approved by the Stanford

Institutional Review Board. Other isolates were obtained following clinically indicated cultures.

Twenty-six clinical isolates of Pa recovered from non-CF patients (n = 16 isolates), or CF
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patient sputum (n = 10), from Stanford University Hospital and clinics were evaluated. Among

the CF isolates, five were mucoid colony phenotype variants [2,8,9] and five were non-mucoid

colony phenotype variants. A list of all isolates studied, and their classification, is given in

Tables 1 and 2. We were able to include a mucoid and a non-mucoid Pa isolate obtained from

the same CF patient the same day, 2 non-mucoid Pa isolates from another CF patient 6 mos.

apart, and 2 Pa isolates with different colonial morphologies from each of 2 non-CF patients

obtained the same day, plus another Pa isolate from one of these patients one month later. Af

isolate 10AF, a virulent non-CF patient isolate [49,50], was used as the reference Af isolate

throughout this study. Nine sputum Af isolates, also identified by molecular methods to be Af

sensu stricto [51], were obtained from non-CF patients in a previous study [51] and addition-

ally studied.

Af conidia were obtained as follows: Af was taken from stock suspensions stored at -80°C

and then grown for 4 days on Sabouraud Dextrose Agar (Becton Dickinson and Co., Sparks,

MD) at 37°C. Conidia were harvested by gently washing with 0.05% Tween-80 (J.T. Baker

Chemical Co., Phillipsburg, NJ) in 0.9% saline (Baxter Healthcare Corp., Deerfield, IL).

Pa stocks were maintained at -80°C in Microbank microbial storage vials (Pro-Lab Diagnos-

tics, Richmond Hill, Ontario, Canada). Each frozen Pa stock culture was initially inoculated

onto Trypticase Soy + 5% sheep blood agar plates (TSA; BBL, Becton Dickinson; subsequent

studies indicated the absence of blood in the agar plates did not affect the activity of the Pa har-

vested) and incubated overnight at 37°C. Pa colonies were then picked, 1–2 loopfuls of the bac-

teria diluted in RPMI-1640 medium, and the suspension adjusted in the spectrophotometer at

A610 to an absorbance of 0.35–0.40 with fresh RPMI-1640 medium. This corresponded to 109/

ml, with variation over a 3-fold range. A 1:30 dilution was then made in studies of direct Pa

action on Af biofilm, or production of Pa culture supernatants, to be described. We found, in

the studies to be described, that neither direct Pa action, nor Pa supernatant action, on Af bio-

film was particularly sensitive to the size of the initial Pa inoculum in those studies, as varia-

tions of at least 10-fold in live Pa cells, and at least 33-fold in the inoculum used to make

planktonic Pa supernatants, resulted in no significant differences in activity.

Inhibition of planktonic Af growth

Inhibition of growth was assessed by using a conidial inoculum, following guidelines for sus-

ceptibility testing of filamentous organisms [52].

In vitromodel of biofilm development

Biofilms were formed by using a modified in vitromodel described previously [53]. To form Af

biofilm, sterile polystyrene disks (Biosurface Technologies, Bozeman, MT) were placed in

12-well tissue culture plates (Corning Inc., Corning, NY). Each well contained 3 ml of fresh

RPMI-1640 medium (Lonza, Walkersville, MD) with 105 Af conidia/ml.

Disks were incubated at 37°C for 16 h with shaking at 70 rpm, to allow the fungal cells to

attach. Following the attachment phase, disks were gently rinsed in sterile saline (Baxter

Healthcare Corp.), transferred to new plates containing fresh RPMI-1640 medium, and incu-

bated for an additional 24 h at 37°C with shaking at 100 rpm (Fig 1I). Biofilm formation here,

and in all experimental conditions to be described, was verified by inspection or with a light

microscope [16].

Direct interaction of live Pa on Af biofilm formation

Suspensions of fungal conidia (3 ml) and bacterial cells (0.1 ml), prepared as described above,

were combined in 12-well tissue culture plates in fresh RPMI-1640 medium and incubated at
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Table 1. Clinical isolates.

Sample
identification ID #

CIMR # P. aeruginosa (Pa)
phenotype

Clinical Laboratory ID # Valley Medical Center
(VMC) or Stanford University (SU)

Specimen Date of the positive
Pa culture

1 14–75 Pa Non CF VMC Respiratory 1/28/2013

2 14–76 Pa Non CF VMC Respiratory 2/19/2013

3 14–77 Pa Non CF VMC Respiratory 2/19/2013

4 14–78 Pa Non CF SU 60370871 Respiratory 2/17/2013

9 14–83 Pa Non CF VMC Respiratory 3/17/2013

12 14–86 Pa Non CF SU 42266353 Respiratory 4/22/2013

13 14–87 Pa Non CF (Strain #1) SU 21548242 Respiratory 8/10/2013

14 14–88 Pa Non CF (Strain #2) SU 21548292 Respiratory 8/10/2013

16 14–90 Pa Non CF (Strain #1) SU 27917939 Respiratory 9/24/2013

17 14–91 Pa Non CF (Strain #2) SU 27917939 Respiratory 9/24/2013

19 14–93 Pa Non CF SU 21548292 Respiratory 9/26/2013

20 14–94 Pa Non CF SU 10790053 Non
respiratory

8/14/2013

24 14–98 Pa Non CF SU 41082579 Non
Respiratory

10/02/2013

25 14–99 Pa Non CF (strain #2) SU 22765499 Non
respiratory

9/25/2013

26 14–100 Pa Non CF SU 26308684 Respiratory 9/26/2013

27 14–101 Pa Non CF SU 28674323 Non
respiratory

9/23/2013

5 14–79 Pa CF Mucoid SU 20060455 Respiratory 3/1/2013

11 14–85 Pa CF Mucoid SU 60821238 Respiratory 2/21/2013

18 14–92 Pa CF Mucoid SU 09710807 Respiratory 7/19/2013

21 14–95 Pa CF Mucoid SU 7841943 Respiratory 9/17/2013

22 14–96 Pa CF Mucoid SU 41053570 Respiratory 8/10/2013

7 14–81 Pa CF Non Muc SU 09710807 Respiratory 1/19/2013

8 14–82 Pa CF Non Muc SU 16242976 Respiratory 3/13/2013

10 14–84 Pa CF Non Muc SU 7841943 Respiratory 2/01/2013

15 14–89 Pa CF Non Muc SU 41053570 Respiratory 8/10/2013

23 14–97 Pa CF Non Muc SU 16242976 Respiratory 9/6/2013

doi:10.1371/journal.pone.0134692.t001

Table 2. Aspergillus fumigatus clinical isolates.

Sample identification ID # CIMR # A. fumigatus phenotype

1 13–55 CF

2 13–56 CF

3 13–57 CF

4 13–58 CF

5 13–59 CF

6 13–60 CF

7 13–61 CF

8 13–62 CF

9 13–63 CF

10 12–26 Non CF

11 12–30 Non CF

12 12–48 Non CF

doi:10.1371/journal.pone.0134692.t002
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37°C for 16 h with shaking at 70 rpm. Thus, for the 3 x 105 Af /well always involved in biofilm

formation, the ratio of Pa to Af was 3.3 x 107:3 x 105/well. Disks were then rinsed gently with

sterile saline, transferred to new plates containing fresh RPMI-1640 medium, and incubated

for an additional 24 h at 37°C with shaking at 70 rpm (Fig 1II).

Fig 1. Experimental design (full details are provided in Methods). To form Af biofilm, polystyrene disks were placed in tissue culture plates with conidia
and media. Disks were incubated to allow the conidia to attach. Following the attachment phase, disks were transferred to new plates containing and
incubated for an additional 24 h (line I). Direct interaction of live Pa on Af biofilm formation: Suspensions of conidia and bacteria were combined in tissue
culture plates for 16 h. Disks were then rinsed gently, transferred to new plates, and incubated for an additional 24 h (line II). Direct interaction of live Pa on
preformed Af biofilm: Fungal biofilms were formed as described. After 16 h the disks were rinsed, transferred to new plates containing Pa suspension and
incubated an additional 24 h (lines II and IV). Pa planktonic supernatant assay: To obtain planktonic culture filtrates, Pa suspension was incubated in conical
tubes for 24 h. The spent medium was centrifuged to remove suspended cells or debris. The supernatant was filter sterilized and added to wells of a tissue
culture plate previously inoculated with Af suspension. Fungal biofilms attached and formed. Disks containing biofilms were washed, transferred to a new
plate, and incubated for an additional 24 h (line III). For the preformed biofilm assay, filtered supernatant was added to wells. Disks containing Af preformed
biofilms were washed, transferred to the plate containing the bacterial filtrates, and incubated an additional 24 h. Af wells without bacterial supernatant were
included as controls (line V). To obtain Pa biofilm filtrates, a suspension of Pa adhered to tissue culture flasks for 2 h (attachment phase). The flasks were
rinsed, fresh RPMI-1640 added to the flask and adhered cells formed Pa biofilms for 22 h. The spent medium was then removed. Af conidia forming biofilms
or preformed Af biofilms were challenged with the Pa biofilm culture filtrate (lines III and V).

doi:10.1371/journal.pone.0134692.g001
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Direct interaction of live Pa on preformed (i.e., established) Af biofilm

Fungal biofilms were formed as described above. After 16 h the disks containing the fungal pre-

formed biofilms were rinsed gently in sterile saline, transferred to new plates containing Pa sus-

pension (3 ml containing 3.3 x 107 cells) prepared as described above, and incubated for an

additional 24 h at 37°C with shaking at 70 rpm (Fig 1II and 1IV).

Pa planktonic supernatant assay

A Pa suspension was prepared as described above in fresh RPMI-1640 medium. To obtain the

planktonic culture filtrates, the bacterial suspension in fresh RPMI described above was incu-

bated in 50 ml conical tubes (Falcon, Brookings, So. Dakota) for 24 h at 37°C with shaking at

70 rpm. The spent medium was removed, transferred to a new 50 ml conical tube, and centri-

fuged for 30 min at 2,000 x g to remove any suspended cells or debris. The planktonic superna-

tant was gently removed, filter sterilized (0.22 μm) (Fisherbrand, Pittsburgh, PA) and used.

Filtered supernatant (1.5 ml) was added to selected wells of a 12-well tissue culture plate previ-

ously inoculated with 1.5 ml of the standardized Af suspension in fresh RPMI-1640. Fungal

biofilms attached and formed as described above. Disks containing biofilms were washed 3

times with sterile saline and transferred to a new plate containing fresh RPMI-1640, and incu-

bated for an additional 24 h at 37°C with shaking at 70 rpm (Fig 1III). Although “supernatants”

and “filtrates” are used interchangeably in this paper, when any supernatants were tested they

were always first filtered as described above; unfiltered supernatants were never used.

For the preformed biofilm assay, 1.5 ml of the filtered bacterial supernatant was added to

selected wells of a 12-well tissue culture plate with 1.5 ml of fresh RPMI-1640. Af biofilms were

prepared as described above. Disks containing these fungal preformed biofilms were washed 3

times with sterile saline, transferred to the plate containing the fresh media + the bacterial fil-

trates, and incubated for an additional 24 h at 37°C with shaking at 70 rpm. Af wells without

bacterial supernatant were also included to serve as controls (Fig 1V).

To assay growth during Pa planktonic culture, the Pa planktonic suspension was prepared

as described above, adjusted to 106/ml, incubated as described above, and at the end of the 24

h, serial dilutions of the supernatant were inoculated onto TSA plates, incubated for 24 h at

37°C, and CFU enumerated.

Pa biofilm filtrate assay

To obtain the Pa biofilm filtrates, a 25 ml suspension of Pa prepared as described above,

adhered to 50 ml canted neck tissue culture flasks (BD Biosciences, San Diego) for 2 h at 37°C

on a 100 rpm shaker incubator (attachment phase). The liquid was then removed and the flasks

were rinsed gently 3 times with sterile saline. Twenty ml of fresh RPMI-1640 was added to the

flask and adhered cells formed Pa biofilms for 22 h (total of 24 h), observed by the presence

of a layer of bacterial growth on the inner surface of the flask. The spent medium was then

removed and processed as described above. Af conidia forming biofilms or preformed Af bio-

films were challenged with the Pa biofilm culture filtrate, as described above. Bacterial superna-

tant-free wells were also included as controls (Fig 1III and 1V). Either Pa planktonic or biofilm

supernatants were used when prepared, although studies indicated no change in activity if

stored refrigerated for at least one week.

Studies with serum

For sets of experiments with Af and Pa cultures, to be described, fetal bovine serum (Gibco, Grand

Island, NY) was added to the RPMI-1640 medium at each step to produce a 10% concentration.

Aspergillus Biofilm and CF Pseudomonas
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XTT assay

Either when conidia formed biofilm, or when preformed Af biofilm was studied, at the end of

the challenge period with either live Pa cells or filtered Pa cultured supernatants (or control

media), the Af biofilm was studied with the XTT assay. The tetrazolium salt, XTT (2,3-bis

[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide inner salt) (Sigma,

St. Louis, MO) was used to measure the metabolic activity of Af. XTT is reduced by a mito-

chondrial dehydrogenase to a water-soluble formazan product. Af biofilm discs were rinsed 3

times in sterile saline and transferred to fresh wells containing 3 ml sterile phosphate-buffered

saline (PBS) (pH 7.3–7.5, Lonza). Menadione (Sigma) 0.85 gm was added to 5 ml acetone, and

mixed in a 1:11 ratio of menadione to XTT (1 mg/ml). The XTT-menadione solution (180 μl)

was added to each well and the plates were incubated in the dark for 2 h at 37°C. Following

incubation, the contents of the wells were collected and centrifuged for 10 min at 13,300 x g.

The pellet was then discarded and the absorbance at 490 nm of the supernatant was determined

with a spectrophotometer (Genesys 20, Thermo Scientific, Waltham, MA). Although XTT is a

measure of metabolic activity of cells, previous studies of Af have indicated XTT results are lin-

ear with mass, and equated XTT result with dry weight [54–56].

For the assay of live Pa cells co-incubated with Af, we determined that the XTT readings

only reflected the Af by studying Pa similarly cultured without Af, showing there was no

increase of XTT reduction compared to background without any microbes present.

Confocal laser scanning microscopy (CLSM)

Af biofilms were formed on disks as described above. The biofilms were challenged with Pa

supernatants obtained from a representative of each of the 3 Pa groups. After incubation at

37°C, the disks were washed three times in sterile PBS and stained using a fluorescent stain

(FUN-1; Invitrogen Molecular Probes, Eugene, OR), prepared according to the manufacturer’s

instructions. FUN-1 (1 μl) from a 10 mM stock was mixed in 1 ml of PBS. Staining was per-

formed as previously described [11,13]. Three drops of the mixture were added on the top

of the biofilm, which was then mounted on a glass slide and covered with a glass coverslip

(22 × 22 mm). The disks were incubated for 45 min at 37°C in the dark. The FUN1 visualized

the morphology of Af biofilm, a bright green cytoplasmic stain produced after passive diffu-

sion. An additional analysis was made to visualize the effect of bacterial supernatant on the

fungal biofilm metabolic activity. A red fluorescence, visualized from intravacuolar staining,

was noted, which requires both plasma membrane integrity and metabolic capability (data not

shown). Dead cells would have fluoresced bright yellow-green, with no red structures, and

were not apparent in our images.

Sections on the xy plane were taken at 1 μm intervals along the z-axis to determine the

depth of the biofilms. Microscopic visualization and image acquisition of biofilms were con-

ducted at the Stanford Biofilm Research Center using an upright Leica TCDSP2 scanning con-

focal laser microscope (Leica Lasertechnik GmbH, Heidelberg, Germany) equipped with an

argon/krypton laser and detectors, and filter sets for monitoring of green (excitation 480nm,

emission 517nm) and red (excitation 633nm, emission 676). Images were obtained using a 63 x

1.4 Plan-APOChromat DIC (Leica, Heidelberg, Germany) objectives. Multichannel simulated

fluorescence projection (SFP, a shadow projection) images and vertical cross sections through

the biofilm were generated using the IMARIS software package (Bitplane AG, Zürich, Switzer-

land). Images were processed for display by using Photoshop software (Adobe, Mt. View, CA).

Representative images were taken.

Aspergillus Biofilm and CF Pseudomonas
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Dose-response assay of filtrates

A dose response study was performed using one isolate from each of the 3 Pa groups. Pa plank-

tonic and biofilm culture filtrates were obtained as described above. The culture filtrates or

sterile distilled water were diluted in fresh RPMI supplemented with 10% FBS, so that the per-

cent of fresh medium in each test situation was decreased as the spent medium or sterile dis-

tilled water increased. Af biofilms were formed in this mixed media, as described above, or

planktonic Af growth was studied [52].

Effect of temperature on filtrates

The Pa planktonic and biofilm culture filtrates were prepared as described above. In brief, the

final cell-free supernatants were (a) heat treated at 56°C for 30 min and immediately used or

(b) frozen at -80°C, stored for 6 days, and thawed. These filtrates were then tested compared to

fresh filtrates against either Af conidia forming biofilm, or preformed biofilm, as described

above.

Effect of DNase I and Proteinase K on Pa supernatant activity

To determine whether Pa or phage DNA or a Pa protein(s) were involved in the inhibition of

Af, we studied the effect of pretreatment of Pa culture filtrates with DNase I (Life Technologies,

Grand Island, NY) or Proteinase K (Sigma) and measured the filtrate inhibitory activity on Af

biofilm formation (Fig 1I). Pa biofilm culture filtrates were prepared as described using a CF

non-mucoid Pa isolate, Af biofilm metabolic activity was measured using the XTT assay.

Pa culture filtrates were treated with DNase I or Proteinase K for 2 hours at 37°C. Ethylene-

diaminetetraacetic acid disodium salt dehydrate (EDTA) (Sigma) was used to inactivate the

DNase I activity. Experiments with DNase I treatment involved growing the Af for 16 hours in

the presence of (a) Pa filtrate, (b) DNase I (final concentration 2 U/ml) + Pa filtrate, (c) DNase

I + EDTA (final concentration 20mM) + Pa filtrate, (d) EDTA + Pa filtrate, or (e) EDTA alone

or (f) DNase + EDTA (in fresh RPMI medium). These were followed by 24 h growth in fresh

RPMI-1640 alone.

For Proteinase K pretreatment, conidia were incubated with (a) Pa filtrate, (b) Proteinase K

(final concentration 50 μg/ml) + Pa filtrate, or (c) medium treated with Proteinase K.

Materials for other characterization studies

A 30,000 MW cutoff filter was obtained from Millipore Ltd., Tullagreen, Ireland.

Elastolytic production of Pa isolates was assessed as previously described [57].

FeCl3 was obtained from Sigma.

Statistical analyses

Where n is not stated, each experiment was performed at least two times, with triplicate wells

each time. Data from experiments using XTT as the assay parameter were collected in blocks.

Each block was comprised of n = 6 values derived from of two sets of triplicate values collected

on different days. For the data presented in Figs 2 and 3 statistical analyses were performed as

follows. Each condition had five blocks of data, which were comprised of controls, nonCF Pa,

mucoid Pa and nonmucoid Pa (Pa was either live cells or spent culture filtrates as indicated).

Each block of four conditions was analyzed separately using one-way analysis of variance

(ANOVA) followed by a Tukey’s post-hoc test to adjust for the multiple comparisons being

performed. Prior to pooling, the data in all blocks were verified to be normally distributed and

to have homogenous variances. An initial ANOVA comparison of the five blocks for each

Aspergillus Biofilm and CF Pseudomonas
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Fig 2. Pa inhibition of Af during biofilm formation. The data presented show the activity of each live Pa isolate or planktonic- or biofilm-generated Pa

culture filtrate on Af during formation of biofilm by Af. Individual isolate results are shown in comparison with their respective Af controls (n = 6 for each).
There were five non-CF, five mucoid CF and five non-mucoid CF isolates tested; isolate designations are shown on the x-axis. The bars on the far right of
each panel represent the pooled data for each type of isolate (n = 30). Bars represent the mean ± SD of the XTT reduction read at 490 nm. (A) Af conidia
were exposed to live Pa cells for 16 h. (B) Af conidia were exposed to Pa planktonic supernatant for 16 h. (C) Af conidia were exposed to Pa biofilm
supernatant for 16 h. The resulting readings were determined. “XTT metabolic activity” refers to the spectrophotometric absorbance of the formazan
reduction product of XTT at 490 nm. Assays were performed in blocks with two runs of triplicates done on different days, for each Pa-Af combination. Panel

Aspergillus Biofilm and CF Pseudomonas
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condition (e.g., controls) showed the blocks for that condition (e.g., controls) not be signifi-

cantly different. These results allowed us to pool the data for each condition with a result of

n = 30 each. The pooled data were analyzed using one-way ANOVA with a Tukey’s post-test.

For comparisons across live cell versus planktonic or biolfilm supernatants, control values were

first compared and determined to be no different, which was followed by ANOVA and Tukey’s

comparisons of the experimental sets. All statistical analyses were done using GraphPad Prism

(GraphPad Software, Inc. La Jolla, CA). Statistical significance was considered P<0.05.

Results

A summary of all the studies to now be described is in S1 Table. Our primary aim in these stud-

ies was that of a population survey to determine whether Pa from CF or non-CF patients

showed differences in their interactions with Af. Thus we designed studies to assess Pa from

non-CF patients compared with mucoid and nonmucoid Pa from CF patients. Two experi-

mental designs were used. The first was that of the effects of Pa on the development of biofilm

by Af conidia and the second was that of the effects of Pa on preformed Af biofilm. In all of

these studies we assessed the effects of live Pa cells and the effects of spent culture filtrates from

Pa planktonic or biofilm growth and initially relied on the parameter of metabolic activity of

Af, based on XTT reduction. For studies in Figs 2 and 3, five non-CF isolates were selected ran-

domly from the 16 available, and compared to the CF mucoid and non-mucoid isolates.

Inhibition by Pa cells or Pa culture filtrates during Af biofilm formation

The experimental design is shown in Figs 1 and 2, exposing the Af conidia to live Pa cells or fil-

trates for 16 h followed by an additional 24 h of biofilm growth before metabolic assay of XTT

reduction.

Fig 2A summarizes the activity of the Pa cells during Af biofilm formation, as assessed by

metabolic activity. Comparisons of effect of individual isolates of Pa on Af with their respective

Af control showed that each isolate significantly inhibited Af during the formation of Af bio-

film (P<0.001 all comparisons). Pooling of the 5 blocks of data showed that all three groups of

Pa isolates significantly inhibited fungal biofilm formation (each group, P<0.001). Of interest,

these data indicate that the inhibitory effect of CF mucoid Pa or CF non-mucoid isolates was

higher compared to the effect of the non-CF isolates (P<0.001, both comparisons), and CF

non-mucoid cells were more inhibitory than CF mucoid cells (P<0.001).

Fig 2B shows the in vitro activity of culture filtrates from Pa grown under planktonic condi-

tions on the fungal biofilm formation, as assessed by metabolic activity. Comparisons showed

that the planktonic culture filtrates of each individual isolate of Pa significantly inhibited Af

during biofilm formation in comparison with controls (P<0.001). Similarly, the pooled data

showed that the planktonic culture filtrates of each of the three groups of Pa isolates signifi-

cantly inhibited Af (each, P<0.001). The inhibitory effect on Af biofilm formation by the cul-

ture filtrates from CF mucoid or CF non-mucoid Pa isolates was higher compared to the effect

(A) All individual Pa isolates, noted on the x-axis, were significantly inhibitory compared to controls (P<0.001). The four bars on the right side show the pooled
data. CF mucoid and CF non-mucoid cells were more inhibitory than non-CF Pa cells (P<0.001, both comparisons), with CF non-mucoid cells more inhibitory
than CF mucoid cells (P<0.001). Panel (B) Planktonic culture filtrate from all individual Pa isolates, were significantly inhibitory compared to controls
(P<0.001). Pooled data analysis showed both CF mucoid or CF non-mucoid isolate culture filtrate was more inhibitory than that from non-CF isolates
(P<0.001, both comparisons) and non-mucoid was more inhibitory than mucoid (P < 0.001). Panel (C) Culture filtrates from all Pa isolates grown as biofilm
were significantly inhibitory (P<0.001). Pooled data showed culture filtrate from CF non-mucoid isolates under biofilm conditions was more inhibitory than that
from CFmucoid or non-CF isolates under the same conditions (P<0.001, both comparisons), and that non-mucoid CF filtrates were more inhibitory than
mucoid isolate filtrates (P < 0.001).

doi:10.1371/journal.pone.0134692.g002
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Fig 3. Pa inhibition of Af biofilm. The data presented show the activity of each live Pa isolate or planktonic or biofilm generated culture filtrate on preformed
biofilm of Af. Individual isolate results are shown in comparison with their respective Af controls (n = 6 for each). There were five non-CF, five mucoid CF and
five non-mucoid CF isolates tested; isolate designations are shown on the x-axis. The bars on the far right of each panel represent the pooled data for each
isolate (n = 30). Bars represent the mean ± SD of the XTT reduction at read at 490 nm. Panel (A) Af preformed biofilms exposed to live Pa cells for 24 h. (B) Af
preformed biofilms were exposed to Pa planktonic spent supernatant for 24 h. (C) Af preformed biofilms were exposed to Pa biofilm spent supernatant for 24
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of the non-CF filtrates (P<0.001, both comparisons), and culture filtrates from CF non-mucoid

Pa cells were more inhibitory than those from CF mucoid cells (P< 0.001).

The results of incubation of the conidia with culture filtrates obtained from Pa isolates grown

under biofilm conditions are shown in Fig 2C. The culture filtrates of all isolates significantly

inhibited Af attempting to form biofilm as compared to their respective controls (P<0.001, all

comparisons). Examination of the pooled dated showed that biofim culture filtrates of Pa iso-

lates from CF or non-CF patients significantly inhibited the metabolic activity of Af in biofilm

development compared to the controls (all three groups, P<0.001). In addition, culture filtrates

from CF mucoid or non-mucoid Pa isolates were significantly more inhibitory than those from

non-CF isolates (P<0.001, both comparisons); CF non-mucoid Pa isolates biofilm culture fil-

trates were more inhibitory than those frommucoid isolates (P<0.001).

Whereas biofilm formation appears inhibited in the preceding studies, and in CLSM studies

and studies of preformed Af biofilm to be described, we cannot completely rule out that differ-

ences in Af biofilm formation are a result of growth inhibition of the fungus. Studies (described

below) of Pa inhibition of, by contrast, purely planktonic growth of Af, where there were not

significant differences between the three Pa groupings, suggest the inhibitory differences of Pa

groups relates more to the effect on Af biofilm formation.

Effect of live Pa cells or culture filtrates on preformed Af biofilm

The experimental design for these studies is shown in Figs 1 and 3, that of allowing Af to form

biofilm for 16 h and then exposing this biofilm to live Pa or culture filtrates for an additional

24 h before XTT assessment of Afmetabolic activity. Assessment of the inhibitory effects of the

live Pa cells showed that only a single non-CF isolate, Pa19, significantly inhibited the pre-

formed Af biofilm (P<0.01), whereas the other four non-CF isolates had no significant effect

(P>0.05). Compared to preformed Af biofilm controls, all isolates of non-mucoid or mucoid

live Pa from CF patients significantly inhibited the metabolic activity of preformed Af biofilm

(P<0.001). Pooling of the five blocks of data showed that non-CF isolates were not inhibitory,

whereas mucoid Pa isolates and non-mucoid CF isolates significantly inhibited the metabolic

activity of the preformed Af biofilm in comparisons to controls or non-CF isolates of Pa

(P<0.001, both comparisons). Non-mucoid CF isolates were more inhibitory than mucoid CF

isolates (P<0.001) (Fig 3A).

Fig 3B shows the activity of planktonic Pa culture filtrates on preformed Af biofilm. Com-

parisons of individual culture filtrate activity from individual isolates showed that a single non-

CF isolate, Pa19, filtrate was inhibitory (P<0.05), whereas all those from individual filtrates

from non-mucoid or mucoid Pa from CF patients, grown under planktonic conditions, signifi-

cantly inhibited the oxidative metabolism of preformed Af biofilm (P<0.001, all comparisons).

The results of analysis of the pooled data showed non-CF planktonic culture filtrates had no

inhibitory activity, whereas planktonic filtrates from mucoid or non-mucoid Pa isolates were

h. Each data point represents the XTTmetabolic activity obtained spectrophotometrically at 490 nm. Assays were performed in triplicate and the results are
pooled from two experiments for each Pa-Af combination. The asterisk indicates a significant P value (< 0.001) for the XTT metabolic activity compared to the
positive control, using the same analytic methodology as in Fig 2. Panel (A) Individual Pa isolate comparisons showed that only a one non-CF isolate, Pa19,
inhibited (P<0.01), whereas all mucoid or non-mucoid CF isolates were inhibitory (P<0.001, all comparisons). Pooled data analysis showed that both mucoid
and non-mucoid CF isolates were significantly inhibitory (P<0.001, both comparisons) and that non-mucoid CF isolates were more inhibitory than non-CF or
mucoid Pa isolates (P< 0.001, both comparisons). Panel (B) Planktonic spent medium from a single non-CF isolate, Pa19, was inhibitory (P<0.05), whereas
all mucoid and non-mucoid CF were significantly inhibitory (P < 0.001). Pooled data analysis showed that planktonic culture filtrate from CF non-mucoid or
mucoid isolates was inhibitory (P<0.001, both comparisons). Non-mucoid CF isolates were more inhibitory than mucoid CF isolates (P<0.001). Panel (C)
Biofilm culture filtrate from non-CF isolates of Pawas not inhibitory, whereas the culture filtrate from each mucoid or non-mucoid CF Pa isolates was inhibitory
(P< 0.001, all comparisons). Pooled data analysis showed that biofilm culture filtrate from CF non-mucoid or mucoid isolates was inhibitory (P<0.001). Non-
mucoid CF isolate filtrates were more inhibitory than mucoid CF isolates (P<0.001).

doi:10.1371/journal.pone.0134692.g003
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more inhibitory than controls or filtrates from non-CF isolates (P< 0.001, both comparisons).

Non-mucoid CF isolate filtrates were more inhibitory than mucoid CF filtrates (P<0.001).

Fig 3C shows the activity that filtrates from cultures of biofilm-grown Pa isolates had on

preformed Af biofilm. No inhibitory activity was exhibited by the non-CF biofilm filtrates

(P>0.05), whereas all biofilm filtrates from mucoid or non-mucoid CF Pa from CF patients

significantly inhibited preformed Af biofilm, compared to preformed Af biofilm controls

(P<0.001). Similarly, the comparisons of the pooled data showed that non-CF isolate biofilm

filtrates were not inhibitory and both mucoid and non-mucoid isolate biofilm filtrates were

more inhibitory than controls or filtrates of non-CF isolates (P<0.001, both comparisons).

Again, non-mucoid CF isolate biofilm filtrates were more inhibitory than those of mucoid CF

isolates (P<0.001).

Effect of Pa growth on inhibition by Pa supernatants

We felt that the effects of the Pa culture filtrates might plausibly be due to differences in growth

of the Pa isolates, that isolates with better growth could result in more inhibitory compounds

secreted to the culture filtrates. For these and subsequent studies, we chose one representative

isolate from each Pa group (non-CF (Pa19), non-mucoid CF (Pa10) and mucoid CF (Pa11))

(Figs 2 and 3). Each was grown planktonically and the 24 h growth quantitated as described

(Methods). A 106 inoculum of each grew to 3.2 x 108 in the case of the two CF isolates, and 3.3

x 108 for the non-CF isolate. Thus differences in the inhibitory power of the supernatants

appear not explained by differences in growth among these isolates.

Minimal effect of serum on inhibition

Because components of serum can also be present where there is local inflammation, such as in

the airways, to more closely mimic in vivo conditions it is of interest to know whether the inter-

actions described above might be different in the presence of serum. For these studies, serum

was added to the medium in all steps (Fig 1), as indicated in Methods, and all 16 non-CF Pa

isolates were used, as well as the mucoid and non-mucoid CF isolates.

Overall, the results were virtually the same as those from the studies done in the absence of

serum. However, there were exceptions. The Pa live mucoid cells, or the filtrates of such cul-

tures grown planktonically or as Pa biofilm, were, with serum present, not statistically signifi-

cantly inhibitory, as assessed metabolically, to preformed Af biofilm. Specifically, absent that

one exception, the significance and conclusions with (a) mucoid Pa and Af biofilm formation,

or (b) non-CF Pa or non-mucoid CF Pa, as live cells or culture supernatants (the supernatants

from cultures grown planktonically or as Pa biofilm), were the same as the results in the

absence of serum, when tested against either (c) Af biofilm formation or (d) preformed Af bio-

film, Again, non-mucoid Pa isolates were most inhibitory in all conditions, and preformed Af

biofilm the most resistant. None of the 16 non-CF Pa isolates behaved differently than the rest

of that group (data not shown).

In additional experiments (using only the 3 representative Pa isolates, as described in the

preceding section, from each Pa group), we omitted serum from Pa while generating superna-

tants, but added serum during Af biofilm formation or preformed Af biofilm development. We

found the same results, as described, as when serum was present or absent in all phases.

Overall, we conclude that serum is not an important enhancing or decremental factor in Pa

generation of inhibition in supernatants, nor a factor in the effect on Af.
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Comparison of Pa filtrates grown planktonically or as biofilm

All of the studies done with or without serum appeared to indicate that there were differences

in inhibitory activity between Pa planktonic and biofilm supernatants. Because there were few

experiments, at this point, where these two types of Pa filtrates were compared directly to each

other, we approached the comparison, for the studies in Figs 2 and 3, in the statistical fashion

described in the Methods section. For the non-CF and the mucoid CF Pa’s, planktonic and bio-

film supernatants inhibited Af biofilm formation. However, there was no difference between

the planktonic and biofilm culture filtrates from the non-CF Pa, whereas Pa biofilm superna-

tants from mucoid and non-mucoid CF Pa were more inhibitory than planktonic supernatants

(P<0.001, both comparisons). The supernatants of non-mucoid CF Pa were inhibitory to both

Af biofilm formation and preformed Af biofilm, and Pa biofilm supernatants were more inhibi-

tory than planktonic supernatants in both cases (P<0.001 for both comparisons). For compari-

son, a second analysis examined only the studies done in the presence of serum, and with all 16

non-CF isolates. For this second analysis we first compared the controls from each experiment

where Pa isolates had been studied (in which only one type of Pa supernatant was used per

experiment) by one-way ANOVA to assure the Af control results were not different in those

experiments. These analyses showed that there were no significant differences in the Af con-

trols. With this assurance we then compared the inhibition results of the three types of Pa for

the two types of Pa supernatants. This allowed 20 experiments with the non-CF Pa’s and 10

experiments each with mucoid and non-mucoid CF Pa to be studied. The conclusions were the

same as the prior statistical analysis, that of the studies done in the absence of serum.

These statistical differences in planktonic and biofilm Pa filtrates can also be suggested by

visual comparison of Figs 2 and 3, although these differences were more marked when serum

was present. In some subsequent experiments, under special conditions to be described subse-

quently (e.g., comparisons with E. coli), there were direct comparisons of the two kinds of Pa

supernatants, and supernatants from planktonically grown Pa were never more inhibitory than

supernatants from biofilm-grown Pa, regardless of the source of the Pa.

Confocal microscopy analysis

All the preceding studies assessed metabolic effects on biofilm. We now assessed effects on the

physical biofilm itself.

Effects on biofilm thickness

The effect of the Pa spent culture filtrates on Af biofilm thickness and morphology were assessed

using CLSM. The thickness results for the Af biofilm after conidia exposure for 16h to the Pa

spent supernatants from the representatives of all three bacterial phenotypes are shown (Fig 4).

The spent supernatant obtained from all three Pa phenotypes, after Pa growth planktonically or

as biofilm, resulted in a significant reduction of the fungal biofilm thickness compared to the

untreated control (Fig 4A and 4B). Treatment with the spent supernatants from the non-CF

and the CF mucoid isolates had no significant effect on the thickness measurements of pre-

formed Af biofilm, whereas the supernatant of the non-mucoid Pa, grown either planktonically

or as biofilm, was inhibitory (Fig 4C and 4D).

Effects on Af biofilm formation

Untreated biofilms showed an architecture formed by a dense filamentous multicellular struc-

ture with acute-angle dichotomous branching (Figs 5A and 6A). The Pa supernatants’ effect on

Af biofilm was also observed in the morphology studies using CLSM. Fig 5B, 5C and 5D show
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the effect of Pa culture filtrates on Af biofilm formation. Non-CF Pa spent supernatant, from

Pa grown as biofilm, resulted in reduction in filamentation and presence of some “glued”

hyphae, without a clear separation of the filamentous elements. A similar morphology pattern

was observed when the conidia were treated with planktonic culture filtrates from the same

strain (data not shown). Treatment with culture filtrates from the CF mucoid strain culture,

grown under biofilm condition, resulted in decreased number of hyphae and presence of some

"bulging" structures (possibly conidial remnants) distributed throughout the disperse filaments,

and “glued” hyphae (Fig 5C). The CF non-mucoid Pa biofilm filtrate resulted in severe effects

on hyphal structure, with loss of filamentation, and hyphal tips or branch points appeared to

be thin. Several bulges and deposition of amorphous material were also observed. Treatment

with planktonic spent supernatant from the CF non-mucoid isolate was associated with a

Fig 4. Pa supernatant affects Af biofilm thickness. Af biofilms were formed and stained as described. Sections of the xy plane were taken at 1 μm
intervals along the z-axis to determine the depth of the biofilms. (A) Af conidia were exposed to planktonic Pa spent supernatant or (B) biofilm Pa spent
supernatant, for 16 h. (C) Af preformed biofilms were exposed to planktonic Pa spent supernatant or (D) biofilm Pa spent supernatant, for 24 h. Assays were
performed in triplicate and images were taken from three different fields from each sample. The results are representatives of two different experiments for
each Pa-Af combination. One asterisk indicates a P value (<0.01), and two asterisks indicates a P value (<0.001) for the biofilm thickness compared to the
untreated control.

doi:10.1371/journal.pone.0134692.g004
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disruption of the hyphae structure and presence of surface collapse and glued filaments (data

not shown).

Effects on preformed biofilm

As was suggested by the biofilm thickness data, treatment of preformed Af biofilm with the

spent supernatants from the non-CF and the CF mucoid isolates were not associated with

important morphology changes (Fig 6B and 6C). There was a prominent morphology change

observed comparing the untreated Af control and treatment with the CF non-mucoid Pa strain

grown under biofilm conditions (Fig 6D). We observed severe effects on hyphal structure, with

loss of filamentation, and hyphal tips and branch points appeared to be thin after the treat-

ment. Moreover, we observed amorphous structures distributed throughout the intertwined

defective filamentous networks.

Fig 5. CLSM images of Af biofilm after challenging conidia for 16h with biofilm Pa spent supernatant.
Horizontal (xy) view of reconstructed 3-dimensional images of FUN1-stained biofilms, with filter set to capture
green fluorescence. Thickness of the biofilm can be observed in the side view of the reconstruction (extreme
right and lower panels in each picture). (A) Untreated control. (B) Af conidia exposed to spent supernatant of
a non-CF Pa grown as biofilm for 16 h, or (C) exposed to mucoid CF Pa biofilm spent supernatant or (D)
exposed to non-mucoid CF Pa biofilm spent supernatant. Arrows show “bulge-like” structures and deposition
of amorphous material in treated cultures. Magnification, ×63. Bar, 50 μm.

doi:10.1371/journal.pone.0134692.g005
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MW characterization of the inhibitors in filtrates

To better understand the nature of the inhibitor(s) present in the Pa filtrates, we performed a

series of studies to assess their physical and chemical nature.

To determine whether the inhibitors in filtrates were related to small molecular species, a

sample of inhibitory filtrate from the non-mucoid Pa biofilm culture was passed through an

ultrafilter that now excluded all materials>30,000 MW, and tested against Af conidia forming

biofilm, in comparison to the same filtrate not further manipulated (as in Fig 1III). These two

samples inhibited Af biofilm formation (P<0.001), and were not different from each other. We

conclude that the inhibitory component(s) in Pa filtrates appear to be<30,000 MW species.

Fig 6. CLSM images of Af biofilm after challenging preformed Af biofilm for 24 h with Pa biofilm spent
supernatant. Horizontal (xy) view of reconstructed 3-dimensional images of FUN1-stained biofilms, with filter
set to capture green fluorescence. Thickness of the biofilm can be observed in the side view of the
reconstruction (extreme right and lower panels in each picture). (A) Untreated control. (B) Af preformed
biofilm exposed to spent supernatant of a non-CF Pa biofilm spent supernatant for 16 h or (C) exposed to
mucoid CF Pa biofilm spent supernatant or (D) exposed to non-mucoid CF Pa biofilm spent supernatant.
Arrows show the amorphous structures distributed throughout the intertwined altered filamentous networks in
treated cultures. Magnification, ×63. Bar, 50 μm.

doi:10.1371/journal.pone.0134692.g006
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Specificity

As a brief inquiry into the specificity of the culture filtrates of Pa inhibiting Af, we grew E. coli

ATCC 43888 under identical conditions as we had the Pa isolates, and collected these filtrates

in the same manner. Supernatant from the non-mucoid Pa was included in these experiments

as a positive control. The filtrates of the E. coli, either grown planktonically or as biofilm, did

not significantly inhibit Af conidia forming biofilm (conditions under which, in contrast, all Pa

filtrates tested could inhibit; see Fig 2), and the positive Pa control filtrate did significantly

inhibit. The filtrates of the E. coli, either grown planktonically or as biofilm, also did not inhibit

preformed Af biofilm (data not shown).

To ascertain whether the reference Af isolate, 10AF, was representative, three and nine

other non-CF Af isolates were tested, by challenging formation of Af biofilm from their conidia,

or preformed Af biofilm, respectively (Fig 1II and 1IV, respectively), by live Pa cells of the non-

mucoid CF Pa. Isolate 10AF was assayed concurrently. The XTT activity of all untreated Af

biofilms formed were not significantly different, and all were markedly inhibited (P<0.001) by

the addition of the Pa cells (data not shown).

We conclude that not all bacteria produce compounds that are inhibitory to Af biofilm and

that the inhibition by Pa is not unique to our reference strain of Af.

The effect of Pa culture filtrates on Af is a result of inhibitors in filtrates,
not reduction of nutrients

We addressed the possibility that the inhibition of Af biofilm by the Pa filtrates would be due

to a reduced nutritional value of the spent culture filtrates diluting out the value of newly

added medium during the incubation phase in the Af biofilm assays. The effect of fresh RPMI

diluted with Pa culture filtrates (from biofilm-grown Pa) or sterile distilled water (a milieu

that offers no nutrient support) on Af biofilm formation was studied. Fungal biofilm meta-

bolic activity was inhibited over a range of ratios of fresh RPMI diluted with culture filtrates

obtained from the representative CF and non CF Pa isolates, with inhibition starting at as lit-

tle as 20% filtrate (80% fresh RPMI) (P<0.05) (Fig 7A). In contrast, Af biofilms were not sig-

nificantly affected after challenge with fresh RPMI diluted in distilled water until the mixture

contained only a 20% fresh RPMI concentration (80% distilled water) (Fig 7A); this concen-

tration of RPMI is much lower than that of the 50% fresh RPMI dilution with filtrates as used

in the supernatant experiments previously described (Figs 2 and 3). These findings indicate

that the presence of inhibitory products in Pa culture filtrates were responsible for the inhibi-

tion of the metabolic activity of the fungal biofilms, rather than the inhibition being due to

dilution of the nutrients in media by addition of Pa culture filtrate, or removal of the nutrients

from the growth media during the Pa growth; i.e., that the inhibition by culture filtrate of Pa

is a result of substances (<30,000 MW) Pa secretes into the culture filtrate, rather than nutri-

ents removed by Pa.

Although this paper is focused on Af biofilm, it was of interest, for comparison, to see the

effect of Pa supernatants on Af growing planktonically, as would occur in tubes, as in classical

susceptibility testing [52]. The representative isolates from each of the three Pa groups was

studied. When Pa supernatant was diluted in medium 1:1, exactly as in the challenges of bio-

film, applied to Af conidia inocula in tubes, and the tubes examined when hyphal growth in

matched controls was 4+, visible Af growth in the presence of supernatants did not occur (i.e.,

0 growth in the supernatants of the CF isolates, or trace growth in that of the non-CF Pa). To

again assure the inhibition seen was a result of toxic factors from the Pa, rather than depletion

of media by Pa growth, the dilution series experiment with distilled water was repeated as

above (Fig 7B). The result was even more dramatic than seen with Af biofilm targets: any
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concentration of supernatant�10% (i.e.,�90% fresh medium) reduced the planktonic growth

metabolic activity by XTT virtually completely, whereas it was only when the concentration of

distilled water reached 40% (only 60% fresh medium) that any effect at all was seen on that

XTT result (Fig 7B). The effect was modestly larger with the non-mucoid CF Pa, but was not

statistically significantly greater than the inhibition seen with the supernatants of the other two

Pa isolates.

Effect of temperature on Pa supernatants

Two experiments were performed on heat treatment of the Pa filtrates (from planktonic or bio-

film cultures), using the 3 representative isolates detailed, and (a) in the absence of serum from

all steps or (b) just during the generation of supernatants. Comparison was made to untreated

filtrates.

The heat treatment of the supernatants of all 3 Pa isolates, under both test conditions “(a)”

and “(b)”, removed all inhibitory activity against Af forming biofilm or preformed Af biofilm,

i.e., heated supernatant results same as controls (data not shown). There was one small excep-

tion: the non-mucoid CF strain heated supernatant retained significant inhibitory activity

against Af forming biofilm, but not against preformed Af biofilm, only when the filtrate was

from the Pa biofilm (not planktonic Pa) culture, and only in condition “(b)”.

In another experiment, freeze-thawed supernatant of the non-mucoid CF isolate, either

grown planktonically or as biofilm, retained inhibitory activity against Af forming biofilm

(both P<0.001 compared to untreated Af control), but this was significantly diminished com-

pared to untreated supernatants (both P<0.001). When either frozen-thawed supernatant was

tested against preformed Af biofilm, all activity was lost.

Fig 7. A. Pa biofilm supernatant inhibits Af biofilm formation. Af conidia were exposed to serial dilutions of Pa spent medium or sterile distilled water,
mixed with fresh RPMI supplemented with 10% serum during Af biofilm formation as described in Methods and Fig 1III. The percent of fresh medium in each
test situation was decreased as the spent medium or sterile distilled water increased. Then the resulting XTT readings were quantified, and the results
expressed as percent of control with medium alone (no supernatant or distilled water). Results are presented as the mean of three replicates from three
strains of Pa performed on two separate occasions. Error bars represent the SD of the mean.B. Pa biofilm supernatant inhibits planktonic Af. Af conidia
were exposed to serial dilutions of Pa spent medium or sterile distilled water, mixed with fresh RPMI, and grown planktonically in tubes, as described in
Methods. The percent of fresh medium in each tube was decreased as the spent medium or sterile distilled water increased. Then the resulting XTT readings
were quantified, and the results expressed as percent of control with medium alone (no supernatant or distilled water). The results shown are with the non-
mucoid CF Pa isolate supernatant; the mucoid CF Pa isolate and the non-CF Pa isolate were studied concurrently, and the results were not different; only the
non-mucoid Pa result is shown to avoid clutter.

doi:10.1371/journal.pone.0134692.g007

Aspergillus Biofilm and CF Pseudomonas

PLOSONE | DOI:10.1371/journal.pone.0134692 August 7, 2015 19 / 27



We conclude that the heat treatment used removed essentially all Af-inhibitory activity

from supernatants of all types of Pa isolates. Freeze-thawing significantly diminishes inhibitory

activity.

Effect of DNase I and proteinase K on Pa biofilm culture filtrate activity

To determine whether the inhibitory substances were protein or DNA, we treated a nonmucoid

Pa culture filtrate with DNAase or proteinase prior to assay for inhibitory activity. Compared

to untreated Pa filtrate, filtrate treated with DNase I showed no significant differences in inhib-

itory capacity compared to Af control, nor did the DNase I alone have an inhibitory effect

(data not shown).

EDTA (a chelator of metal anions, such as Fe; and a component of the DNase assay) alone

reduced the metabolic activity of Af biofilm compared to Af biofilm untreated controls

(P<0.001). The EDTA inhibitory effect was less than that of untreated Pa filtrate. EDTA

+ DNase I did not affect inhibition of Af biofilm by Pa filtrate. Finally, DNase I had no effect

on EDTA inhibition of Af biofilm, as there were no significant differences between EDTA and

DNase I + EDTA.

Proteinase K alone did not affect Af biofilm formation. The addition of Proteinase K to Pa

filtrates did not affect filtrate inhibition of Af biofilm formation.

Other characterization of Pa isolates

Because of the differences we observed among the Pa types tested, we also tested for some phe-

notypes previously associated with Pa virulence. Elastase activity, a virulence factor in Pa [57],

was assessed in the Pa isolates that were used in the Af biofilm studies. The 5 non-mucoid CF

isolates more frequently showed a positive test compared to the 5 mucoid CF and 5 non-CF

isolates (3 vs. 2 and 1, respectively, at 24 hrs.; 5 vs. 3 and 3 at 48 hrs. with additional incubation

at 4°C).

Certain Pa colonial types have been associated with lasR gene (a “master” gene controlling

Pa virulence genes) mutations, more severe lung disease and persistence despite eradication

attempts, including a wrinkly colony surface, irregular colony edge, metallic sheen, and green

colony color [58]. As with elastase, these characteristics were also not significantly associated

with our three groups differing in Af inhibition; 2 or 3 (of 5) of the non-mucoid isolates had

each of these characteristics, compared to 1 to 3 of the other groups of 5 in each instance.

Role of iron in inhibition by Pa filtrates

Iron is a co-factor required for growth and both Af and Pa produce siderophores to acquire

iron for their needs. Three experiments were performed to confirm a possible role for iron

sequestration by Pa filtrates in the inhibition of Af. A filtrate of the inhibitory non-mucoid Pa,

grown under biofilm conditions, was tested (schema as in Fig 1V) alone or with added FeCl3,

at 3-fold increasing concentrations from 11 μM through 297 μM, then 10-fold increasing con-

centrations from 300 μM through 30 mM, against Af forming biofilm, and compared to the

usual control (RPMI without filtrate) (Fig 8). In combinations with filtrate, from 11 to 300 μM

FeCl3, inhibition by the filtrate was retained, and without significant difference from the inhibi-

tion by filtrate in the absence of FeCl3 (P<0.001 for inhibition by all, compared to no-filtrate

control). At 3000 μM FeCl3, there was no significant inhibition compared to control Af, and

the inhibition was significantly less (P<0.001) than that with the filtrate without FeCl3. At 30

mM FeCl3 the XTT result showed not only lack of inhibition, but was significantly enhanced

compared to both the filtrate-free control and filtrate without added FeCl3.
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In separate studies on FeCl3 alone, reported preliminarily elsewhere [59], we have found, as

in Fig 8, FeCl3 alone at�2500 μM to enhance Af biofilm XTT activity. The enhancement of

growth in the present study, with 3000 μM FeCl3 alone, compared to partial inhibition by the

same concentration combined with filtrate, confirms the dose-responsive reversal of inhibition

by filtrate shown in Fig 8.

We conclude, from the iron reversal of Pa supernatant inhibition, that iron sequestration,

such as in the form of Pa siderophores or other Pa iron-binding molecules [60], is at least part

of the mechanism of the inhibition of Af biofilm by Pa filtrates.

Discussion

Whereas planktonic Af growth appears affected by any Pa isolate, and the inhibition is more

intense than on Af biofilm growth, we show that the described inhibition of Af biofilm by Pa

[42–45] is related to the source and phenotype of the Pa isolate. Titration studies may have elu-

cidated differences, among Pa types, in inhibition by supernatants on planktonic Af growth,

but we chose not to pursue this. The differential effects of Pa types on Af biofilm is consistent

with the extensive phenotypic and genomic changes in the mutable Pa organism that, associ-

ated with chronic residence in CF airways, have been described [2,8,9,61]. Specifically, we show

live Pa cells inhibit the growth and formation of Af biofilm, with CF Pa isolates more inhibi-

tory, and non-mucoid CF Pa isolates most inhibitory. Inhibition did not require the presence

Fig 8. The effect of FeCl3 on the inhibition of Af biofilm formation, by filtrate from a CF non-mucoid Pa grown under biofilm conditions. Conidia
formed biofilms on polystyrene disks (AF) during 16 h exposure to Pa filtrate (PA), filtrate + varying concentrations of FeCl3 (shown as the concentration, uM
= μM), or varying concentrations of FeCl3 only. After 16 h of challenge, disks were transferred to fresh RPMI-1640 for 24 h of further growth before biofilm
formation was quantified via XTT assay, and the results expressed as percent of control with medium alone (no supernatant or FeCl3). Asterisks denote P

<0.001 for comparisons to the experimental control containing Af with RPMI-1640 (AF; no test materials). Daggers denote P <0.001 for comparisons with the
experimental control containing Af +filtrate (AF + PA). Results with AF + PA + 11, 33 or 99 μM FeCl3 were not different than AF + PA; AF + 11, 33, or 99 μM
FeCl3 were not different than AF + 297 μM FeCl3; and these results are not shown.

doi:10.1371/journal.pone.0134692.g008
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of Pa cells, as Pa culture filtrates were also inhibitory. The inhibition by filtrates showed the

same hierarchy, with CF Pa isolates more inhibitory, and non-mucoid Pa isolates most inhibi-

tory. Preformed Af biofilm was more resistant to Pa; non-mucoid CF Pa isolates were most

inhibitory, and, again, that inhibition could be reproduced with culture filtrates. Reproducibil-

ity of the three Pa groupings was assured by the repeated experiments of various conditions,

utilizing representative isolates of the groupings, as well as the number of isolates studied.

Moreover, selection of Pa19, the most inhibitory of the non-CF isolates, as the representative

of that group, would have minimized the differences in these studies between the CF and non-

CF isolates.

Inhibition of Af biofilm appears dependent on the bacterial growth conditions, since filtrates

from Pa grown as biofilm were more inhibitory than from Pa grown planktonically. However,

the relationship of the number of Pa cells at the end of biofilm growth vs. the number after

planktonic growth is unknown. Differences in biological effect on mammalian cells for mole-

cules produced by planktonic Pa vs. biofilm Pa have previously been described, although

planktonic Pa in that study produced more such active molecules [19]. We have assumed the

production of substances with different Af-inhibitory power by the three Pa groupings is unre-

lated to the growth of the Pa, based on our growth studies by representative isolates of each

group. However, each of the groups studied may be heterogenous, and more extensive studies,

with more members of each group, might then show a relationship between growth and super-

natant inhibition.

We chose to measure Af inhibition by the XTT assay of metabolism (which does not

exclude the possibility of death of some Af cells), because of the controversies in interpreting

CFU reduction in a multinucleate filamentous organism, commonly with incomplete septa

between cells [62,63]. Such problems are magnified when attempting to quantitate a biofilm

network [64]. However, others have indicated Af is, in fact, killed by Pa [64]. The XTT results

would also not exclude a switch by the fungus to non-oxidative, fermentative, metabolism.

However, our photomicrographs, and measurements of biofilm thickness, support the con-

cept of actual growth inhibition occurring. The effects we describe on preformed Af biofilm

show that Pa effects on Af are not solely on inhibition of the initial adhesion stage of Af bio-

film development.

Previous work has indicated many candidate Pamolecules that can explain the various inhi-

bitions we have described [42–47]. We confirm that small Pa-derived molecules, probably not

nucleic acids or proteins per our studies, can explain at least most of the inhibition in superna-

tants. Whereas most previous work has focused on the toxic effects of Pametabolites on fungi,

our work suggests that denial of Fe to Af by Pa products is an important part of the inhibition.

This is in contrast to a study of Pa inhibition of Candida albicans, which concluded that inhibi-

tion of that fungus was not a result of Fe limitation [46], although these apparent fungal differ-

ences could be affected by different experimental conditions. The bacterial-fungal interplay is

more complex than just molecules produced by Pa, as recent elegant work has shown that Af

can transform Pametabolites, and thus radically alter the effect on the interaction, including

the degree of inhibition [65]. Finally, Fe limitation by Pa could also in part be a result of modu-

lation of Af siderophore production by Pametabolites [66].

Pa quorum-sensing systems control expression of virulence factors, such as those previously

implicated in Af inhibition [42–47]. A study that indicated no difference in quorum-sensing

between CF and non-CF Pa isolates [67] might suggest that quorum sensing-induced mole-

cules are at least not solely responsible for the increased inhibitory activity we have described

for CF non-mucoid isolates. Some phenotypic factors previously associated with Pa virulence

[57,58] that we studied did not appear associated with Af inhibition.
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Our findings contrast with others, who reported Af biofilm was not inhibited by Pa [45], a

difference likely attributable to their lack of study of CF Pa isolates. Our findings also contrast

with the report of heat-resistance of Af-inhibitory factors produced in Pa cultures [45], since

we show lability of essentially all the inhibition to heat, as well as significant lability to a freeze-

thaw cycle. Such study differences could be a result of different Pa and Af culture and/or heat-

ing conditions. These differences support the value of detailing the physical and chemical char-

acterizations of the supernatants described here; these characterizations could lead to further

identification of the molecules responsible for the inhibition we have described. Another path-

way to this end would be to utilize the many Pa virulence factor mutants [68] that have been

described (studies in progress).

A limitation of our studies is that we have only studied one time period, although one ade-

quate for bacterial growth, for production of Pa factors, whereas different regulatory systems

may have different kinetics [68]. It may be of interest to study earlier and later time periods

of Pa culture, and assess whether inhibitory factors are produced to a greater or lesser extent.

We also cannot state at this time whether the enhanced inhibitory activity by biofilm Pa com-

pared to planktonic Pa culture filtrates, or that resulting from non-mucoid CF isolates and

their filtrates, is owing to increased production of inhibitory factors, or possibly the produc-

tion of different factors. Nor is it known whether the inhibition by live cells relies solely on

the same inhibitory factors (factors which can be released by Pa cells in close proximity to Af

without dilution in culture medium) as in supernatants or whether there are unique factors

resulting from or triggered by microbial contact. In this regard, the apparent greater inhibi-

tory activity of live cells compared to supernatants (e.g., Fig 2) could be related to the obser-

vation that Pa production of virulence factors can be increased by co-culture with some other

microbes [69]. It would also be of interest to study prolonged mixed Pa-fungal biofilm devel-

opment [64], since the mixed condition is only beginning in our studies of Af forming biofilm

challenged with Pa cells. Another issue is that CF patients in proximity to each other can

cross-infect Pa isolates [70]; moreover, one Pa clone can therefore come to dominate in

patients in one clinic-hospital setting [71]. Thus, without detailed sequencing data, one can-

not be sure isolates from multiple CF patients in the same setting are not all very closely

related; our observations should be confirmed with isolates from other centers. Finally, a

population study, similar to that which we have done for Pa, would be of interest with respect

to CF Af isolates, and whether any differ from non-CF, or reference Af, isolates (studies in

progress).

Individual patient samples in our cohort shows not only that Pa isolates of varying colonial

phenotype can co-exist in the same patient, but isolates with varying Af-inhibitory properties

can co-exist; such polymorphism could be a transition state in the evolution of Pa colonization.

Overall, from our studies of different Pa phenotypes, we hypothesize the transition of Pa from

non-mucoid to mucoid [72–75], a process that usually occurs with time in CF disease, with the

latter moving to a deeper zone of the lung [75], ablates Pa’s inhibitory effect on Af biofilm, and

thus, helps explain why establishment of Af in the airways usually occurs later in CF disease.

Evolution of Pamay act in concert with other factors favoring Af colonization [76], including

repeated antibacterial courses.
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