
RESEARCH ARTICLE Open Access

Inhibition of autophagy exerts anti-colon
cancer effects via apoptosis induced by
p53 activation and ER stress
Kosuke Sakitani1,2*, Yoshihiro Hirata2, Yohko Hikiba1, Yoku Hayakawa2, Sozaburo Ihara2, Hirobumi Suzuki2,

Nobumi Suzuki2, Takako Serizawa2, Hiroto Kinoshita2, Kei Sakamoto1, Hayato Nakagawa2, Keisuke Tateishi2,

Shin Maeda3, Tsuneo Ikenoue4, Shoji Kawazu1 and Kazuhiko Koike2

Abstract

Background: Although some molecularly targeted drugs for colorectal cancer are used clinically and contribute to

a better prognosis, the current median survival of advanced colorectal cancer patients is not sufficient. Autophagy,

a basic cell survival mechanism mediated by recycling of cellular amino acids, plays an important role in cancer.

Recently, autophagy has been highlighted as a promising new molecular target. The unfolded protein response

(UPR) reportedly act in complementary fashion with autophagy in intestinal homeostasis. However, the roles of UPR

in colon cancer under autophagic inhibition remain to be elucidated. We aim to clarify the inhibitory effect of

autophagy on colon cancer.

Methods: We crossed K19CreERT and Atg5flox/flox mice to generate Atg5flox/flox/K19CreERT mice. Atg5flox/flox/K19CreERT mice

were first treated with azoxymethane/dextran sodium sulfate and then injected with tamoxifen to inhibit

autophagy in CK19-positive epithelial cells. To examine the anti-cancer mechanisms of autophagic inhibition, we

used colon cancer cell lines harboring different p53 gene statuses, as well as small interfering RNAs (siRNAs)

targeting Atg5 and immunoglobulin heavy-chain binding protein (BiP), a chaperone to aid folding of unfolded

proteins.

Results: Colon tumors in Atg5flox/flox/K19CreERT mice showed loss of autophagic activity and decreased tumor size

(the total tumor diameter was 28.1 mm in the control and 20.7 mm in Atg5flox/flox/K19CreERT mice, p = 0.036). We

found that p53 and UPR/endoplasmic reticulum (ER) stress-related proteins, such as cleaved caspase 3, and CAAT/

enhancer-binding protein homologous protein, are up-regulated in colon tumors of Atg5flox/flox/K19CreERT mice.

Although Atg5 and BiP silencing, respectively, increased apoptosis in p53 wild type cells, Atg5 silencing alone did

not show the same effect on apoptosis in p53 mutant cells. However, co-transfection of Atg5 and BiP siRNAs led to

increased apoptosis in p53 mutant cells.

Conclusions: Blocking autophagy has potential in the treatment of colon cancer by inducing apoptosis via p53

and ER stress, and suppressing the UPR pathway is a valid strategy to overcome resistance to autophagic inhibition.
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Background

Colorectal cancer is the second leading cause of cancer-

related death in the United States [1]. Although some

molecularly targeted drugs, such as anti-vascular endo-

thelial cell growth factor (VEGF) and anti-epidermal

growth factor receptor (EGFR) antibodies, are used clin-

ically and contribute to a better prognosis, the current

median survival of stage IV colorectal cancer patients re-

ceiving chemotherapy is shorter than 3 years [2]. Macro-

autophagy (hereafter referred to as autophagy), which is

a highly conserved cell survival mechanism mediated by

the recycling of cellular amino acids [3], has been

highlighted as a promising new molecular target [3, 4].

For example, chloroquine (CQ), originally developed as

an anti-malarial agent, prevents autophagic activity and

has been used in several clinical trials of cancer treat-

ment as an autophagic inhibitor [5, 6].

Autophagy is typically activated under conditions of

amino acid starvation, and autophagy marker proteins

include light chain 3 (LC3) and p62 [5]. p62 (also

called SQSTM1) is a selective substrate of autophagy,

and its accumulation is observed when autophagy is

inhibited [7]. This p62 dysregulation is reportedly as-

sociated with proliferation of cancer, including colo-

rectal cancer [8, 9]. Preclinical evidence has shown

that the role of autophagy in cancer differs depending

on the situation. For instance, although autophagic in-

hibition promotes cancer initiation, it can suppress

growth of some malignancies, such as lung cancer and he-

patocellular carcinoma [10–12]. Quite recently, Rosenfeldt

et al. showed that the effect of autophagic inhibition on

pancreatic cancer depends on p53 status [13].

The endoplasmic reticulum (ER) is an organelle in-

volved in protein folding, and ER stress refers to the

condition leading to accumulation of misfolded proteins.

The unfolded protein response (UPR), which is the

cellular response to increased ER stress, is a basic mech-

anism of maintaining cell homeostasis [14, 15]. Under

ER stress, immunoglobulin heavy-chain binding protein

(BiP) and phosphorylated eukaryotic initiation factor 2α

(eIF2α) are upregulated [16, 17]. BiP acts as a chaperone

to aid folding of unfolded proteins, and eIF2α suppresses

general mRNA translation. Severe ER stress can induce

apoptotic cell death, and CAAT/enhancer-binding pro-

tein homologous protein (CHOP) and c-Jun N-terminal

kinase (JNK) have been reported to play a critical role in

the induction of apoptosis [18]. Recently, Adolph et al.

showed that autophagy and UPR act in complementary

fashion in Paneth cells to maintain intestinal homeosta-

sis [19]. However, the roles of autophagy and UPR in

colon cancer remain to be elucidated.

To investigate the involvement of autophagy in

colon cancer in vivo, we treated mice mutant for

Atg5, an indispensable gene for autophagy [20], with

azoxymethane/dextran sodium sulfate (AOM/DSS),

which is an established animal model used to induce

and analyze colon cancer [21, 22]. Since systemic

Atg5 deletion causes neonatal lethality [23], we used

K19CreERT mice to inhibit autophagy specifically in

CK19 positive-cell which is known as a marker of

epithelial cell [24]. In this report, by genetic inhib-

ition of autophagy and CQ treatment, we showed that

suppression of autophagy has an anti-colorectal can-

cer effect via apoptosis induced by p53 activation and

ER stress in vivo and in vitro.

Methods

Mice

K19CreERT mice were kindly provided by Guoqiang Gu

(Vanderbilt University, Nashville, TN, USA) [24].

ROSA26-lox-stop-lox-YFP reporter (ROSA-YFP) mice,

obtained from the Jackson Laboratory, were crossed with

K19CreERT mice to generate K19CreERT/ROSA-YFP mice.

Atg5flox/flox mice have been described previously [25] and

were kindly provided by Dr. Noboru Mizushima (Tokyo

University, Tokyo, Japan). Atg5flox/flox mice were crossed

with K19CreERT mice to generate Atg5flox/flox/K19CreERT+

mice. C57BL/6 J (B6) mice were from CLEA Japan

(Tokyo, Japan). All mice used were of the B6 back-

ground. For tamoxifen (TAM) treatment, mice were

injected with 10 mg/kg TAM (Cayman Chemical,

Ann Arbor, MI, USA) intraperitoneally (i.p.) three

times (on days 1, 3, and 5). For CQ treatment, mice

were injected with 50 mg/kg CQ (Sigma-Aldrich, St.

Louis, MO, USA) i.p. at the times indicated. All ani-

mal studies were approved by the Animal Care and

Use Ethics Committee at the Institute for Adult

Diseases, Asahi Life Foundation.

Tumor induction

Atg5flox/flox/K19CreERT+ (Atg5-deficient mice) and Atg5flox/

flox mice (Cre-negative littermates, used as control mice)

were injected i.p. with 12.5 mg/kg AOM (Sigma-Aldrich)

on day 1. After 5 days, mice received water supple-

mented with 2.5 % DSS (MP Biomedicals, Irvine, CA,

USA) for 5 days, after which the mice were maintained

on regular water for 14 days and subjected to two fur-

ther DSS treatment cycles. On days 60, 62, and 64, the

mice were injected i.p. with 10 mg/kg TAM. On day 67,

the mice were sacrificed to analyze colon tumors.

Macroscopic colon tumors were counted, and the lon-

gest diameter of each tumor was measured using a cali-

per in a blinded fashion.

Cell lines

Four established colon cancer cell lines, HCT116,

SW48, DLD1, and SW837, were used [26, 27].

HCT116 and SW48 cells harbor the wild type p53
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gene, while DLD1 and SW837 cells are mutated in

the p53 gene [26, 27]. HCT116 cells were maintained

in McCoy’s 5A medium containing 10 % fetal bovine

serum (FBS). SW48 and SW837 cells were maintained

in Leibovitz’s L-15 medium containing 10 % FBS.

DLD1 cells were maintained in RPMI 1640 medium

containing 10 % FBS. Hank’s Buffered Salt Solution

(HBSS) was used to induce amino acid starvation

conditions. The cell lines were obtained from the

American Type Culture Collection (Baltimore, MD,

USA), and all media formulations were obtained from

Sigma-Aldrich.

Antibodies and reagents

The following primary antibodies were used for im-

munoblotting and immunohistochemistry: anti-Atg5,

anti-Atg7, anti-LC3, anti-p62, anti-PARP, anti-cleaved

caspase 3, anti-BiP, anti-p53, anti-phospho-eIF2α,

anti-phospho-JNK, anti-phospho-Chk1, anti-phospho-

p53, anti-actin (all from Cell Signaling, Beverly, MA,

USA), anti-CK19, anti-proliferating cell nuclear antigen

(PCNA) (both from Santa Cruz Biotechnology, Santa

Cruz, CA, USA), anti-Ki67 (Dako, Carpinteria, CA, USA),

anti-p53 (Vector Laboratories, Birmingham, CA, USA),

anti-CHOP (Thermo Fisher Scientific, Waltham, MA,

USA), and anti-yellow fluorescent protein (YFP)

(MBL, Tokyo, Japan). CQ diphosphate salt (Sigma-Al-

drich) was dissolved in PBS at the indicated

concentrations.

RNA interference

Small interfering RNAs (siRNAs) targeting Atg5

(MISSION siRNA, Sigma-Aldrich) and BiP (Dharma-

con siGENOME SMART pool siRNA, GE Healthcare,

Pittsburg, PA, USA) or the non-silencing control (5’-

AATTCTCCGAACGTGTCACGT-3’) were transfected

into cells using Lipofectamine RNAimax (Invitrogen,

Waltham, MA, USA) for 72 h. Immunoblotting was

used to verify that the siRNAs reduced cellular pro-

tein expression by more than 80 %.

Immunoblotting

Cells or mouse tissues were disrupted in lysis buffer

(20 mM Tris, pH 7.5, 150 mM NaCl, 1 mM EDTA,

1 mM EGTA, 1 % Triton X [Sigma-Aldrich], 2.5 mM

sodium pyrophosphate, 1 mM glycerophosphate,

1 mM Na3VO4, 1 μg/ml leupeptin). The lysates were

electrophoresed by SDS-PAGE, transferred to a poly-

vinylidene difluoride membrane (GE Healthcare), and

blocked for 1 h in Tris-buffered saline-Tween 20

with 5 % dry milk. The membrane was incubated

overnight at 4 °C with the primary antibody and sub-

sequently washed and incubated with a secondary

horseradish peroxidase (HRP)-conjugated antibody.

The immunocomplexes were detected using a chemilu-

minescence detection kit (Luminata Classico Western

HRP; Merck Millipore, Darmstadt, Germany). Images

were obtained using the LAS 4000 image analyzer

(Fujifilm, Tokyo, Japan).

Immunohistochemistry

Formalin-fixed and paraffin-embedded mouse tissues

were cut at a thickness of 3 μm, deparaffinized, and in-

cubated in citrate buffer at 95 °C for 40 min for antigen

retrieval. Endogenous peroxidase activity was blocked

using 3 % H2O2. The tissue sections were incubated

overnight with rabbit primary antibody, followed by a

polyclonal goat anti-rabbit immunoglobulins/biotinyl-

ated secondary antibody (DAKO) for 30 min, and then

exposed to Streptavidin/HRP (DAKO) for 10 min. The

Mouse-on-Mouse Immunodetection kit (Vector Labora-

tories) was used as the mouse primary antibody for

mouse tissues, according to the manufacturer’s instruc-

tions. The chromogenic reaction was performed using

the Liquid DAB Substrate Chromogen System (Dako).

YFP expression in the colons of mice was examined by

immunofluorescence staining. The tissues were incu-

bated with anti-YFP antibody followed by Alexa Flour

594-conjugated goat anti-rabbit secondary antibody

(Molecular Probes, Eugene, OR, USA) for 30 min, and

the nuclei were visualized by DAPI staining (Takara,

Tokyo, Japan) for 1 min. The proportion of Ki67-

positive cells was determined by counting more than

500 cells in three Ki67-concentrated lesions, and the

numbers of cleaved caspase 3-positive cells per field

were counted.

Real-time RT-PCR

Total cellular RNA samples were isolated from mouse

colon tissues and from HCT116 cells using NucleoS-

pin RNA II (Takara). The cDNAs were generated

from 1-μg total RNA by reverse transcription using Tran-

scriptor Universal cDNA Master (Roche, Branchburg, NJ,

USA). The mRNA expression levels of mouse Atg5,

interleukin (IL) 1-β, chemokine (C-X-C motif ) ligand

1 (CXCL1), p53 upregulated modulator of apoptosis

(PUMA), Noxa, Bax, CHOP, BiP, spliced X-box bind-

ing protein 1 (sXBP1) and of human Atg5, Ulk1,

Atg7, C-X-C chemokine receptor type 4 (CXCR4),

SOX9, CD44, CXCL1, IL8, cellular inhibitor of apop-

tosis protein 1 (cIAP1), PUMA, Noxa, Bax, CHOP,

BiP, and spliced XBP1 were determined by quantita-

tive real-time RT-PCR using the LightCycler 480 in-

strument II real-time PCR System (Roche). GAPDH

mRNA was used as an internal control. The primer

sequences used are available on request.
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Flow cytometric analysis of apoptosis

Colon cancer cells (1.0 × 104/ml) were seeded into 24-

well plates and 24 h later were treated with siRNAs for

72 h or with CQ for 24 h. Cells were detached by trypsi-

nization and exposed to early and late apoptotic detec-

tion reagents (GFP Certified Apoptosis Detection Kit,

Enzo life Sciences, Farmingdale, NY, USA) for 15 min.

Samples were analyzed by flow cytometry using the FL2

channel for Annexin V detection (early apoptosis) and

the FL3 channel for PI detection (late apoptosis) using a

fluorescence-activated cell sorter (FACS) (accuriC6, BD

Biosciences, Ann Arbor, MI, USA).

Cell growth assay

The extent of cell growth was assessed using the Cell

Counting Kit-8 (CCK-8) from Dojindo Laboratories

(Kumamoto, Japan). Cells (1.0 × 104/ml) were seeded

into 96-well plates (day 0) and 24 h later were trans-

fected with siRNAs (day 1) for 48 h. CCK-8 solution was

added to each well for 2 h. The absorbance at 450 nm

was determined using a multi-mode reader (SpectraMax,

Molecular Devices, Sunnyvale, CA, USA).

Statistical analysis

Statistical analysis was performed using Welch’s t-test,

Mann–Whitney U-test, and one-way analysis of variance

with Dunnett’s multiple comparison test, where appro-

priate. Differences were considered statistically signifi-

cant at p < 0.05.

Results

CK19 and Atg5 expression in normal colon mucosa and

AOM/DSS-derived colon tumors

We first examined the distribution of CK19- and Atg5-

positive epithelial cells in normal colonic mucosa of

K19CreERT mice. Even though CK19 exhibited positive

staining largely in the small intestinal mucosa, CK19-

positive cells were rarely observed, using the conven-

tional immunoperoxidase method, in normal colon

mucosa either before or after TAM injection (Fig. 1a,

upper panels). To examine the CK19-positive lineage in

colon mucosa, we crossed K19CreERT mice with ROSA-

YFP reporter mice. In these K19CreERT/ROSA-YFP mice,

YFP expression is supposed to be induced by Cre-

mediated recombination [24]. After TAM injection,

approximately 10 % of the colonic mucosa exhibited

positive immunohistochemical staining for CK19-YFP

(Fig. 1b). In contrast, Atg5 exhibited positive staining in

almost the entire cytoplasm of small intestinal and

colonic epithelial cells of Atg5flox/flox/K19CreERT mice

before TAM injection. After TAM injection (day 28),

approximately 10 % of the normal colonic mucosa was

negative for Atg5 (Fig. 1a, lower panels).

Next, we examined the distribution of CK19 and

Atg5 in AOM/DSS-derived colon tumors. Macroscop-

ically, as shown in Fig. 1c, approximately 10 colon

tumors were present mainly in the middle or distal

colon, in line with a previous report [21]. CK19 ex-

hibited global positive staining in the cytoplasm of

colorectal tumor cells, as typically observed in human

colon cancer [28] (Fig. 1d, left panel). Atg5 also ex-

hibited global positive staining in the colorectal tumor

cell cytoplasm (Fig. 1d, right panel). Western blotting

showed that LC3-II protein levels were elevated in

colon tumor tissues compared with non-tumor colon

mucosa (Fig. 1e). Taken together, the proportion of

CK19-positive cells and autophagic activity were

higher in colon tumors than in normal colon mucosa.

Autophagic inhibition in AOM/DSS-derived mouse colon

tumors using the CreERT system

Next, we suppressed Atg5 gene expression in established

colon tumors. As shown in the schematic chart in Fig. 2a,

Atg5flox/flox/K19CreERT+ (Atg5-deficient mice) and Atg5flox/

flox mice (Ctr mice) first were treated with AOM/DSS to

establish colon tumors and then injected with TAM

and sacrificed. Macroscopically, colorectal tumors

presented in the middle and distal colon both in

Atg5-deficient mice and Ctr mice. As shown by

hematoxylin and eosin staining, while both mice

similarly showed tubular adenomas or well-

differentiated adenocarcinomas and signs of malig-

nancy, such as mitotic figures and cellular and

nuclear polymorphism, some tumors of the Atg5-defi-

cient mice were partially hollowed out, as shown in

Fig. 2b. As expected, Atg5 exhibited negative staining

throughout the majority of the colorectal tumor cell

in Atg5-deficient mice (Fig. 2b). Immunohistochemis-

try showed positive staining of p62 in tumor cells

both in Ctr mice and Atg5-deficient mice, and p62

accumulation was especially elevated in Atg5-deficient

tumors, suggesting successful reduction of autophagic

activity (Fig. 2c).

Immunoblotting showed increased expression levels of

cleaved PARP, cleaved caspase 3, and BiP in colon tumor

tissues of Atg5-deficient mice compared with Ctr mice

(Fig. 2d). These results indicated that autophagic inhib-

ition induces apoptosis in colon tumor cells. As shown

in Fig. 2e, the length of the colon and body weight,

which are commonly used to measure the severity of

intestinal inflammation, were not significantly different

between Ctr and Atg5-deficient mice. Although the

number of colon tumors was not significantly different

between Ctr and Atg5-deficient mice, the tumor max-

imum (4.5 mm in Ctr and 3.5 mm in Atg5-deficient

mice, p = 0.030) and total sizes (28.1 mm in Ctr and
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20.7 mm in Atg5-deficient mice, p = 0.036) were signifi-

cantly smaller in Atg5-deficient mice than in Ctr mice.

In immunohistochemical analysis, the Ctr mice exhib-

ited global and strong positive staining for PCNA and

Ki67 in colon tumor cell nuclei. In contrast, the colon

tumors of the Atg5-deficient mice exhibited partial nega-

tive staining for PCNA and Ki67 (Fig. 2f ). Ki67-positive

nuclei were decreased quantitatively in Atg5-deficient

mice (Fig. 2g). Taken together, inhibition of autophagy in

colon epithelial cells exerted an antitumor effect.

Induced p53, caspase3, and UPR activation by autophagic

inhibition in AOM/DSS-derived colon tumors

Since the p53 tumor suppressor inhibits cell growth and

induces apoptosis, we hypothesized that p53 activation

and subsequent apoptosis was the mechanism under-

lying the antitumor effects induced by the autophagic in-

hibition shown in Fig. 2. The relative expression levels of

p53-related mRNAs, such as PUMA, Noxa, and Bax,

and of ER stress-related mRNAs, such as CHOP and

BiP, were up-regulated in the tumors of Atg5-deficient

Fig. 1 CK19 and Atg5 expression in normal colonic mucosa and azoxymethane/dextran sodium sulphate (AOM/DSS)-derived colon tumors.

a Representative immunohistochemical images of the small intestine and colon in Atg5flox/flox/K19CreERT mice before and 28 days after tamoxifen

(TAM) injection. Scale bar, 50 μm. Original magnification, ×200. b Immunofluorescence analysis of the colon in K19CreERT/ROSA-YFP mice 28 days

after TAM injection; YFP (red) and DAPI (blue) fluorescent staining. Original magnification, ×400. c Typical macroscopic examples of colorectal

tumors induced by AOM/DSS in K19CreERT mice before TAM injection. d Typical immunohistochemical images of CK19 and Atg5 staining in AOM/

DSS-derived colon tumors in K19CreERT mice before TAM injection. Scale bar, 50 μm. Original magnification, ×400. e Immunoblot analysis of Atg5

and LC3 expression in AOM/DSS-derived tumor (T) and non-tumor colon mucosa (NT) in the same K19CreERT mouse before TAM injection. Actin

was used as an internal control. The arrow indicates LC3-II
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Fig. 2 (See legend on next page.)
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mice (Fig. 3a). IL1-β mRNA was also up-regulated.

CXCL1 and sXBP1 mRNA expression did not differ sig-

nificantly. Immunohistochemical analysis showed accu-

mulation of nuclear p53 and cleaved caspase 3, a cell

death-related factor downstream of p53 (Fig. 3b).

Cleaved caspase 3-positive cells were elevated quantita-

tively in Atg5-deficient mice (Fig. 3c). The expression of

CHOP was also strongly up-regulated in tumor cell nu-

clei of Atg5-deficient mice, according to immunohisto-

chemical staining (Fig. 3d). Therefore, in colorectal

tumors, the loss of autophagic activity increased p53 ac-

tivation and UPR activity, followed by induction of apop-

tosis by cleaved caspase 3 and CHOP.

Autophagic inhibition exerts antitumor effects in p53

wild-type cells

Next, we treated the HCT116 colon cancer cell line (p53

wild type status) with CQ to examine the effects of

autophagic inhibition. HCT116 cells were treated with a

non-silencing control siRNA (HCT116 Ctr), siRNA tar-

geting Atg5, or CQ in HBSS (to induce amino acid star-

vation conditions; positive control, Stv). Western blot

analysis indicated that inhibition of autophagy increased

cleaved PARP levels (Fig. 4a). We evaluated whether

Atg7 reduction was induced by Atg5 inhibition, since a

previous report showed that Atg7 reduction induced

apoptosis [29]. Atg5 inhibition did not cause a signifi-

cant reduction in Atg7, as assessed by immunoblotting

(Fig. 4a).

We examined p53 and ER stress-related molecules by

real-time RT-PCR (Fig. 4b). As previously shown [30],

autophagic inhibition up-regulated Ulk1 (the mamma-

lian orthologue of yeast Atg1) mRNA. While the mRNA

expression levels of Noxa, Bax, BiP, and sXBP1 were not

significantly different, those of PUMA and CHOP were

up-regulated by autophagic inhibition.

We were also interested in the effect of autophagic in-

hibition on reported virulent transformation markers,

such as CXCR4, SOX9, and CD44, and on chemokines,

such as CXCL1 and IL8, since various reports have

indicated that these markers [31–33] and inflammation

[34] are associated with cancer initiation. The mRNA

levels of these molecules were not significantly altered

by autophagic inhibition, with the exception of the up-

regulation of CXCL1 mRNA by CQ.

Subsequently, we examined apoptosis driven by au-

tophagic reduction using FACS analysis (Fig. 4c). The

number of apoptotic cells was significantly higher in

autophagy-inhibited than in control HCT116 cells

(10.2 % in Atg5 siRNA-treated and 4.5 % in control cells,

p = 0.0086, and 10.7 % in CQ-treated and 6.2 % in PBS-

treated cells, p = 0.0043).

To examine the in vivo effect of CQ treatment, AOM/

DSS-derived colorectal tumors of wild-type B6 mice

were treated with PBS, as the control (n = 7, male), or

CQ (n = 5, male). As shown in Fig. 4d, the length of the

colon and body weight were not significantly different

between Ctr and CQ-treated mice. Although the number

of colon tumors was not significantly different between

Ctr and CQ-treated mice, the tumor maximum (3.7 mm

for Ctr and 2.3 mm for CQ-treated tumors, p = 0.040)

and total sizes (23.4 mm for Ctr and 7.6 mm for CQ-

treated tumors, p = 0.036) were significantly smaller in

CQ-treated mice than in Ctr mice. These results indi-

cated that autophagic inhibition by siRNA and CQ treat-

ments has an antitumor effect.

Autophagic and UPR inhibition in p53 mutant cells

Finally, we evaluated whether autophagic inhibition de-

pends on p53 status. In addition, since suppression of

the UPR pathway reportedly causes apoptosis through

CHOP activation [35], we evaluated UPR pathway sup-

pression as a potential rescue treatment. As shown in

Fig. 5a, inhibition of autophagic activity induced UPR

activation, including elevation of BiP levels and phos-

phorylation of eIF2α, especially under amino acid-free

conditions. In contrast, JNK phosphorylation, an alter-

nate UPR pathway, was not up-regulated. Increased

Chk1 and p53 phosphorylation indicated that autophagic

inhibition caused DNA damage and p53 activation [36].

(See figure on previous page.)

Fig. 2 Autophagic inhibition in azoxymethane/dextran sodium sulfate (AOM/DSS)-derived mice colon tumors using the CreERT system. a Schematic

representation of Atg5 genetic inhibition by tamoxifen (TAM) in AOM/DSS-induced colon tumors. b Representative histopathological images of

staining for hematoxylin and eosin (HE) or Atg5 in AOM/DSS-derived colon tumors in Atg5flox/flox/K19CreERT+ (Atg5-deficient) and Atg5flox/flox (Ctr) mice

7 days after TAM injection. Scale bars, 50 μm. Original magnification, ×200/400. c Representative immunohistochemical images of p62 staining in the

non-tumor colon mucosa and AOM/DSS-derived colon tumors in Atg5-deficient mice and Ctr mice. Scale bar, 50 μm. Original magnification, ×200.

d Representative immunoblot analysis image of the indicated proteins from AOM/DSS-derived colon tumors in Atg5-deficient mice and Ctr mice

(two different mice each). e Body weight, colon length, tumor number, and tumor size were determined in Ctr mice (n = 9) and Atg5-deficient mice

(n= 11). Data shown are means and SEM. *; p< 0.05 by the Mann–Whitney U-test. f Representative immunohistochemical images for PCNA and Ki67

staining in AOM/DSS-derived colon tumors in Ctr mice and Atg5-deficient mice. Scale bars, 50 μm. Original magnification, ×100/200/400. g The proportion

of Ki67-positive cells in AOM/DSS-derived tumor cells in Ctr mice and Atg5-deficient mice. Data shown are means ± SEM (n= 3). *; p< 0.05 by the

Mann–Whitney U-test
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Fig. 3 (See legend on next page.)
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After co-transfection of siRNAs targeting Atg5 and BiP,

cell growth was reduced (Fig. 5b) and, as shown by

FACS analysis, the number of apoptotic cells was in-

creased (Fig. 5c).

We treated various colorectal cancer cell lines harbor-

ing either the wild type p53 gene (HCT116 and SW48

cells) or a mutant p53 gene (DLD1and SW837 cells)

with siRNAs targeting Atg5 and BiP. Immunoblot ana-

lysis showed increased expression of BiP proteins by the

Atg5-targeted siRNA in each cell line (Fig. 5d). Although

siRNAs targeting either Atg5 or BiP increased PARP

cleavage both in HCT116 and SW48 cells, the Atg5-

targeted siRNA failed to do so in DLD1 or SW837 cells.

However, co-transfection of Atg5 and BiP siRNAs in-

creased PARP cleavage in both DLD1 and SW837 cells.

As shown in Fig. 5e, although both Atg5 and BiP silen-

cing, respectively, increased apoptosis in colon cancer

cells harboring the wild type p53 gene (i.e., HCT116 and

SW48 cells), Atg5 silencing alone did not show an apop-

totic effect in colon cancer cells mutant for the p53 gene

(i.e., DLD1 and SW837 cells). Apoptosis in DLD1 cells

was increased by BiP inhibition. While SW837 cells were

resistant to apoptosis induced by individual inhibition of

Atg5 or BiP, apoptosis in SW837 cells was increased by

co-transfection of Atg5 and BiP siRNAs. These results

suggest that the anti-colon cancer effect of autophagic

inhibition is influenced by p53 status, and that suppress-

ing the UPR pathway might overcome resistance to

autophagic inhibition in certain colon cancer cell types.

Discussion

In this study, using Atg5flox/flox/K19CreERT mice and the

AOM/DSS procedure, we examined whether autophagic

inhibition is effective in colon cancer treatment and

showed that suppression of autophagy exerts anti-colon

cancer effects in vivo. Our results, schematically summa-

rized in Fig. 5f, suggested that blocking autophagy has

the potential to treat colon cancer through apoptosis

induced by p53 activation and ER stress. In addition, we

demonstrated in colon cancer cell lines that the anti-

colon cancer effect of autophagic inhibition depends on

p53 status, and that UPR inhibition is a prospective

alternative treatment candidate for colon cancer.

Several authors have reported that autophagic inhib-

ition has promising anti-colon cancer effects in human

colon cancer cell lines [37, 38]. The mouse model used

in this experiment, exploiting Cre/loxP technology, en-

abled examination of not only molecule-specific but also

CK19-expressing cell-specific therapies. Molecular func-

tions, including those of autophagy related-proteins,

sometimes differ according to the organ or cell type,

such as somatic versus hematopoietic cells. In fact, many

tissue-specific autophagy ablation models using the Cre/

loxP system have been published. For example,

hepatocyte-specific autophagic inhibition in Alb-Cre

mice resulted in multiple liver tumors, while dendritic

cell-specific autophagic inhibition in CD11c-Cre mice

exhibited antigen presentation dysfunction [10, 39]. Our

CK19-Cre model has the advantage of greater CK19

expression in colon tumors than in normal colonic

mucosa. Indeed, we showed that autophagic inhibition

had a suppressive effect on tumor size but not on tumor

number. Therefore, we believe that TAM-induced

autophagic inhibition is a suitable model for examining

colon cancer progression in a setting in which the influ-

ence on cancer initiation has been minimized. Regarding

cancer initiation, knockout mouse models displaying

constitutive autophagic inhibition appear to be useful.

Since genome-wide association studies have implicated

that autophagy related 16-like 1 (ATG16L1) gene poly-

morphisms are associated with risk of inflammatory

bowel disease [40, 41], previous researchers have estab-

lished autophagy-deficiency in an intestinal epithelial cell

model using Villin-Cre mice [19, 42–44]. These mice

showed Paneth cell abnormalities and insufficient

defense against bacteria. The existence of a cascade

resulting from infection and leading to inflammation

and cancer has been widely accepted [34], and it is likely

that inhibition of constitutive autophagy in the intestine

ultimately leads to cancer initiation. However, further

investigation is required to clarify the role of autophagy

in cancer initiation.

With clinical use of molecular targeting agents, the

development of strategies to overcome cases of drug

resistance, such as patients unresponsive to anti-

EGFR agents who possess specific gene mutations,

(See figure on previous page.)

Fig. 3 Atg5 inhibition-induced p53, caspase 3, and UPR activation in colon tumors. a Relative expression of the indicated mRNAs extracted from

AOM/DSS-derived tumors in Ctr mice and Atg5-deficient mice 7 days after TAM injection. GAPDH was used as an internal control. Data shown are

means ± SEM (n = 3). *; p < 0.05 by the Mann–Whitney U-test. b Representative immunohistochemical images of p53 and cleaved caspase 3 staining in

AOM/DSS-derived colon tumors from Ctr mice and Atg5-deficient mice. Scale bar, 50 μm. Original magnification, ×400. Arrows indicate cleaved caspase

3-positive cells. c Cleaved caspase 3-positive tumor cells in Ctr mice and Atg5-deficient mice were counted per field. Data shown are means ± SEM

(n = 3). *; p < 0.05 by the Mann–Whitney U-test. d Representative immunohistochemical images of CHOP in AOM/DSS-derived colon tumors and

non-tumor colon mucosa in Ctr mice and Atg5-deficient mice. Scale bars, 50 μm. Original magnification, ×100/200/400
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such as K-RAS mutations, is a major challenge [45, 46]. In

this experiment, human colon cancer cell lines harboring

mutant p53 genes showed resistance to autophagic in-

hibition, in accordance with a previous report [38].

Although mutation of the p53 gene is a major genetic

alteration in human colon cancer [47, 48], the ab-

sence of this mutation has been reported in rodent

colon tumors [22, 49]. Therefore, our in vivo results

showing anti-tumor effects by autophagic inhibition

might be due to the normal p53 gene expression in

this rodent model. A combination of molecular-

targeted agents seems to be a valid strategy to

overcome drug resistance. We assume that anti-

autophagic and anti-UPR drugs have a positive inter-

action, since UPR up-regulation under autophagic

inhibition seems to be a compensatory pathway for

colon tumor cell survival.

In fact, HCT116 cells showed an elevation in apoptosis

after co-transfection with siRNAs targeting Atg5 and

BiP compared with transfection of the individual siRNAs

(Fig. 5c). There are three major ER stress sensors: pro-

tein kinase RNA-like ER kinase (PERK), activating tran-

scription factor-6 (ATF6), and inositol-requiring enzyme

1 (IRE1) [50]. These sensors are in a complex that con-

tains BiP in the unstressed state. ER stress correlation

with the dissociation of BiP and activates the censors

[50]. Since our analysis of autophagic inhibition showed

that sXBP1 mRNA and JNK phosphorylation were not

up-regulated, we believe that the ATF6-XBP1 and IRE1-

XBP1-JNK pathways are not critical for UPR activation

induced by loss of autophagy. In contrast, CHOP and

eIF2α phosphorylation were upregulated under

autophagy-suppressed conditions, indicating activation

of the PERK-eIF2α-CHOP axis.

In this study, using siRNA-mediated BiP silencing,

we found that BiP plays roles in ER stress and subse-

quent apoptosis (Fig. 5a, d), as has also been reported

in previous studies [35, 51]. If the activated UPR fails

to alleviate ER stress in the BiP-silenced state, path-

ways for apoptosis including the induction of pro-

apoptotic transcriptional factor CHOP can become

activated [52]. We also showed that autophagic inhib-

ition caused ER stress, leading to up-regulation of BiP

protein in vivo and in vitro (Fig. 2d and 5a). On the

other hand, BiP mRNA reportedly is not always up-

regulated under ER stress, since BiP expression is also

controlled at the translational level [53]. This is a

possible explanation for our finding that autophagic

inhibition did not increase BiP mRNA in vitro

(Fig. 4a). Under amino acid-free conditions, the effect

of autophagic inhibition on increased BiP protein ex-

pression was exaggerated (Fig. 5a) and is in line with

previous reports showing the importance of autoph-

agy and UPR for cell survival, especially under starva-

tion conditions [4, 18].

In the clinical setting, the effect of molecular-

targeted therapy depends on many factors, such as

genomic diversity among patients, the drug’s influence

on somatic and hematopoietic cells, the drug’s inter-

actions in cancer microenvironments, among other

factors. The effect of CQ treatment may differ from

that of genetic inhibition of autophagy. For example,

CXCL1 mRNA expression in HCT116 cells was up-

regulated by CQ treatment but not by siRNA target-

ing Atg5 (Fig. 5a). CQ treatment has the potential to

affect hematopoietic cells directly or through stimula-

tion of epithelial cells to induce chemokines. We also

detect up-regulation of IL1-β mRNA by inhibition of

autophagy in vivo (Fig. 3a). It is in line with the pre-

vious report that shows the up-regulation of IL1-β

and IL18 in autophagy-deficient mice [54]. These cy-

tokines might affect the immune response in vivo and

it might be a plausible explanation of the differences

between up-regulated mRNAs in the analysis of mice

(Fig. 3a) and cell-based study (Fig. 4b). We believe

the rodent model in this experiment could be applied

to various situations using multiple mutant mouse

strains and the Cre/loxP technology, as well as for in

vivo administration of potential reagents to investigate

colon cancer mechanisms.

(See figure on previous page.)

Fig. 4 Antitumor effects exerted by autophagic inhibition in p53 wild-type colon cancer cells. a Immunoblot analysis of the indicated proteins

in HCT116 cells transfected with non-silencing control siRNA (Ctr) or siRNA targeting Atg5 (siAtg5) for 72 h or treated with 100 μM CQ with or

without amino acid starvation (HBSS medium, Stv) for 24 h. b Relative expression of the indicated mRNAs extracted from HCT116 cells transfected

with non-silencing control siRNA (Ctr) or siRNA targeting Atg5 (siAtg5) for 72 h or treated with 100 μM CQ with or without HBSS medium (for

amino acid starvation; positive control, Stv) for 24 h. Data shown are means ± SEM (n = 3). *; p < 0.05 by Dunnett’s multiple comparison test. c

(top) Representative FACS analysis images are shown. HCT116 cells were transfected with non-silencing control siRNA (Ctr) or siRNA targeting

Atg5 (siAtg5) for 72 h or treated with control PBS or 100 μM CQ for 24 h. Propidium iodide (PI)- and Annexin V-positive cells were counted using

a FACS analyzer. (bottom) Apoptotic cells (Annexin V-positive cells) were counted using a FACS analyzer. Data shown are means ± SEM (n = 3). *;

p < 0.05 by Welch’s t-test. d Body weight, colon length, tumor number, and tumor size were determined in AOM/DSS-treated wild type C57BL/6

J mice 7 days after three CQ treatments (n = 5) or control PBS treatment (n = 7). Data shown are means ± SEM. *; p < 0.05 by the

Mann–Whitney U-test
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Fig. 5 Autophagic and UPR inhibition in p53 mutant cells. a Immunoblot analysis of the indicated proteins in HCT116 transfected with non-silencing

control siRNA (Ctr) or siRNAs targeting Atg5 (siAtg5) or BiP (siBiP) for 72 h with or without amino acid starvation (HBSS medium, Stv) for 24 h. b

The growth curve of HCT116 cells transfected with non-silencing control siRNAs or siRNAs targeting Atg5 or BiP or Atg5 plus BiP (co-transfection),

determined using a cell counting kit. c The number of apoptotic HCT116 cells transfected with non-silencing control siRNAs or siRNAs targeting Atg5

or BiP or Atg5 plus BiP (co-transfection), determined using a FACS analyzer. Data shown are means ± SEM (n = 3). *; p < 0.05 by Dunnett’s multiple

comparison test. d Immunoblot analysis of Atg5, BiP, PARP, and cleaved PARP in the indicated colon cancer cell lines transfected with non-silencing

control siRNAs or siRNAs targeting Atg5 or BiP or Atg5 plus BiP (co-transfection). Actin was used as an internal control. e The number of apoptotic cells

in the indicated cell lines transfected with non-silencing control siRNAs or siRNAs targeting Atg5 or BiP or Atg5 plus BiP (co-transfection), determined

using a FACS analyzer. The status of p53 in each cell line is shown. Data shown are means ± SEM (n = 3). *; p < 0.05 by Dunnett’s multiple comparison

test. f Summary of the effect of autophagic inhibition on colon cancer. Atg5 deletion causes DNA damage and ER stress. DNA damage

leads to CHK1-p53 axis activation. ER stress up-regulates BiP and eIF2α activation, and BiP inhibits eIF2α activation. Finally, apoptosis

induced by caspase 3 and CHOP exerts an anti-colorectal cancer effect
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Conclusions

In conclusion, we showed that suppression of autophagy

in colon cancer cells caused anti-tumor effects via

enhanced apoptosis through p53 and UPR activation. In

addition, our study implies that suppressing UPR path-

way is a valid strategy when colon cancer cells with

mutant p53 are resistant to autophagic inhibition.
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