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Abstract
Microglia are specialized dynamic immune cells in the central nervous system (CNS) that plays a crucial role in brain 
homeostasis and in disease states. Persistent neuroinflammation is considered a hallmark of many neurodegenerative diseases, 
including Alzheimer’s disease (AD), Parkinson's disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis 
(ALS) and primary progressive multiple sclerosis (MS). Colony stimulating factor 1-receptor (CSF-1R) is predominantly 
expressed on microglia and its expression is significantly increased in neurodegenerative diseases. Cumulative findings have 
indicated that CSF-1R inhibitors can have beneficial effects in preclinical neurodegenerative disease models. Research using 
CSF-1R inhibitors has now been extended into non-human primates and humans. This review article summarizes the most 
recent advances using CSF-1R inhibitors in different neurodegenerative conditions including AD, PD, HD, ALS and MS. 
Potential challenges for translating these findings into clinical practice are presented.
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Abbreviations
Aβ  Amyloid beta
AD  Alzheimer’s disease
ALS  Amyotrophic lateral sclerosis
CNS  Central nervous system

CSF-1R  Colony stimulating factor 1 receptor
C9ORF72  Chromosome 9 open reading frame 72
FDA  Food and drug administration
HD  Huntington’s disease
IC50  Half maximal inhibitory concentration
IL  Interleukin
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JAK/STAT   Janus kinase/signal transducers and activa-
tors of transcription

MPTP  1-Methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine

MS  Multiple sclerosis
PD  Parkinson’s disease
PDGFR  Platelet-derived growth factor receptor
PET  Positron emission tomography
PI3K  Phosphatidylinositol 3'-kinase
PTP-ζ  Protein-tyrosine phosphatase-ζ
SOD1  Superoxide dismutase 1
TDP-43  Transactive response DNA-binding protein 

43
TGF-α  Transforming growth factor alpha
TNFα  Tumor necrosis factor alpha
FFI  Fatal familial insomnia
GSS  Gerstmann-Sträussler-Scheinker disease

Background

Microglia are the predominant resident immune cells of 
the central nervous system (CNS), deriving from yolk sac 
progenitors during early neurodevelopment [1–4]. Under 
steady-state conditions, they actively contribute to mye-
linogenesis [5] and synaptic pruning [6]. Upon detection 
of non-homeostatic disturbances microglia become rapidly 
activated and proliferate. They develop into a broad range 
of activation states depending on the disease stage [7–10] 
and microenvironment [11–13]. It is generally accepted 
that initial activation of microglia may exert beneficial 
effects on disease recovery by phagocytosing cellular and 
myelin debris and favoring remyelination which in turn 
is thought to limit axonal dysfunction and loss [14]. In 
contrast, prolonged microglial activation may contrib-
ute to chronic neuronal damage and impede regeneration 
[15–17].

Emerging data suggest that microglial activation is a hall-
mark of a number of neurodegenerative diseases, including 
Alzheimer's disease (AD) [18, 19], Parkinson's disease (PD) 
[20], Huntington’s disease (HD) [21], amyotrophic lateral 
sclerosis (ALS) [22, 23] and primary progressive multiple 
sclerosis (MS) [24, 25]. Furthermore, a variety of genes 
identified as risk factors for neurodegenerative diseases 
are expressed in microglia [26]. Developing strategies for 
replacing defective microglia or modulating microglial func-
tion may therefore be a novel approach to treat neurodegen-
erative diseases [27–29]. As our understanding is rapidly 
evolving, we herein focus on the most updated preclinical 
and clinical evidence regarding potential microglia-based 
therapy in neurodegenerative diseases through targeting of 
the colony stimulating factor-1 receptor (CSF-1R).

The CSF‑R and its ligands, CSF‑1 and IL‑34

CSF-1R is a receptor tyrosine kinase belonging to the 
platelet-derived growth factor receptor (PDGFR) family 
[30]. CSF-1R can be activated by two different homodi-
meric ligands, CSF-1 (also known as macrophage-colony 
stimulating factor, M-CSF) and interleukin-34 (IL-34) 
which have limited (~ 10%) primary sequence homology 
but share a similar three-dimensional structure and bind the 
same site on the CSF-1R [30]. While CSF-1R appears to 
be the sole receptor for CSF-1, IL-34 also binds receptor 
protein-tyrosine phosphatase-ζ (RPTP-ζ) [31]. The ligands 
also differ in their pattern of expression. Within the central 
nervous system (CNS), CSF-1 is predominantly expressed 
in the corpus callosum, cerebellum and areas of the olfac-
tory bulb, cortex and hippocampus, while IL-34 is expressed 
throughout the forebrain but at very low levels in the cer-
ebellum [32–34]. Physiologically, CSF-1 is essential for 
embryonic microglial development, while IL-34 is mainly 
involved in their post-natal development and maintenance 
[35, 36]. CSF-1 and IL-34 may regulate the development 
and maintenance of different subpopulations of microglia. 
In mice, neither developmental genetic targeting nor func-
tion blocking antibodies to either CSF-1 or IL-34 cause a 
complete loss of brain microglia [32–34, 37, 38]. Instead, 
they result in a region-specific loss that corresponds to the 
complementary expression patterns of each ligand [39]. 
Interestingly, CSF-1R signaling and the expression of CSF-1 
can be significantly upregulated during inflammatory condi-
tions [16, 40], with CSF-1 expression being upregulated in 
disease-associated microglia [7] and possibly contributing, 
in an autocrine fashion, to their expansion.

Structurally, the CSF-1R comprises five extracellular 
immunoglobulin domains (D1–D5), a transmembrane 
domain and an intracellular split kinase domain [30]. 
Ligand binding triggers CSF-1R autophosphorylation and 
induces a cascade of downstream signaling events, which 
regulate cellular survival, proliferation, differentiation and 
motility [30, 35]. Among these, the phosphoinositide-3 
kinase (PI3K)/Akt pathway plays an important role in 
regulating CSF-1R-mediated macrophage survival [30, 
41, 42] (Fig. 1) and mediates signaling for cell viability 
downstream of CSF-1R in other cell types [43].

Genetic targeting of the CSF‑1R or treatment 
with CSF‑1R inhibitors causes depletion 
of microglia

Within the CNS, the CSF-1R is mainly expressed on 
microglia and plays an important role in microglial 
development and steady-state maintenance [1, 44, 45]. 
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Genetic ablation or loss of function of the CSF-1R causes 
depletion of microglia in mice [1], zebrafish and man 
[46], confirming that, regardless of species, the survival, 
maintenance and proliferation of microglia are critically 
dependent on CSF-1R. Consistent with this, microglia 
can be effectively ablated using CSF-1R kinase inhibi-
tors [28, 45, 47]. Recently, several CSF-1R inhibitors, 
including PLX3397 (Pexidartinib; Plexxikon, Inc.) [48], 
PLX5622 (Plexxikon Inc.) [49], BLZ945 (Novartis) 
[50], sCSF-1Rinh (Sanofi) [16], Ki20227 [51, 52], JNJ-
40346527 (Johnson & Johnson) [53, 54], ARRY-382 
(Array BioPharma) [54] or GW2850 [55, 56] have been 
tested in preclinical studies and clinical trials for a variety 
of conditions. Among these, Pexidartinib and PLX5622 
have been the most widely used in rodent model research 
[45, 57, 58], which has been extended into non-human 
primates [59]. Pexidartinib is orally bioavailable, brain-
penetrant [60] and exhibits a favorable tolerability and 
safety profile in human studies [54, 61]. Apart from tar-
geting CSF-1R and c-Kit, Pexidartinib (PLX3397) shows 
limited cross reactivity with other tyrosine kinases and 

has 10 ~ 100-fold selectivity for c-Kit and CSF1R over 
other related kinases, including PDGFRα and FLT3 [62, 
63]. PLX3397 binds to the autoinhibited CSF-1R through 
direct interactions with juxtamembrane residues embed-
ded in the ATP-binding pocket and prevents ATP and sub-
strate binding [63]. Consistent with this, PLX3397 effi-
ciently suppresses the proliferation of CSF-1-dependent 
microglia and macrophage cell lines in vitro [63] and 
its administration in vivo induces a rapid loss of micro-
glia [45]. More selective CSF-1R inhibitors including 
PLX5622 and GW2580 (PLX6134) have also been used 
to eliminate microglia and CSF-1-dependent macrophages 
in various research settings [64, 65]. PLX5622 is a novel 
CSF-1R inhibitor with a higher selectivity and brain 
penetrance than PLX3397 (Fig. 1) (reviewed in [66]). 
PLX3397 and PLX5622 can be integrated into rodent 
chow diet at different concentrations without significantly 
affecting adult mice behavior or cognitive functions [45, 
66, 67]. JTE-952 is a highly specific and orally available 
CSF-1R inhibitor, with a relatively higher efficacy than 
GW2580 [40, 68].

Fig. 1  CSF-1R signaling pathways and the effects of CSF-1R inhibi-
tors. CSF-1 and IL-34 share a common receptor, CSF-1R. After bind-
ing to the CSF-1R, a cascade of downstream signaling molecules is 
activated, including those involved in the PI3K-AKT, ERK1/2 and 
JAK/STAT signaling pathways, promoting cellular proliferation, sur-
vival and differentiation. PLX3397 (Pexidartinib) and PLX5622 are 
the most widely used CSF-1R inhibitors, with favorable tolerability 

profiles. Treatment with PLX3397, or PLX5622, causes effective 
depletion of microglia. PLX3397 also inhibits C-KIT, PDGFRα 
and FLT3. Consequently, in clinical practice, the broader effects of 
PLX3397 may cause adverse effects, including hair discoloration and 
hepatotoxicity. PLX5622 is a novel CSF-1R inhibitor with a higher 
selectivity. (-) indicate inhibitor-induced reduction in signaling 
through the respective pathways
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We have previously demonstrated that approximately 
95% of  CD11b+CD45lowLy6C−Ly6G− microglia can be 
effectively depleted after 21 days of PLX3397 treatment at a 
concentration of 290 mg/kg [69]. Withdrawal of these com-
pounds in mice causes a rapid microglial repopulation solely 
derived from surviving resident microglia, rather than from 
 Nestin+ stem cells [70]. Subsequently, there is an overshoot 
in repopulating microglial numbers, which become normal-
ized to the baseline level after 3 weeks [71]. Other studies 
have indicated that both chronic and transient depletion of 
activated (senescent) microglia by CSF1R inhibitors may 
exert beneficial effects in aging by reducing inflammation, 
metabolic decline [49] and by reversing the changes in hip-
pocampal neuronal complexity [71]. Importantly, the surviv-
ing resident microglia following CSF-1R inhibitor treatment 
have a remarkable capacity to regenerate the CNS and the 
newly repopulated microglia acquire a more homeostatic 
phenotype and can promote brain repair [27, 71, 72]. Thus, 
at least in mouse models of aging, CSF-1R inhibitors permit 
the elimination of activated microglia and their replacement 
by newly generated, more homeostatic microglia.

Inhibiting the CSF‑1R in AD

AD is the most common human neurodegenerative disease. 
Clinically, late-onset AD affects individuals over the age of 
65 years, with the prevalence of early-onset patients being 
relatively low [73]. The hallmarks of AD pathology are 
the presence of extracellular amyloid beta (Aβ) and intra-
neuronal accumulation of fibrillar tangles of abnormally 
phosphorylated Tau (pTau) protein in the brain [74, 75]. 
The accumulation of insoluble and highly phosphorylated 
tau species that are assumed to be pathologically relevant 
can be detected by phosphorylation-dependent antibodies 
such as AT8 (phospho-Ser202 and phospho-Thr205), PHF1 
(phospho-Ser396 and phospho-Ser404), and AT270 (phos-
pho-Thr181) and the staging of AD cases is based on the 
staining of pTau Ser202/Thr205 with the specific antibody 
AT8 [76].

A widely used AD model is the 5xFAD mouse [77], 
in which the expression of 5 human familial AD disease 
mutations is driven by the Thy1 promoter. In these mice, 
neuritic plaque deposition is evident at 2 months and neu-
ronal loss starts from 10 months of age [57, 78–80]. Other 
models include the APP/PS1 transgenic mice expressing 
 APPSwe and PS1 mutations, the 3xTg-AD mice expressing 
the  APPSwe, MAPT P301L and PSEN1 M146V transgenes. 
Models of AD tauopathy include the MAPT P301S mice, 
expressing the mutant form of human Tau, the TE4 knock-in 
mice, expressing Tau P301S and human ApoE4 and Tg4510 
mice, expressing the P301L mutation. Studies in these 
models indicate that neuroinflammation plays an important 
role in the pathogenesis of AD, with microglia enacting a 

primary role [81–83]. In addition, resolution of inflamma-
tion, a tightly regulated process mediated by specialized pro-
resolving lipid mediators to prevent over-responsiveness to 
tissue damage and infection, has been reported to be defec-
tive in AD patients [84, 85].

Mutations in APOE or TREM2 genes expressed in micro-
glia are strongly linked to an increased risk of developing 
AD [86–89]. Reactive/phagocytic microglia surround-
ing extracellular plaques promote Aβ plaque expansion 
[90]. In preclinical studies of AD, total or partial removal 
of microglia using CSF-1R inhibitors improved cognition 
(Table 1). Following CSF-1R inhibitor treatment, both a 
decrease [47, 58, 78, 91] and no change [57, 67, 92] in Aβ 
plaque load have been reported, respectively, and the effects 
on Tau pathology and phosphorylation were also variable. 
Microglial depletion at 4 or 6 months of age using PLX3397 
caused a remarkable reduction of AT8 + pTau in two dif-
ferent tauopathy mouse models [93]. In another study, the 
same inhibitor attenuated the progression of pTau and halted 
brain atrophy in TE4 mice [94]. However, administration 
of a comparable dose of PLX3397 in older (12-month-old) 
Tg4510 mice produced only a 30% reduction in microglia 
numbers and failed to elicit changes in Tau pathology and 
phosphorylation [95]. Regardless of the extent of microglial 
depletion, or effects on Aβ and Tau, most studies agree that 
treatment with CSF-1R inhibitors decreases inflammation 
in AD [57, 67, 78, 91, 92]. Together, these data indicate 
that activated microglia, rather than Tau or Aβ direct neu-
rotoxicity, mediate neurodegeneration in AD and suggest 
CSF-1R inhibitors as a potential therapeutic strategy in AD. 
However, since a small number of neurons, including mature 
forebrain cortical neurons and hippocampal neurons may 
express CSF-1R [96–98], the effects of CSF-1R inhibition 
on the accumulation of intraneuronal amyloid should also 
be investigated.

Interestingly, the effectiveness of microglial deple-
tion following CSF-1R inhibitors in AD varies between 
studies and brain regions. Unlike the near complete abla-
tion of microglia within a few days using PLX5622 in 
wild-type mice, microglial densities were depleted by 
only 30% in the subiculum and by 70% in the thalamus in 
5xFAD mice [91]. Consistently, following PLX5562 treat-
ment, deposited amyloid as assessed by immunostaining 
(6E10) was significantly decreased in the thalamus, where 
microglia were effectively removed, but not in the sub-
iculum [91], suggesting that a near complete depletion of 
microglia following CSF-1R inhibitor treatment, but not a 
modest reduction, may exert beneficial effects in preclini-
cal AD models (Table 1). Intriguingly, the presence of 
CSF-1R-inhibitor resistant microglia [99], associated with 
dense core plaques, was reported in the 5xFAD mouse 
model [57]. The factors contributing to the maintenance 
of these CSF-1R-inhibitor resistant microglia and their 
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Table 1  Overview of preclinical studies using CSF1R inhibitors for the treatment of AD

AD models CSF1R inhibitors The extent of  
microglial depletion

Main outcomes References

5xfAD mice
(10 months old)

PLX3397 (290 mg/kg)  ~ 80% Improved hippocampal-dependent memory 
deficits

Restored dendritic spine numbers
Reduced inflammation-related gene expression
Prevented neuronal loss

[57]

5xfAD mice
(4 months old)

PLX5622 (1200 mg/kg) Greater than 50% Reduced plaque burden
Reduced inflammatory transcripts and cytokines
Enhanced neuritic dystrophy

[91]

5xfAD mice
(2 months old)

PLX3397 (290 mg/kg)  ~ 70–80% Inhibited the accumulation of intraneuronal 
amyloid

Inhibited the formation of neuritic plaques
Improved behavioral performance
Decreased the levels of pre-fibrillar oligomers in 

the plasma and brain

[78]

APP/PS1 mice
(6–9 months old)

GW2580 (75 mg/kg) Less than 50% Inhibited abnormal microglial proliferation
Prevented behavioral deficits
Prevented synaptic degeneration
Did not alter the levels of amyloid

[92]

3xTg-AD mice
(15 months old)

PLX5622 (300 mg/kg)  ~ 30% Improved hippocampal-dependent memory 
deficits

Prevented microglial association with plaques
Did not alter the levels of plaque loads

[67]

APP/PS1 mice
(12 months old)

PLX5622 (1200 mg/kg)  ~ 70% Reduced main elements of the leukotriene syn-
thesis pathway

Decreased mRNA levels of Alox5 and Alox5ap
Decreased mRNA levels of Cysltr1 in the hip-

pocampus and cortex

[83]

Tg4510 mice
(12 months old)

PLX3397 (290 mg/kg)  ~ 30% Did not change Tau pathology and phosphoryla-
tion

No significant changes of neuron loss after treat-
ment

No significant changes of blood vessel after treat-
ment

[95]

P30IS mice
(8 months old)

JNJ-40346527 (JNJ-527)
(30 mg/kg)

 ~ 40% Decreased the expression of proinflammatory 
cytokines

Prevented motor neuron degeneration
Reduced neuronal death

[53]

5xfAD mice
(9 months old)

PLX3397
(50 mg/kg, oral gavage)

42% Alleviated Aβ pathology in the cortex and hip-
pocampus

Increased the expression of synapse-related 
protein

Rescued dopaminergic signaling

[47]

TE4 mice
(6 months old)

PLX3397 (400 mg/kg) ∼100% Rescued the brain volume loss
Reduced ptau levels
Recued soluble apoE level in TE4 mice

[94]

AAV-GFP/tau-injected 
mice (4 months) and 
PS19 mice

(3.5 months)

PLX3397 (290 mg/kg) 86% Inhibited tau propagation in the dentate gyrus [93]

5xFAD mice
(1.5 months)

PLX5622 (1200 mg/kg) 97–100% Reduced plaque number and volume
Prevented the downregulation of synaptic genes 

in the hippocampus

[58]
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functional role in neurodegenerative diseases should be 
investigated.

Inhibiting the CSF‑1R in PD

After AD, PD is the second most prevalent neurodegenera-
tive disease worldwide and it is characterized by progres-
sive degeneration of dopaminergic neurons in the substantia 
nigra of the midbrain [100]. Most PD patients develop their 
clinical symptoms over the age of 60 and some cases can be 
caused by mutations in genes, including PRKN, SNCA and 
LRRK2 [101, 102]. The significant loss of dopamine leads 
to classical idiopathic PD disease-like movement problems. 
Apart from typical clinical manifestations including rigid-
ity, bradykinesia, resting tremors and postural instability, 
patients with PD also suffer from non-motor symptoms such 
as mood and sleep disorders [103]. PD is viewed as a multi-
system disorder with complex mechanisms developing with 
disease progression. Levodopa is the gold-standard symp-
tomatic treatment for PD. Most patients may experience 
motor complications after long-term treatment. Alternative 
potential therapeutic strategies to treat PD represent a cur-
rent unmet medical need.

Neuroinflammation mediated by glial cells plays a piv-
otal role in the pathogenesis of PD and immune-targeted 
therapeutic strategies for treating PD are currently being 
tested [104]. Microglial functions are tightly controlled by 
neuronal activity and neurotransmitters secreted by healthy 
neurons [105, 106]. The death of dopaminergic neurons 
may cause microglia to lose their physiological functions 
and develop a pathological microglial phenotype [107]. 
The increased microglial activation measured by posi-
tron emission tomography (PET) during early PD disease 
stages has been reported to be inversely correlated with 
the loss of dopamine terminals [108]. Furthermore, persis-
tent and uncontrolled stimuli, such as the accumulation of 
α-synuclein, also contribute to chronic neuroinflammation 
[109]. Microglia carrying PD genetic variants may fail to 
degrade cell debris, unfolded proteins and dying neurons due 
to endolysosomal impairments and dysfunctional phagocy-
tosis [110]. Collectively, emerging evidence suggests that 
microglia can be targeted pharmacologically to prevent or 
delay PD [111, 112].

In a preclinical model of PD induced by stereotaxic 
injection of 6-hydroxydopa (6-OHDA), PLX3397 treat-
ment at a concentration of 30 mg/kg initiated 7 days after 
the neurotoxic insult exerted a neuroprotective influence 
[113]. Specifically, both motor function and depressive-like 
behavior were alleviated following PLX3397 treatment, as 
measured by the adhesive removal test and forced swim 
test, respectively [113]. Strikingly, functional PET imaging 
demonstrated that PD rats treated with PLX3397 exhibited 
a lower uptake of radioactive translocator protein, a marker 

for neuroinflammation and glial activation, than did the PD 
group [113]. Although there are minor changes of dopa-
mine transporters in PD rats following PLX3397 treatment, 
an increased tracer uptake was recorded in the treatment 
group as measured by dopaminergic and glutamatergic PET 
[113]. These results indicated that the therapeutic effects 
of CSF-1R inhibitors in PD can be achieved by reducing 
proinflammatory mediators. However, in another study of 
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD 
in mice, PLX3397-mediated depletion of microglia before 
the neurotoxic insult worsened locomotor performance and 
enhanced dopaminergic neurotoxicity and leukocyte infiltra-
tion, indicating a neuroprotective role of microglia in PD 
[62]. We propose that the differences in timing of micro-
glial depletion (i.e. before, or after the injury of the dopa-
minergic system) might explain some of these described 
discrepancies.

The long-term safety and efficacy of CSF-1R inhibitors in 
PD remain to be further explored. If the dynamics of micro-
glial responses during the initiation and progression in PD 
can be better understood, reactive microglia may then be 
targeted using CSF-1R inhibitor treatment within an appro-
priate time window.

Inhibiting the CSF1‑R in HD

HD is an autosomal dominant devastating neurodegenera-
tive disorder resulting from the abnormal CAG trinucleotide 
expansion (36 repeats or more) in exon 1 of the huntingtin 
(HTT) gene, encoding a long polyglutamine tract of the hun-
tingtin protein [114, 115]. The mean age at onset of typical 
HD symptoms is 30–50 years and disease onset is inversely 
correlated with the length of the CAG repeat [115]. Individ-
uals with HD usually experience late-manifesting movement 
disorders, cognitive decline, behavioral abnormalities and 
psychiatric disturbances [115]. HD patient-reported symp-
toms include emotional issues, fatigue, difficulty thinking 
and daytime sleepiness [116]. It is well established that the 
degeneration of the striatum and widespread cortical atro-
phy with neuronal loss are hallmarks of HD brain pathology 
[117]. It is also important to note that neurodevelopment can 
be affected in the context of HD [118]. This finding was sup-
ported by abnormal HTT being mis-localized in the embryo, 
disrupting neuroepithelial junctional complexes and then 
shifting neurogenesis towards the neuronal lineage [118].

There are no effective treatments for HD, but modulation 
of immune activation to prevent or delay HD has recently 
attracted considerable attention [119, 120]. Neuroinflam-
mation has a role in the pathogenesis of HD. Specifically, 
the presence of reactive microglia was noted in the stria-
tum and cortex of HD human brains [117]. Furthermore, 
microglial activation was evident even before HD symp-
tom onset, suggesting that these cells play an essential role 
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in the progression of HD [121]. Indeed, neuronal mutant 
HTT (mHTT)-mediated neurotoxicity has been linked to 
increased numbers of microglia with a reactive phenotype, 
subsequently leading to cell death [117]. Cell-autonomous 
mechanisms induced by the intrinsic mutant protein also 
play a contributory role in HD-related microglial activation 
[122]. However, microglia have also been reported to sup-
press inflammation and to preserve neuronal function in the 
HD brain [117].

The role of CSF-1R-dependent microglia in HD has been 
explored in transgenic R6/2 mice expressing the human 
HTT gene containing more than 100 CAG repeats [123]. 
These mice experience progressive motor and behavioral 
abnormalities starting at 7 weeks of age. Increased  Iba1+ 
microglial densities are evident in specific brain regions 
[123]. Sustained PLX3397 treatment at a concentration of 
275 mg/kg starting at week 6 in R6/2 mice, significantly 
attenuated HD-related grip strength and object recognition 
deficits and normalized their dysregulated interferon gene 
signature [123]. Furthermore, PLX3397 treatment reduced 
the accumulation of mutant huntingtin (mHTT) by decreas-
ing the numbers of intranuclear mHTT inclusion bodies in 
the striatum, without exerting significant influences on HTT 
gene expression. In addition, following sustained treatment, 
significant striatal volume loss was inhibited, independent 
of  NeuN+ density changes and abnormal accumulation of 
chondroitin sulphate proteoglycans, primary components 
of glial scars, was significantly attenuated in the striatum, 
cortex and hippocampus [123].

Emerging data suggests that systemic administration of 
CSF-1R inhibitors at a relatively high dose exerts crucial 
influences on peripheral tissue macrophages [124, 125]. It 
is therefore possible that attenuation of HD disease-related 
behavioral functions in R6/2 mice following long-term 
PLX3397 treatment could at least in part be attributed to 
a decreased number of muscle macrophages. Collectively, 
these results suggest that targeting CSF-1R would be ben-
eficial in HD. However, there are several shortcomings 
associated with the use of genetically modified small animal 
models to model the complex pathogenesis of HD. Small 
animal models fail to mimic the selective cortical and striatal 
neurodegeneration caused by ubiquitously expressed mHTT 
and striking neurodegeneration is not evident in transgenic 
mice expressing small N-terminal Htt repeats [126]. In addi-
tion, HTT may function differently in small and large animal 
brains. The HD monkey model exhibits clinical symptoms, 
including dystonia and chorea, and pathogenic features, 
including nuclear inclusions and neuropil aggregates, which 
are lacking in the transgenic mice generated using the same 
approach [127]. A novel huntingtin knock-in pig model 
[128] may serve as an important tool to validate the promis-
ing findings achieved using CSF-1R inhibitors in the rodent 
model of HD.

Other approaches using human materials such as biopsy- 
or iPSC-derived microglia and monocyte-derived microglia-
like cells [129] may also help us to better understand the 
pathogenesis of HD in the future.

Inhibiting the CSF‑1R in ALS

ALS is a rapidly progressive neurodegenerative disorder 
with limited treatment options, caused by genetic and non-
inheritable components that lead to significant loss of upper 
and lower motor neurons in the brainstem, motor cortex and 
spinal cord, and ending with respiratory muscle dysfunction 
[130]. ALS usually develops between the ages of 40 and 70. 
A variety of genes including superoxide dismutase 1 (sod1), 
transactive response DNA-binding protein 43 (tdp-43) and 
chromosome 9 open reading frame 72 (c9orf72) have been 
linked to the pathogenesis of ALS [131]. Transgenic rodent 
models expressing these genes can develop an ALS-like 
disease and  SOD1G93A mice are commonly used to explore 
ALS pathogenesis [132]. ALS is a heterogeneous illness 
involving oxidative stress, impaired autophagy, dysfunc-
tional mitochondria and misfolding of proteins [133–135].

Although ALS is not initiated by inflammatory responses, 
neuroinflammation mediated by reactive glial cells and infil-
trating leukocytes is increasingly recognized as a prominent 
pathological feature of ALS [131, 136, 137]. In support of 
this, widespread microglial activation as measured by PET 
is evident in ALS [138] and changes of microglial genes 
may occur before motor neuron damage [139]. Activated 
microglia have also been suggested to serve as a potential 
source of aberrant extracellular microRNAs contributing to 
neurodegeneration in ALS [140]. In addition, circulating 
monocytes from individuals with ALS are skewed towards 
a pro-inflammatory state [141]. Thus, efforts to reverse dys-
functional myeloid cells in ALS represent a potential thera-
peutic goal.

A pioneering study has indicated that treatment with 
the CSF-1R inhibitor GW2580 has beneficial effects in 
 SOD1G93A mice [142]. In this model, increased expression 
of CSF-1R and CSF-1, but not IL-34, was recorded in the 
spinal cord during pathogenesis [142]. GW2580 treatment 
through oral gavage starting from 8 weeks of age signifi-
cantly depleted activated microglia and attenuated ALS-
related motor deficits, as measured by rotarod testing and 
treadmill tests [142]. Strikingly, treatment with the CSF-1R 
inhibitor significantly increased the survival of  SOD1G93A 
mice, extending the maximal lifespan by 12% [142]. 
GW2580 treatment also reduced the numbers of circulating 
monocytes and their influx into the tibial nerve in  SOD1G93A 
mice, suggesting that peripheral immunity also plays a role 
in ALS [142]. Indeed, suppression of pro-oxidative func-
tion in the peripheral myeloid cells of  SOD1G93A mice (by 
genetic targeting of Nox2 or overexpression of wild-type 
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human SOD1) reduced the proinflammatory activation of 
microglia, delayed symptoms and increased survival [143]. 
In summary, CSF-1R inhibition may slow the disease pro-
gression of  SOD1G93A mice by targeting both central and 
peripheral immunity.

However, the  SOD1G93A mouse model only recapitu-
lates a small subpopulation of ALS patients, with > 90% 
patients developing sporadic disease [139]. Additional 
investigations are thus needed to validate the beneficial 
outcomes of CSF-1R inhibitor treatment in ALS. Impor-
tantly, an open-label phase 2 clinical trial investigating the 
safety and tolerability of the CSF-1R inhibitor BLZ945 in 
patients with ALS is ongoing (ClinicalTrials.gov, identi-
fier: NCT04066244).

Inhibiting the CSF‑1R in MS

MS is a chronic demyelinating disease, with inflammation 
being the predominant neuropathological feature during 
the early course-relapsing–remitting disease phase [144]. 
It is well accepted that major differences exist between 
relapsing–remitting and primary progressive MS, but there 
are no clear clinical, radiological or biological bounda-
ries of MS phenotype separation. Recently, a novel objec-
tive automatic classifier has been proposed using clinical 
information for assessing the MS phenotype, yielding a 
relatively high accuracy [145] that may be beneficial for 
further research. Progressive types of MS are character-
ized by irreversible accumulation of neurological disabil-
ity which is mainly driven by neurodegeneration [146]. 
Individuals with primary progressive MS are usually diag-
nosed after the age of 40. Although it declines with age, 
neuroinflammation is still evident in some progressive MS 
individuals with clinical or radiological evidence of dis-
ease activity [147, 148]. Chronic activation of microglia 
contributes to neuroinflammation and neurodegeneration 
in MS [149]. In support of this, widespread abnormal glial 
activation was observed in progressive MS, as measured 
by 18F-PBR06 PET imaging [25, 150].

Levels of CSF-1R and its ligand, CSF-1, in CNS tissues 
are significantly increased in both preclinical mouse models 
and in MS patients [16]. Strikingly, selective inhibition of 
CSF-1R using a CNS-penetrant small molecule inhibitor, 
sCSF-1Rinh, markedly attenuated disease severity, particu-
larly during disease progression, in the preclinical models, 
mainly by reducing neuroinflammation, axonal degenera-
tion and the production of proinflammatory cytokines [16]. 
Consistently, pharmacological depletion of microglia using 
another CSF-1R inhibitor (BLZ945) in the murine cuprizone 
model of demyelination effectively enhanced remyelination 
in a brain region-specific manner [50]. These beneficial 
effects on remyelination and disease recovery following the 
inhibition of CSF-1R have been reproduced in later studies 

using two other inhibitors (PLX3397 or PLX5622) [151, 
152]. Thus, inhibiting CSF-1R in progressive MS popula-
tions during an early disease stage is an attractive treatment 
option.

Potential side effects following CSF‑1R 
inhibitor treatment

Adverse effects in CNS development 
and homeostasis

Microglia play a well-documented role in regulating synapse 
development and connectivity [153]. Removing microglia 
using CSF-1R inhibitors during critical neurodevelopmental 
periods could cause potential side effects. For example, elimi-
nation of microglia using PLX5622 beginning at embryonic 
day 3.5 (E3.5) and ending at E15.5 increased the numbers of 
active cleaved Caspase  3+ apoptotic cells in the developing 
hypothalamus [154] and produced female-specific long-term 
behavioral alterations, with juvenile mice becoming hyperac-
tive and adult mice exhibiting anxiolytic-like behavior [154]. 
Notably, mouse pups exposed to PLX5622 in utero also suf-
fered from craniofacial and dental defects due to non-CNS 
effects on macrophages and osteoclasts [154].

CSF-1R inhibition might also be harmful during the early 
postnatal period. Two-week PLX3397 treatment starting at 
postnatal day 14 significantly increased dendritic spine den-
sity in the primary visual cortex, and changed spontaneous 
synaptic activity, subsequently disrupting cortical plasticity 
[155]. These results indicate that CSF-1R inhibitor treatment 
during development may alter functional connectivity in the 
CNS. In addition, treatment of mice with BLZ945 during the 
early postnatal period dramatically reduced the number of oli-
godendrocyte progenitors [5].

Importantly, detrimental effects of CSF-1R inhibition in 
adults have also been reported. Acute genetic microglial deple-
tion in adult mice leads to neurodegeneration in the soma-
tosensory system, associated with a type I interferon signature 
[156]. Transient PLX5622-mediated depletion of microglia in 
adult mice impaired the integration of adult-born granule cells 
in the olfactory bulb circuit and caused reduced odor-evoked 
responses [157] and ablation of microglia might cause seizures 
by influencing the activity of neurons [106]. Furthermore, 
PLX3397 or PLX5622 treatment reduces the numbers of 
PDGFRα+ or  NG2+ oligodendrocyte progenitor cells, but not 
of mature oligodendrocyte cells [158]. Furthermore, admin-
istration of CSF-1R inhibitors to adult mice causes significant 
loss, not only of microglia, but also of ~ 60% of brain-resident 
perivascular macrophages [159].

In summary, potential side effects of CSF-1R inhibitor 
treatment should be carefully considered, particularly during 
organogenesis and neurodevelopment.
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Non‑CNS effects

Administration of anti-CSF-1 antibody to mice during the 
first 60 days of life induces phenotypes similar to those 
reported in CSF-1- and CSF-1R-deficient mice, includ-
ing decreased growth rate osteopetrosis associated with 
decreased osteoclast numbers and decreased macrophage 
densities in bone marrow, liver, dermis, synovium and 
kidney and decreased adipocyte size in the adipose tissue 
[160]. Administration of CSF-1R inhibitors to adult mice 
also affects monocyte maturation and causes the loss of sev-
eral peripheral tissue macrophages including those present 
in the liver, spleen and sciatic nerves [64, 161]. Further-
more, both PLX5622 and PLX3397 significantly reduced 
numbers of circulating  Gr1low  (Ly6C−) monocytes [125]. 
Consistent with its broader specificity, PLX3397 treat-
ment at a dose of 400 mg/kg markedly altered the blood 
cell composition by decreasing the numbers of red blood 
cells, hemoglobin, platelets, and dendritic cells [94]. CSF-
1R inhibitors also exert important effects on trabecular bone 
density in adult mice [162]. The potential peripheral con-
sequences following CSF-1R inhibitors should be carefully 
considered.

Of disease and translational research relevance, another 
major concern would be the toxicity of long-term thera-
peutic administration of CSF-1R inhibitors. In 2019, Pex-
idartinib (PLX3397) was approved by the Food and Drug 
Administration (FDA) for the treatment of selected adult 
individuals with tenosynovial giant cell tumors (a connec-
tive tissue disease driven by CSF-1 in an autocrine man-
ner) [163, 164]. The recommended oral dose is 400 mg 
twice per day in clinical practice. In a phase 3 clinical 
trial several adverse events following more than 20 weeks’ 
Pexidartinib treatment were reported [164], the most com-
mon of these being hair discoloration (67%) [163]. We 
and others have noted similar phenomena in preclinical 
mouse models treated with PLX3397 [69, 165]. It was 
suggested that changes of hair color might be attributed 
to the inhibition of C-KIT [163]. Importantly, Pexidartinib 
may also cause hepatotoxicity such as reversible raised 
levels of alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) due to effects on Kupffer cells, 
the resident macrophages in the liver [163]. All cases 
were reversible upon discontinuation of the drug without 
functional liver damage or structural damage to hepato-
cytes [54]. It is important to note that CSF-1R inhibitors 
are usually supplied via the diet in preclinical research 
settings [71]. It was shown that food intake (either high 
or low-fat) altered exposure as well as pharmacokinetics. 
Furthermore, it was suggested that these alterations could 
be alleviated by taking the drugs on an empty stomach or 
a few hours after a meal [166].

Risk profiles

A study reporting that microglial depletion using PLX5622 
in a mouse model of prion disease resulted in prion accu-
mulation and acceleration of disease [167], raises concerns 
that CSF-1R inhibitors may exacerbate prion diseases, such 
as Creutzfeldt-Jakob disease (CJD), fatal familial insomnia 
(FFI) or Gerstmann-Sträussler-Scheinker disease (GSS).

CSF-1R inhibitors may also cause or exacerbate patho-
genic infection of the CNS. Blocking CSF-1R selectively 
inhibited Th2 memory function in a mouse model of chronic 
asthma [168]. Other preclinical studies indicate deleterious 
effects of CSF-1R inhibition in viral infections. Infection 
of Theiler’s murine encephalomyelitis virus (TMEV) in 
C57BL/6J mice, a preclinical model of spontaneous recur-
rent seizures, is typically cleared within 14 days. However, 
TMEV infection in mice depleted of microglia following 
treatment with PLX5622 leads to fatal viral encephalitis, 
even after infection with low viral loads [169]. Similarly, in 
mice infected with a neurotropic strain of mouse hepatitis 
virus (a group 2 coronavirus), PLX5622 treatment delayed 
clearance of the virus and increased viral protein load in 
neurons [170] and herpes simplex virus 1 infection in mice 
in which the CSF-1R was conditionally deleted decreased 
survival rate and the ability to control the viral replica-
tion [171]. These results suggest that the use of CSF-1R 
inhibitors might suppress the antiviral response of the CNS 
[169, 170] and poses a challenge for clinical management 
of patients and care settings, particularly during the current 
COVID-19 pandemic [172].

Concluding remarks

Despite promising results from preclinical studies with CSF-
1R inhibitors, we are still facing the challenge of translat-
ing these findings into clinical practice. The failure of anti-
inflammatory treatments involving global elimination of 
microglia in neurodegenerative diseases, suggests that dys-
functional microglia might need to be targeted in a spatio-
temporally controlled manner. This approach would require 
investigation of their heterogeneity and functional plasticity 
in different stages of the disease. CSF-1R inhibitors were 
mostly tested in preclinical studies during a pre-symptomatic 
period, or even before onset. However, most patients with 
neurodegenerative diseases might not be identified until an 
advanced disease stage. From a clinical perspective, more 
investigations should be performed at distinct disease stages 
(e.g. early versus late) to provide convincing evidence of 
efficacy. CSF-1R inhibition should be attempted in rela-
tively old (> 6 months of age) rather than young mice. Fur-
thermore, potential off-targets effects need to be addressed, 
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especially in studies involving the oral administration of 
CSF-1R inhibitors.
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