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induced analgesia in a rat model of trigeminal
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Abstract

Backgrouds: ATP and P2X receptors play important roles in the modulation of trigeminal neuropathic pain, while

the role of G protein-coupled P2Y2 receptors and the underlying mechanisms are less clear. The threshold and

frequency of action potentials, fast inactivating transient K+ channels (IA) are important regulators of membrane

excitability in sensory neurons because of its vital role in the control of the spike onset. In this study, pain behavior

tests, QT-RT-PCR, immunohistochemical staining, and patch-clamp recording, were used to investigate the role of

P2Y2 receptors in pain behaviour.

Results: In control rats: 1) UTP, an agonist of P2Y2/P2Y4 receptors, caused a significant decrease in the mean threshold

intensities for evoking action potentials and a striking increase in the mean number of spikes evoked by TG neurons.

2) UTP significantly inhibited IA and the expression of Kv1.4, Kv3.4 and Kv4.2 subunits in TG neurons, which could be

reversed by the P2 receptor antagonist suramin and the ERK antagonist U0126. In ION-CCI (chronic constriction injury

of infraorbital nerve) rats: 1) mRNA levels of Kv1.4, Kv3.4 and Kv4.2 subunits were significantly decreased, while the

protein level of phosphorylated ERK was significantly increased. 2) When blocking P2Y2 receptors by suramin or injection

of P2Y2R antisense oligodeoxynucleotides both led to a time- and dose-dependent reverse of allodynia in ION-CCI rats.

3) Injection of P2Y2 receptor antisense oligodeoxynucleotides induced a pronounced decrease in phosphorylated ERK

expression and a significant increase in Kv1.4, Kv3.4 and Kv4.2 subunit expression in trigeminal ganglia.

Conclusions: Our data suggest that inhibition of P2Y2 receptors leads to down-regulation of ERK-mediated

phosphorylation and increase of the expression of IA–related Kv channels in trigeminal ganglion neurons, which

might contribute to the clinical treatment of trigeminal neuropathic pain.
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Introduction

Trigeminal neuropathic pain disorders, as typical, atyp-

ical, or post-therapeutic trigeminal neuralgias, are pain

that is either spontaneous or can be elicited by harmless

but crucial activities, such as eating and talking, or by

light touch to facial skin [1]. The current treatments do

not provide long-lasting relief for these frequently

treatment-refractory patients due to a limited under-

standing of their pathophysiology. Chronic constriction

nerve injury (CCI) has characteristics of inflammation

and nerve injury [2,3]. Previous studies using a chronic

constriction nerve injury model of the infraorbital nerve

(ION-CCI) have reported it to be a good model that

mimics trigeminal neuralgia of humans [4-7]. The major

pathologic changes for trigeminal neuralgia are axonal

loss and demyelination in trigeminal root [8]. Constrict-

ive infraorbital nerve injury like constrictive sciatic nerve

injury induces demyelination as sources of pathological

ectopic firing accompanying mechanical allodynia and

heat hyperalgesia [4].
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Adenosine 5′-triphosphate (ATP) and uridine 5′-tri-

phosphate (UTP) are released from cells as a conse-

quence of tissue injury and mediate their bio-effects

through binding to a large group of cell surface recep-

tors of both P2X or P2Y receptor families [9]. There

were early hints that ATP might be involved in pain, in-

cluding the demonstration of pain produced by injection

of ATP into human skin blisters [10,11]. In trigeminal

ganglion (TG) neurons, the highly selective distribution

of P2X3 and P2X2/3 receptors within the nociceptive sys-

tem has suggested a potential role for ATP as a pain me-

diator [12,13]. Expression of P2Y1, 2, 4, and 6 receptors

has also been reported in TG neurons [14]. P2Y2 receptors

are typically expressed on small, nociceptive neurons [15].

In vitro studies have demonstrated that co-activation of

P2Y2 receptors and TRPV channels by ATP could underlie

ATP-induced pain [16]. UTP, a selective agonist for P2Y2

and P2Y4 receptors, activates cutaneous afferent fibers

[17], mediates excitation of dorsal root ganglion (DRG)

neurons [18] and sensitizes mouse bladder sensory neu-

rons [19]. These results suggest that UTP may be an en-

dogenous nociceptive messenger. However, in vivo studies

have shown that UTP significantly alleviates mechanical

allodynia in a neuropathic pain model [20,21]. However,

the effect of activation of P2Y2 receptors on neuropathic

pain is not clear and requires further study.

Multiple types of voltage-gated ion channels are re-

lated to neuronal excitability, such as voltage-gated K+

(Kv) channels, which are important regulators of mem-

brane potentials and action potentials in nociceptive

sensory neurons [22,23]. In rat small TG neurons, Kv

currents have been divided into three types: slow inacti-

vating transient K+ current (ID), fast inactivating transi-

ent K+ current (IA) and dominant sustained K+ current

(IK) [24]. IA is particularly important in the control of

the spike onset, the threshold of the action potential fir-

ing, and the firing frequency [25]. Many studies have

shown that the Kv1.4, Kv3.4, Kv4.2, and Kv4.3 subunits

contribute to the IA channels in DRG neurons [26-28],

which suggests that IA has the ability to regulate the

neuronal activity of nociceptive neurons. After sciatic

nerve injury, the expression of Kv1.4 was decreased in

small-diameter DRG neurons [28]. Another study showed

that activation with the GABAB receptor agonist baclofen

inhibited the excitability of TG neurons, which was medi-

ated by potentiation of both IA and IK in rat small-

diameter TG neurons [29]. IA, IK and the total K+ currents

were significantly reduced in rats with inferior alveolar

nerve transection and ION-CCI [3,30]. A recent report

demonstrated that P2Y2 receptors mediate an excitation

of DRG neurons through inhibition of KV7 channels [18].

In this study, we hypothesize that activation of P2Y2

receptors might mediate trigeminal neuropathic pain

through regulating the expression and function of Kv1.4,

Kv3.4, Kv4.2, and Kv4.3 subunits. We have used pain be-

havior tests, quantitative reverse transcription–polymerase

chain reaction analysis (QT-RT-PCR), immunohistochem-

ical staining and patch-clamp recording to investigate the

role of P2Y2 receptors in pain behavior, excitability of TG

neurons, and modulation of IA channels in rats.

Materials and methods

Animals

Experiments were performed on male Sprague–Dawley

rats weighing 200–250 g. Rats were kept under standard

laboratory conditions with food and water ad libitum.

They were housed three per cage and maintained on a

12:12 h light: dark schedule at a constant ambient

temperature (24 ± 1°C). All experimental procedures

were approved by the Institutional Animal Care and Use

Committee at the Second Military Medical University.

Drugs and drug administration

ATP, α,β-methylene-ATP (α,β-meATP), 2-methylthio

ADP (2-MesADP), UTP, suramin, U0126 and TEA were

purchased from Sigma-Aldrich (St. Louis, MO). Fluoro-

Gold was purchased from Biotium (Hayward, CA). For

electrophysiology and RT-PCR, ATP, UTP, α,β-meATP,

2-MesADP, suramin and U0126 were dissolved in dis-

tilled water to 10 mM, and then diluted to the final con-

centration (details see the Results). For animal behavioral

tests, suramin was diluted in distilled water to 150 μg/

50 μl and 15 μg/50 μl and injected only once per dilu-

tion, respectively. P2Y2 receptor antisense oligodeoxynu-

cleotides (AS-ODN) was dissolved in water to 15 μg/

50 μl and usually injected every 12 h within a 48 h

period.

For animal behavioral tests, we performed a peripheral

target injection to the TG via the infraorbital foramen as

described previously by Neubert [31]. Briefly, at day 9

after surgery, rats were anaesthetized with diethyl ether.

A sterile stainless steel needle was inserted medial (1–

2 mm) to the palpated portion of the zygomatic process

through the infraorbital foramen. The needle was posi-

tioned at ~10° angle relative to the midline of the head.

The tip of the needle was advanced approximately

20 mm along the infraorbital canal and subsequently

through the foramen rotundum, then the corresponding

drugs were injected. The mechanical pain threshold was

then determined every 5 min or 12 h after injection.

P2Y2 receptor antisense oligodeoxynucleotides (AS-ODN)

P2Y2 receptor AS-ODN was purchased from Invitrogen

Company. Oligonucleotides to rats P2Y2 were synthesized

and purified by Integrated DNA Technologies (ADT). The

sequence was as follow: antisense 5′-CCAGGAGTCC

AGGCCTGCTGCCATTGCC-3′. The sequences were

checked for uniqueness using the National Center for
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Biotechnology Information’s Local Alignment Searchtool

(BLAST) based on a previous study [32].

Surgery and behavior test

Chronic constriction injury of the infraorbital branch of

trigeminal nerve (ION-CCI) and sham surgery

Rats underwent CCI of the right ION as previously de-

scribed [3]. Briefly, rats were anaesthetized with sodium

pentobarbital (50 mg/kg i.p.) and a small incision (ap-

proximately 5 mm) was made at the juncture between

the zygomatic arch and nasal bone, under the right eye.

The muscle was dissected to exposure the infraorbital

branch of the TG nerve until it was clearly visible

through the incision and two ligatures (4–0 chromic cat-

gut) were loosely tied (with about 2 mm spacing) around

it. The loose ligature method was used according to the

procedure developed by Imamura et al. [33]: the liga-

tures reduced the diameter of the nerve by a just notice-

able amount and retarded, but did not interrupt the

circulation through the superficial vasculature. The inci-

sion was sutured with 1.0 silk. Sham-operated rats were

treated identically, but no ligatures were applied to the

ION. All operations were performed aseptically. After

surgery, all rats were maintained in a warm room until

they recovered from anesthesia and no antibiotics were

administered.

Behavior test

Rats were allowed to acclimate for at least 3 days before

use in experiments. All the experiments were carried out

between 9:00 and 14:00 in the animal housing room. Be-

fore each testing session, animals were placed in individ-

ual plastic cages and left to adapt to the environment for

at least 15 min. The mechanical pain threshold was

tested one day before and every three days after surgery

in the two groups. In accordance with our previous

study, we injected drugs and performed behavior tests at

day 9 after surgery when the mechanical pain threshold

of rats was lowest. Each rat received drugs only once

and was used in only one experiment. The mechanical

pain threshold (PWT) was determined with a rigid von

Frey filament coupled with a force transducer (Electro-

vonfrey, model no: 2391, IITC Inc. Woodland Hills,

CA), as previously described [34]. Stimuli were applied

within the ION territory, around the center of the vibris-

sal pad, on the hairy skin surrounding the mystacial vi-

brissae, ten consecutive times with 2 s each time at 30-

sec intervals on the nerve-injured side [35]. The PWT

was considered as the lowest force of the filaments that

produced a brisk head withdrawal, touching or scratch-

ing the facial regions upon mechanical stimulation [35].

The mechanical pain threshold were measured every

5 min or 12 h following drug administration. The

persons conducting the behavioral measurements were

blind to the treatments.

Retrograde labeling of TG neurons innervating the

facial skin

TG neurons innervating the facial skin were identified

for electrophysiology and immunohistochemistry using

the fluorogold (FG)-labeling method [36]. A FG solution

(2% in distilled water, 50 μl) was injected into the facial

skin in the bilateral region of the whisker pad using a

31-gauge microsyringe.

Cell culture

Control male Sprague–Dawley rats were used for patch-

clamp recording and RT-PCR analysis. Rats were decapi-

tated and bilateral TG were rapidly removed, de-sheathed,

cut and incubated in 2 ml Ca2+- and Mg2+-free Hanks’

balanced salt solution with 10 mM HEPES buffer (pH 7.4)

(HBSS; Life Technologies) containing 1.5 mg/ml collage-

nase (Class II, Worthington Biochemical Corporation,

UK) and 6 mg/ml bovine serum albumin (Sigma Chemical

Co., Poole, UK) at 37°C in a shaking bath (170 rpm) for

30 min. This was followed by incubation in 2 ml HBSS

containing 1 mg/ml trypsin (Sigma) at 37°C in a shaking

bath (170 rpm) for 10 min. The solution was replaced with

1 ml growth medium comprising L-15 medium supple-

mented with 10% bovine serum, 50 ng/ml nerve growth

factor, 0.2% NaHCO3, 5.5 mg/ml glucose, 200 i.u./ml peni-

cillin and 2 g/ml streptomycin. The ganglia were dissoci-

ated into single neurons by gentle mechanical trituration

and plated onto 35 mm Petri dishes coated with 10 μg/ml

laminin (Sigma) [37]. Cells were maintained at 37°C in a

humidified atmosphere containing 5% CO2. All neurons

were studied after 16 h removal from the animals. For RT-

PCR, cultured TG neurons were incubated in growth

medium without 10% bovine serum, in order to eliminate

glia cells.

Real-time quantitative reverse transcription–polymerase

chain reaction analysis

RNA extraction and RT-PCR

Total RNA was extracted using an RNeasy Mini Kit

(QIAGEN; Clifton Hill, Australia). RNA purity was de-

termined using a method of ultraviolet spectrophotom-

etry at a wavelength of 260–280 nm. 2 μg of total RNA

was reversely transcribed to complementary DNA in a

20 μl reaction mixture containing 1× reverse transcript-

ase buffer (15 mM MgCl2, 375 mM KCl, 50 mM DTT,

250 mM Tris–HCl, pH 8.3), 10 mM dNTP, 20 U RNase

inhibitor, 200 U M-MLV reverse transcriptase, and

50 ng of oligo (deoxythymidine)15 primer. Reaction time

was at least 1 h at 42°C. The cDNA was stored at −20°C

until real-time polymerase chain reaction (RT-PCR). All
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reagents, with the exception of the RNeasy Mini Kit,

were from Promega Corp. (Madison, WI).

Real-time RT-PCR

Quantitative RT-PCR amplification was performed with

SYBRGreen (Applied Biosystems; Scoresby, Australia)

using Roto-gene RG3000 (Australia) in a 20 μl reaction

mixture. The solution consisted of 1.0 μl diluted RT-

PCR product, 0.25 μM of each of the paired primers, and

10 μl real-time PCR SYBR Green Master Mix (QIAGEN,

Clifton Hill, Australia). RNA levels were measured with

specifically designed primers. That for Kv1.4 was: 5′-TTG

TGA ACG CGT GGT AAT AAA TGT GT-3′ (forward),

5′-GGC GGC CTC CTG ACT GGT AAT AAT A-3′ (re-

verse); for Kv3.4: 5′-CCA CGG GGC AAT GAC CAC

ACC-3′ (forward), 5′-ACA CAG CGC ACC CAC CAG

CAT TCC T-3′ (reverse); for Kv4.2: 5′-GCC GCA GCG

CCT AGT CGT TAC C-3′ (forward), 5′-TGA TAG CCA

TTG TGA GGG AAA AGA GCA-3′ (reverse); and for

Kv4.3: 5′-CTC CCT AAG CGG CGT CCT GGT CAT T-

3′ (forward), 5′-CTT CTG TGC CCT GCG TTT ATC

TGC TCT C-3′ (reverse) against the sequences down-

loaded from Genbank (accession no. X90651, 708–731

and 1126–1147). The PCR condition was 95°C for 2 min,

followed by 40 cycles of 95°C, 20 s; 65°C, 25 s; 72°C, 25 s

for Kv1.4, Kv3.4, Kv4.2, Kv4.3 and was 95°C for 2 min,

followed by 40 cycles of 95°C, 20 s; 63°C, 25 s; 72°C. RT-

PCR for the housekeeping gene β-actin was performed for

each sample. The primer for amplification of β-actin was:

ATGGTGGGTATGGGTCAGAAGG (forward); TGGCT

GGGGTGTTGAAGGTC (reverse). The absolute mRNA

level of target gene in each sample was calculated using a

standard curve and then by the ratio to β-actin in each

sample. The specificity of the primers was verified by

examining the melting curve as well as sequencing of the

QT-RT-PCR products. The melting curve of QT-RT-PCR

showed a single sharp peak for Kv1.4, Kv3.4, Kv4.2, Kv4.3

and β-actin PCR products. The lengths of PCR products

of Kv1.4, Kv3.4, Kv4.2, Kv4.3 and β-actin mRNA were 199,

134, 261, 108 bp and 265 bp, respectively.

Whole-cell patch clamp recording

Whole-cell patch-clamp recording was undertaken at

room temperature with an Axopatch 200B amplifier

(Axon Instruments, Foster City, CA, USA). Membrane

potential held at −60 mV, signals were filtered at 2 kHz

(−3 dB frequency, Bessel filter, 80 dB per decade), then

digitized at 10–50 kHz (Digidata 1320A interface, Axon

Instruments). The leak current was subtracted from the

potassium currents using Clampfit programs. Patch

electrodes had resistance of 2–5 MΩ. For voltage-

recordings, the pipette solution contained the following

(in mM): K gluconate 120, KCl 10, NaCl 5, MgCl2•6H2O

2, CaCl2•2H2O 1, HEPES 10, EGTA 11, Mg-ATP 2, Li-

GTP 1 (pH adjusted to 7.4 with KOH). The external so-

lution contained (in mM): NaCl 145, KCl 3, CaCl2•2H2O

1, MgCl2•6H2O 2, HEPES 10, glucose 10, (pH adjusted

to 7.4 with NaOH). Test solutions bathing the cytoplas-

mic face of the patch membrane contained (in mM):

NMDG 145, TEA 25, KCl 3, MgCl2•6H2O 0.6, CdCl2 1,

CaCl2•2H2O 2.5, HEPES 10, glucose 10 (pH adjusted to

7.4 with tris-base and 300 mOsM). CdCl2 was included

to block voltage-gated calcium channels. NMDG and

TEA were included to reduce currents from voltage-

gated sodium channels, IK currents, hyperpolarization-

activated cation channels, and capsaicin-induced inward

currents [27,38]. A protocol was used as previous de-

scribed [39], briefly, a pre-pulse (−120 mV, 100 ms) was

followed by test pulses (400 ms) from −60 to +60 mV

with 10 mV increments, and only those cells that exhib-

ited minimal outward currents during the pre-pulse

were analyzed. For current-recordings, action potentials

were recorded under current-recordings. During a 400-

ms injection of a positive current (ranging from −40 to

450 pA), a single action potential could be evoked, de-

pending on the type of neuron (Aβ-, Aδ- and C-units)

[3], for example Aδ-units were frequently encountered

at a later period after ION-CCI. Cultured TG neurons

with soma diameters ranging from 18 to 39 μm were

used for action potential recording, for they are consist-

ent with nociceptive Aδ- and C-neurons [39]. Those

neurons with retrograde labelling were used for IA re-

cording. The amplitude of the IA was measured at the

peak. Whole-cell current–voltage (I-V) curves for indi-

vidual neurons were generated by calculating the peak

outward current at each testing potential and normaliz-

ing to the cell capacitance.

Western blotting analysis

TG were harvested and homogenized in cold lysis buffer

(20 mM Hepes buffer, pH 7.4, 10 mM KCl, 1.5 mM

MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM DTT,

0.1 mM PMSF, 5 mg/mL pepstatin A, 10 mg/mL leupep-

tin and 10 mg/mL aprotinin) using a Dounce homoge-

nizer. Protein concentration was determined with a

bicinchoninic acid (BCA) assay kit using bovine serum

albumin as a standard (Pierce Biotechnology, Inc.,

Rockford, IL) and then heated to 95°C. Proteins were

separated using sodium dodecyl sulfate polyacrylamide

gel electrophoresis (SDS-PAGE) on 12% Tris–HCl gels

(BioRad, Hercules, CA) and electrophoretically trans-

ferred to polyvinylidene difluoride membranes (Bio-Rad

Laboratories, USA) at 120 V for one and half an hour in

Towbin buffer, pH 8.3, to which 20% (V/V) methanol

had been added. After transfer, the membranes were

blocked with 5% (mass/vol) non-fat dried milk in Tri-

buffered saline containing 0.05% Tween 20 (TBST) for

1 hour, then incubated with the primary antibodies:
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P2Y2 (rabbit anti-rat polyclonal, IgG 1:500, Santa Cruz

Biotechnology, Santa Cruz, CA) or ERK (rabbit anti-rat

polyclonal, IgG 1:1000, Cell Signaling) and β-actin

(mouse monoclonal, IgG 1:8000, Sigma, USA). After

three washes with TBST, the membranes were incubated

with the secondary antibody (goat anti-rabbit polyclonal,

IgG 1:8000, Santa Cruz Biotechnology, Santa Cruz, CA).

Membranes were rinsed at room temperature in Tris-

buffered saline containing Tween 20 (TBST) followed by

TBS 3 times and visualized using an Odyssey Infrared

Imaging System (LICOR, Lincoln, NE). Densitometric

quantification of the P2Y2, ERK and β-actin protein

bands of the Western blot were determined using

Odyssey software version 1.0 (LI-COR, Lincoln, NE) and

expressed as a relative ratio of P2Y2/β-actin and ERK/

β-actin.

Immunofluorescence histochemistry

Rats were anaesthetized with sodium pentobarbital

(50 mg/kg i.p.) and perfused transcardially with 0.1 M

phosphate buffer solution (PBS), pH 7.4 and subse-

quently with fresh 4% paraformaldehyde phosphate

buffer (PB) solution. After the perfusion, TGs were har-

vested and fixed in 4% paraformaldehyde for 4 hours.

They were then transferred into 20% sucrose for at least

3 days. Series frozen transverse sections (10 μm thick)

were made through the TG with a cryostat (Leica,

CM1850, Germany), collected and then washed 3 ×

5 min in cold PBS. The preparations were then preincu-

bated in antiserum solution 1 (10% normal bovine

serum, 0.2% Triton X-100, 0.4% sodium azide in

0.01 mol/l PBS pH 7.2) for 30 min. For double-

immunostaining of P2Y2 and Kv1.4 or Kv3.4 or Kv4.2 or

Kv4.3, sections were incubated in a mixture of rabbit

polyclonal P2Y2 (1:50 dilution, Santa Cruz Biotechnol-

ogy, Santa Cruz, CA, USA) and mouse monoclonal

Kv1.4 (1:200 dilution, Abcam, HongKong, China) or goat

polyclonal KCNC4 (KV3.4) (1:100 dilution, Santa Cruz

Biotechnology, Santa Cruz, CA, USA) or goat polyclonal

Kv4.2 (1:50 dilution, Santa Cruz Biotechnology, Santa

Cruz, CA, USA) or goat polyclonal Kv4.3 (1:50 dilution,

Santa Cruz Biotechnology, Santa Cruz, CA, USA) at 4°C

overnight. The sections were subsequently incubated

with FITC-conjugated affinipure donkey anti-rabbit IgG

(1:200 dilution, Jackson ImmunoResearch Laboratories,

West Grove, PA, USA) for 1 h to visualize P2Y2 recep-

tors, fluorophore-labeled donkey anti-mouse IgG (1:1500

dilution, Invitrogen life technologies, Grand Island, NY,

USA) for 1 h to visualize Kv1.4, Cy3-conjugated affini-

pure donkey anti-goat IgG (1:200 dilution, Jackson

ImmunoResearch Laboratories, West Grove, PA, USA)

for 1 h to visualize Kv3.4, Cy3-conjugated affinipure

donkey anti-goat IgG (1:300 dilution, Jackson Immuno-

Research Laboratories, West Grove, PA, USA) for 1 h to

visualize Kv4.2 or Kv4.3, respectively. All staining proce-

dures were carried out at room temperature and all the

incubations were separated by three washes in PBS,

5 min each. The immunoreactivity was visualized by

fluorescence microscopy.

Statistical analysis

All data are presented as means ± SEM. The electro-

physiological data were analyzed using the clampfit 9.0

and origin 7.0. For current-clamp recording, differences

between the means of action potentials were tested for

significance using unpaired Student’s t-tests. For voltage-

clamp recording and animal behavior test, differences

between the means were tested for significance using re-

peated measures ANOVA followed by Dunnett’s analysis.

For RT-PCR results, differences among groups were

tested for significance using two way ANOVA followed

by Dunnett’s analysis. For Western-blot and immuno-

fluorescence histochemical results, differences among

groups were tested for one-way ANOVA followed by

Tukey’s HSD and unpaired Student’s t-tests. Differences

were considered as statistically significant when the p

value was lower than 0.05 (p < 0.05).

Results

Effects of P2Y2 receptors on Kv1.4, Kv3.4, Kv4.2 and Kv4.3

in control rat TG neurons

Double-immunofluorescence staining for P2Y2 receptors

and Kv1.4 or Kv3.4 or Kv4.2 or Kv4.3 was performed on

TG neurons in sham and ION-CCI groups. In the sham

group, 272 out of 301 (90.4%) P2Y2 receptor-positive

neurons were Kv1.4 positive; 302 out of 307 (98.1%)

P2Y2 receptor-positive neurons were Kv3.4 positive; 274

out of 325 (84.3%) P2Y2 receptor-positive neurons were

Kv4.2 positive; and 159 out of 201 (79.1%) P2Y2 receptor-

positive neurons were Kv4.3 positive. Most of them had

soma diameters ranging from 25 to 34 μm (n = 294

neurons).

UTP induces hyperalgesia in control rats

We investigated the role of UTP, an agonist of P2Y2 and

P2Y4 receptors on control rats. UTP (100 nM, 50 μl) sig-

nificantly decreased the mechanical pain threshold of

the whisker pad 20 min after injection and this remained

at least for 3 h (Figure 1A, n = 8 for each group, p <

0.01); it then declined 9 h after the injection (Figure 1A).

UTP enhances the excitability of small-diameter TG neurons

in control rats

Based on the results of the animal behavioral test, we ex-

plored the effect of P2Y2 receptor activation on the

electrophysiological properties of small-diameter TG

neurons of rats. Action potentials generated in these TG

neurons by square-pulse stimulation are illustrated in

Li et al. Molecular Pain 2014, 10:21 Page 5 of 16

http://www.molecularpain.com/content/10/1/21



Figure 1B. Incubation of TG neurons from control rats

with UTP 30 or 100 μM for 16 h, caused dose-

dependent decrease in the mean threshold intensities for

evoking action potentials (UTP30 group: 96.3 ± 21.2 pA;

UTP100 group: 42.5 ± 13.1 pA; control group: 171.3 ±

23.2 pA; n = 8, Figure 1B,C, p < 0.05 or p < 0.01 vs con-

trol). The decrease of mean threshold intensities for

evoking action potentials by UTP 30 μM was reversed

by co-incubated with suramin 100 μM (UTP30 group:

96.3 ± 21.2 pA; suramin group: 177.5 ± 11.8 pA; n = 8,

Figure 1B,C, p < 0.05). As shown in Figure 1C, the mean

number of spikes evoked in the UTP-incubated TG neu-

rons during depolarizing step pulses at 2 × threshold was

significantly higher in the UTP-incubated TG neurons

than those in the control neurons but did not show any

dose-dependent changes (control: 1 spikes/400 ms,;

UTP-incubated TG neurons (30 or 100 μM): 3.1 ± 0.9

spikes/400 ms or 3.0 ± 0.8 spikes/400 ms; n = 8, p < 0.05).

The increase of mean number of spikes by UTP 30 μM

was blocked by co-incubated with suramin 100 μM

(Figure 1B,C, n = 8, p < 0.05 vs UTP 30 group).

Activation of P2Y2 receptors mediates a functional

inhibition of IA channels by UTP in FG-labeled small-diameter

TG neurons in control rats

FG-labeled TG neurons are illustrated in Figure 2A. We

observed whether activation of P2Y2 receptors could

functionally inhibit IA subunits in these TG neurons.

For voltage-clamp experiments, typical waveforms of

depolarization-activated IA are shown in Figure 2B. After

incubation with UTP (30 μM) for 16 h, the mean peak

amplitude of IA was significantly suppressed compared

with that of control (0.12 ± 0.01 nA vs 0.06 ± 0.01 nA,

n = 12, p < 0.01). The suppression of peak amplitudes of IA
by UTP (30 μM) was then blocked by co-application of

suramin (Figure 2B, con: 0.14 ± 0.01 nA, n = 9; UTP: 0.09 ±

0.01 nA, n = 20, p < 0.05; suramin: 0.13 ± 0.01 nA, n = 9,

A

180 pA 70 pA

50 mV

200 ms180 pA

Control UTP UTP+Suramin

50 mV

500 ms
360 pA 140 pA 360 pA

B

C

Control UTP30 UTP100 UTP30+

Suramin
Control UTP30 UTP100 UTP30+

Suramin

Figure 1 UTP induced hyperalgesia and enhanced the excitability of small-diameter TG neurons in control rats. (A) Changes in rat facial

mechanical pain threshold after injection of UTP or saline. UTP (100 nM, 50 μl) significantly decreased the mechanical pain threshold of the whisker

pad 20 min after injection and remained for at least 3 h, which then declined 9 h after injection. n = 8 for each group, **, p < 0.01 vs saline. (B) Original

traces of action potentials during intracellular current injection in control TG neurons. (C) Mean threshold currents (left panel) and mean number of

spikes (right panel) in the presence, absence of UTP (30,100 μM) treatment and UTP (30 μM) co-application with suramin (100 μM) for 16 h. The

depolarizing step current amplitude is twice as much as threshold. n = 8 neurons, *, p < 0.05, **, p < 0.01 vs control; #, p < 0.05, ##, p < 0.01 vs UTP30.
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p < 0.01). We did not see any dose-dependent changes in

IA when using UTP 100 μM (0.08 ± 0.01 nA, n = 20).

In order to observe whether other pain-related P2 recep-

tors were involved in the inhibition of IA, α,β-meATP, a

P2X3 and P2X2/3 receptor agonist, and 2-MeSADP, a P2Y1

receptor agonist, were used. We did not find any changes

in IA following application of either α,β-meATP or 2-

MeSADP, respectively (Figure 3). This implied that P2X1,

P2X3, P2Y1, P2Y12 and P2Y13 receptors were not involved.

UTP-induced reduction in the expression levels of IA
subunits (Kv1.4 or Kv3.4 or Kv4.2 and Kv4.3) in control TG

neurons via P2Y2 receptors

Firstly, we performed double immunofluorescent staining

for P2Y2 receptors and Kv1.4 or Kv3.4 or Kv4.2 or Kv4.3

on TG neurons in rats, respectively. The results showed

that the P2Y2 receptor-positive TG neurons also expressed

Kv1.4, Kv3.4, Kv4.2 and Kv4.3 (Figure 4A, n = 5 rats), re-

spectively. We further found that UTP induced a signifi-

cant decrease in the expression of Kv1.4, Kv3.4, Kv4.2, and

Kv4.3 mRNA in TG (Figure 4B, n = 10 samples in each

group, p < 0.01, p < 0.05, p < 0.01, p < 0.01 vs sham group).

Treatment with suramin (100 μM) in the UTP (30 μM)-

incubated TG neurons for 16 h in control rats reversed

the decrease of the expression of Kv1.4, Kv3.4, Kv4.2, and

Kv4.3 mRNA (Figure 4B, n = 10 samples in each group,

p < 0.01, p < 0.01, p < 0.01, p < 0.01 vs UTP group).

Effects of P2Y2 receptors on Kv1.4, Kv3.4, Kv4.2 and Kv4.3

in ION-CCI rat TG neurons

The role of P2Y2 receptors on mechanical allodynia in

ION-CCI rats

The effects of suramin on the mechanical pain threshold

of ION-CCI rats were determined. As shown in Figure 5A,

Figure 2 Effect of UTP and suramin on IA of small-diameter and FG-labeled TG neurons, with diameters ranging from 18 to 39 μm in

control rats. (A) Fluorescence microscopic view of TG neurons from control rats. (a) Retrograde labeling of TG neurons (blue) innervating whisker

pad skin. (b) P2Y2 receptor-positive (green) TG neurons were seen in the section of TG. (c) The merged images (purple) of retrograde labeling of

TG neurons and P2Y2 receptor-positive TG neurons from the same section, indicating co-localization. (d) Retrograde labeling of TG neurons (blue)

innervating whisker pad skin in cultured TG neurons. (B) Electrophysiology recording for small-diameter and FG-labeled TG neurons in control rats.

(a) Representative traces showing that the application of 30 μM UTP reduced IA. Suppression of the mean peak amplitudes of IA seen after UTP application

was antagonized by suramin 100 μM. (b) Current–voltage relationship for the effects of UTP and suramin on IA. Each value represents the mean ± SEM

(con: 0.14 ± 0.01 nA, n = 9; UTP: 0.09 ± 0.01 nA, n = 20, p < 0.05 vs control; suramin: 0.13 ± 0.01 nA, n = 9). IA was initiated via a prepulse (100 ms) of

−120 mV and test pulses (400 ms) from −60 to +60 mV in a 10 mV step.
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Figure 3 Effect of α,β-meATP and 2-MeSADP on IA of small-diameter TG neurons in control rats. (A) IA was initiated via a prepulse

(100 ms) of −120 mV and test pulses (400 ms) from −60 to +60 mV in a 10 mV step. Original traces showing that the application of 10 μM α,β-meATP

and 100 μM 2-MeSADP for 16 h did not suppress IA. (B) Current–voltage relationship for both on IA. Each value represents the mean ± SEM (Con: 0.14 ±

0.01 nA, n = 20; α,β-meATP: 0.13 ± 0.02 nA, 2-MeSADP: 0.13 ± 0.02 nA, n =11, p> 0.05).

Figure 4 Effect of UTP on the expression levels of IA subunits in control TG neurons. (A) Double-immunostaining revealed the expression

of Kv1.4, Kv3.4, Kv4.2 and Kv4.3 subunits in P2Y2 receptor-positive neurons in the ION-CCI TG sections. The P2Y2 receptor-positive TG neurons also

expressed Kv1.4, Kv3.4, Kv4.2 and Kv4.3, respectively, n = 5 rats. (B) Reduction in the mRNA levels of IA subunits by UTP in cultured TG neurons

from control rats. Treatment with suramin (100 μM) in the UTP-incubated (30 μM) TG neurons for 16 h in control rats reversed the decrease in

the mRNA levels of Kv1.4, Kv3.4, Kv4.2, and Kv4.3 subunits. n = 10 samples in each group, *, p < 0.05, **, p < 0.01 vs control; ##, p < 0.01 vs UTP.
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suramin (15,150 mg) led to a time- and dose-dependent

increase in PWT (saline: 0.96 ± 0.5 g, n = 8; suramin

15 mg: 11.45 ± 2.4 g, n = 6 rats; suramin 150 mg: 29.96 ±

4.1 g, n = 7) compared with that of control (ION-CCI) rats

(p <0.01). This anti-allodynia effect started 10 min after

the suramin injection and remained at least 45 min. Fur-

ther, we injected P2Y2 receptor AS-ODN twice a day for

2 days through the peripheral target injection to TG via

the infraorbital foramen and then determined whether it

could improve neuropathic pain 9 days after injection.

The PWT of whisker pad was significantly increased after

injection of P2Y2 receptor AS-ODN, compared with that

of the control (ION-CCI) rats (Figure 5B, p < 0.05). The

effect started at 6 h and persisted for at least 120 h

(Figure 5B, saline: 0.49 ± 0.1 g, n = 7 rats; AS-ODN: 49.54 ±

8.0 g, n = 5). To confirm that P2Y2 receptor AS-ODN had

knocked down the expression of P2Y2 receptor, the ex-

pression of P2Y2 receptor after P2Y2 receptor AS-ODN

injection was investigated. Compared with that in the sa-

line group, injection of P2Y2 receptor AS-ODN sig-

nificantly reduced P2Y2 receptor protein expression (n = 4,

p < 0.01, Figure 5C).

Figure 5 The role of P2Y2 receptors in mechanical hyperalgesia in ION-CCI rats. (A) The peripheral target injection to TG of suramin (0.3-

3 μg/μl) reduced mechanical allodynia in the whisker pad. n = 6-8, **, p < 0.01 compared with injection of saline, ##, p < 0.01 compared with

injection of high-dose suramin. Suramin led to a time- and dose-dependent increase in PWT, this anti-allodynia effect started 10 min after the

suramin injection and remained for at least 45 min. (B) The peripheral target injection to TG of P2Y2 antisense oligodeoxynucleotides significantly

alleviated mechanical allodynia of the whisker pad. n = 5, *, p < 0.05, **, p < 0.01 compared with injection of saline. The effect started at 6 h and

persisted for at least 120 h. (C) Western blots showed successful suppression of P2Y2 receptor expression in TG by P2Y2 receptor antisense

oligodeoxynucleotides treatment n = 4 for each group, **, p < 0.01.
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P2Y2 receptor antisense reverses the decreased expression

of Kv1.4 or Kv3.4 or Kv4.2 or Kv4.3 on P2Y2-positive TG

neurons after ION-CCI

To determine whether IA-related subunits, Kv1.4, Kv3.4,

Kv4.2 and Kv4.3, were changed after ION-CCI, double-

immunofluorescence staining for P2Y2 receptors and

Kv1.4 or Kv3.4 or Kv4.2 or Kv4.3 was performed on TG

neurons in sham and ION-CCI groups. In the sham

group, 272 out of 301 (90.4%) P2Y2 receptor-positive

neurons were Kv1.4 positive; 302 out of 307 (98.1%)

P2Y2 receptor-positive neurons were Kv3.4 positive; 274

out of 325 (84.3%) P2Y2 receptor-positive neurons

were Kv4.2 positive; and 159 out of 201 (79.1%) P2Y2

receptor-positive neurons were Kv4.3 positive. In the

ION-CCI group, 42 out of 180 (23.3%) P2Y2 receptor-

positive neurons were Kv1.4 positive; 42 out of 245

(17.1%) P2Y2 receptor-positive neurons were Kv3.4 posi-

tive; 66 out of 302 (21.9%) P2Y2 receptor-positive neu-

rons were Kv4.2 positive; and 31 out of 166 (18.7%)

P2Y2 receptor-positive neurons were Kv4.3 positive

(Figure 6A). The number of Kv1.4, Kv3.4, Kv4.2 and Kv4.3

subunits on P2Y2 receptor-positive TG neurons was sig-

nificantly decreased in the ION-CCI group compared with

that in the sham group (Figure 6B, p <0.01, p <0.01,

p <0.01, p <0.01). Furthermore, the expression of Kv1.4,

Kv3.4 and Kv4.2 in TG neurons was significantly de-

creased in ION-CCI group compared with that in sham

group (Figure 6B, p <0.01, p <0.05, p <0.05). Treatment

with P2Y2 receptor AS-ODN (15 μg/50 μl) significantly

reversed the reduction of Kv1.4, Kv3.4 and Kv4.2 mRNA

expression after ION-CCI (Figure 6C, p <0.05, p <0.05,

p <0.05). However, the expression of Kv4.3 mRNA was

not different among three groups (Figure 6C, p > 0.05).

Activation of P2Y2 receptors mediates an inhibition of IA
channels through ERK pathways on small-diameter TG

neurons in control rats

Western blot results showed that the level of ERK1/2

phosphorylation was significantly increased in the ipsi-

lateral TG after ION-CCI compared with that from the

sham groups (Figure 7A, n = 5 for each group, p <0.05).

It has been reported that ERK activation contributes to

changes in membrane excitability as a result of direct or

indirect phosphorylation of kinases, key receptors, and ion

channels [30]. ERK inhibitors (U0126 or PD98059) en-

hance A-type potassium currents in dorsal horn neurons

Figure 6 Difference of IA channel expression in TG between sham and ION-CCI rats. (A) Double-immunostaining for P2Y2 receptors and

Kv1.4 or Kv3.4 or Kv4.2 or Kv4.3 on TG neurons in sham and ION-CCI sections, respectively. (B) Percentages of numbers of Kv1.4, Kv3.4, Kv4.2 and

Kv4.3 subunits in P2Y2 receptor-positive neurons are significantly decreased in TG from ION-CCI rats compared with sham rats. n = 4 rats, **,

p < 0.01). (C) Changes in the mRNA levels of IA subunits in TG after P2Y2 receptor antisense oligodeoxynucleotides treatment. The mRNA levels of

Kv1.4, Kv3.4 and Kv4.2 were significantly decreased in the saline group of ION-CCI rats compared with the sham rats. They were reversed after

P2Y2 receptor antisense oligodeoxynucleotides treatment. n = 5-9 rats, *, p < 0.05, **p < 0.01 compared with saline groups. There was no difference

in the levels of Kv4.3 mRNA among the groups. n = 6-8 rats, p > 0.05.
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of the spinal cord [40,41], indicating the possible modula-

tion of ERK in potassium channels. We therefore tested

whether the presence of an ERK inhibitor, U0126, would

modulate the effect of UTP on trigeminal pain perception.

In TG from ION-CCI rats, treatment with P2Y2 receptor

AS-ODN (15 μg/50 μl) significantly decreased ERK ex-

pression at the protein level (Figure 7B, n = 5 for each

group, p < 0.01). The inhibitory effect of UTP on IA was

significantly reversed (Figure 8A). The mean peak ampli-

tude of was reversed to 0.15 ± 0.03 nA in the U0126

group (100 μM, n = 11), which was significantly different

from that of the UTP group (30 μM, 0.09 ± 0.01 nA, n =

20, p < 0.05, Figure 8B). Further, in the cultured ION-

CCI TG neurons, in the presence of U0126 (100 μM),

the mean threshold intensities for evoking action poten-

tials was significantly increased (control: 85 ± 14 pA;

U0126: 182.9 ± 12.1 pA; n = 8, Figure 8C,D, p < 0.01 vs

control), while the number of action potentials was

significantly decreased (Figure 8C,D, n = 7, p < 0.05 vs

control).

Discussion

Four major findings arise from this study, 1) P2Y2 re-

ceptors and Kv1.4, Kv3.4, Kv4.2 or Kv4.3 channels were

co-expressed in rat TG neurons. The expression of

Kv1.4, Kv3.4, Kv4.2 or Kv4.3 on P2Y2 receptor-positive

TG neurons was significantly decreased after ION-CCI;

2) UTP application enhanced the excitability of control

TG neurons and depressed the IA currents, which

could be reversed by suramin; 3) activation of P2Y2 re-

ceptors down-regulated mRNA expression and function

of Kv1.4, Kv3.4, Kv4.2 and Kv4.3 on TG neurons in

control rats; 4) after the expression of P2Y2 receptors

was suppressed by AS-ODN treatment, mechanical

allodynia was reduced and mRNA levels of Kv1.4 and

Kv3.4 and Kv4.2 were increased in ION-CCI rats.

These results provide evidence that the down-regulation

of IA-related potassium channels by activation of

P2Y2Rs in TG neurons potentiates neuronal excitabil-

ity which then contributes to trigeminal neuropathic

pain.

Activation of P2Y2 receptors enhances TG neuron

excitability through suppression of IA channels in

control rats

Growing evidence indicates that P2X and P2Y receptor-

mediated signaling critically contributes to the develop-

ment and maintenance of neuropathic pain [12,13].

Here, we have demonstrated that activation of P2Y2 re-

ceptors leads to a significant increase in the excitability

of TG neurons. Previous studies have shown that an in-

crease in membrane excitability in DRG neurons was a

cellular-correlate of enhanced nociceptive behavior

[18,42,43]. ATP is a non-selective agonist for several

ionotropic P2X and metabotropic P2Y receptor subtypes

[44]. Usually, ATP released from healthy cells plays a

** **

A B

Figure 7 Role of ERK pathway in activation of P2Y2 receptors mediates an inhibition of IA channels on small-diameter TG neurons in

control rats. (A) Comparison of the phosphorylation of ERK1/2 in TG from sham and ION-CCI rats. Western blot results showed that the level of

ERK1/2 phosphorylation was significantly increased in the ipsilateral TG after ION-CCI, compared with that from the sham group. n = 5 for each

group *, p < 0.05. (B) In TG from ION-CCI rats, treatment with P2Y2 receptor antisense oligodeoxynucleotides (15 μg/50 μl) significantly decreased

the expression of ERK protein in TG. n = 5 for each group, **, p < 0.01.
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physiological role [45]. In pathological conditions, ATP

release can be evoked from sensory neurons and it pro-

duces fast excitatory potentials in DRG cells [46]. Thus,

endogenously released ATP from damaged cells [47]

may contribute to the ectopic firing of Aβ and Aδ neu-

rons and lead to the development of allodynia [48]. In

the present study, ATP caused a large decrease in the

mean threshold intensities for evoking action potentials

and a significant increase in the mean number of spikes

in control TG neurons, which is consistent with a previ-

ous study [3]. Although there are (controversial) con-

flicting outcomes following the use of UTP via P2Y2

receptors for neuropathic pain [16-19,48], this study

demonstrated that UTP caused a large decrease in the

mean threshold intensities for evoking action potentials

and a significant increase in the mean number of spikes

in control TG neurons. UTP has a similar effect on sen-

sory neurons and thus plays a key role in the develop-

ment of mechanical allodynia [48]. These results suggest

that nucleotides enhance the excitability of TG neurons,

probably via both P2Y2 and P2Y4 receptors, because

UTP is a P2Y2/P2Y4 receptor agonist.

Kv channels are crucial in the control of neuronal ex-

citability, and their down-regulation leads to an increase

of neuronal excitability [26,49,50]. Homomeric Kv1.4

channels predominate in Aδ and C fibers arising from

small-diameter DRG neurons [28]. Morgan et al. [51] re-

ported that Kvl.4 and Kv4.2, which form transient (A-

type) K+ channels, may regulate synaptic transmission

via presynaptic or postsynaptic mechanisms, respect-

ively. The present electrophysiological study found that

UTP mediated a functional inhibition of IA channels in

FG-labeled small-diameter TG neurons in control rats.

UTP-induced depression of IA was blocked by suramin,

hence, the P2Y2 nucleotide receptor must have contrib-

uted for the following reasons: (1) UTP, a P2Y2/P2Y4 re-

ceptor agonist enhanced the excitability of TG neurons

and inhibited IA. (2) ATP and UTP were about equipo-

tent as observed for rat P2Y2 and P2Y4 receptors [52].

(3) Suramin, which is a relatively selective antagonist of

P2Y2 receptors reversed the UTP-induced inhibition of

IA [7,53]. (4) α,β-meATP, a P2X3 and P2X2/3 receptor

agonist and 2-MeSADP, a P2Y1 receptor agonist did not

inhibit IA. Thus activation of P2Y2 receptors enhanced

excitability of TG neurons probably by suppressing IA.

Inhibition of IA can increase the firing frequency and

broaden the action potential leading to increased Ca2+

influx and neurotransmitter release [33,50,54]. The Kv

subunits, Kv1.4, Kv3.4, Kv4.2, and Kv4.3, could be dom-

inant in contributing to IA. Kv3.4 was expressed mainly

Figure 8 Effects of UTP and U0126 on IA and action potentials of small-diameter TG neurons in control rats. (A) IA was initiated via a

prepulse (100 ms) of −120 mV and test pulses (400 ms) from −60 to +60 mV in a 10 mV step. Original traces showing that the application of

30 μM UTP reduced IA. Suppression of the mean peak amplitudes of IA seen after UTP application was antagonized by the presence of U0126

100 μM. (B) Current–voltage relationship for the effect of UTP (30 μM) and co-application with U0126 (100 μM) on IA. The mean peak amplitude

of IA was reversed to 0.15 ± 0.03 nA in the U0126 group, which was significantly different from that of the UTP group (Con: 0.14 ± 0.01 nA, n = 20;

U0126: 0.15 ± 0.03 nA, n =11, UTP: 0.09 ± 0.01 nA, n = 20, p < 0.05 vs U0126). (C) Original traces of action potentials during intracellular current

injection in ION-CCI TG neurons. (D) Mean threshold currents (left panel, n = 8 neurons) and mean number of spikes (right panel, n = 7 neurons)

in the presence and absence of U0126 (100 μM) treatment for 16 h. The depolarizing step current amplitude is twice that of the threshold,

*, p < 0.05, **, p < 0.01 vs control.
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by nociceptive DRG neurons where Kv4.3 appeared se-

lectively in the soma of a subset of non-peptidergic noci-

ceptive DRG neurons, and reduced expression of Kv4.3

in pain-sensing neurons may induce neuropathic pain

[26]. Hu et al. [55] found that genetic elimination of

Kv4.2 reduced IA and increased excitability of dorsal

horn neurons. The expression of mRNA for Kv1.4,

Kv3.4, Kv4.2, and Kv4.3 was markedly reduced in dia-

betic neuropathic rats [27]. Combined with our electro-

physiological data, the down-regulation of IA subunits,

including mRNA for Kv1.4, Kv3.4, Kv4.2, and Kv4.3, after

application of UTP, could account for the reduced IA ob-

served in UTP-incubated small diameter TG neurons

from control rats. Suramin reversed the UTP-induced

effect on TG neurons in control rats, further suggesting

that P2Y2 receptors were involved.

The involvement of P2Y2 receptors in mechanical

allodynia in ION-CCI rats

In this study, we found the expression of Kv1.4, Kv3.4,

Kv4.2 and Kv4.3 on P2Y2 receptor-positive TG neurons

significantly decreased after ION-CCI compared with

those in the sham group. Expression of P2Y2 receptors,

Kv1.4, Kv3.4, Kv4.2 and Kv4.3 was significantly reduced

in ION-CCI rats. These data imply that IA channel ex-

pression levels of nociceptors and nerve ligation-induced

neuropathic pain could be closely related.

The present study showed that activation of P2Y2 re-

ceptors could suppress IA channels in control rats, which

might be one of the mechanisms of hyperexcitability of

TG neurons after UTP application. We hypothesized

that block of P2Y2 receptors could relieve trigeminal

neuropathic pain. Firstly, we confirmed that suramin led

to a time- and dose-dependent decrease in pain-related

behavior of ION-CCI rats. Some similar observations

were reported concerning the analgesic effects of sura-

min in animal pain models [56,57]. Because suramin is

an antagonist of P2Y receptors except P2Y4 and P2Y6 re-

ceptors [57], the results suggest that P2Y1, P2Y2, P2Y11,

P2Y13 and P2Y14 receptors could affect pain-related be-

havior in ION-CCI rats. Considering the effect of UTP

in control rats, we concluded that P2Y2 receptors were

probably involved in ION-CCI-induced pain behavior.

Secondly, injection of P2Y2 receptor AS-ODN signifi-

cantly alleviated mechanical hypersensitivity 6 h after in-

jection, which remained until 120 h. The results further

support that block of P2Y2 receptors could relieve tri-

geminal neuropathic pain.

To test whether there is a correlation between mech-

anical sensitivity and IA channel expression, we mea-

sured the mRNA levels of the IA-related potassium

channels, Kv1.4, Kv3.4, Kv4.2 and Kv4.3, in TG neurons

before and 36 h after P2Y2 receptor AS-ODN treatment.

The mRNA expressions of Kv1.4, Kv3.4 and Kv4.2

subunits were markedly reduced after ION-CCI, which

were then reversed after selective knockdown of P2Y2

receptor gene expression. It has been reported that there

is a close relationship between P2Y and Kv channels.

ATP and UTP reversibly inhibited the voltage-gated K+

currents in Xenopus embryo spinal neurons [58].

KCNQ1/KCNE1 K+ channels and P2Y4 receptors are co-

expressed from the time of birth in the apical membrane

of rat strial marginal cells [59]. Purinergic P2Y agonists

suppress M currents (IM), which are generated by Kv7

[18,60]. Our results suggest that activation of P2Y2 re-

ceptors could result in the development of mechanical

hypersensitivity, a major symptom of neuropathic pain,

which could be as a result of the suppression of the

mRNA expression of Kv1.4, Kv3.4 and Kv4.2 subunits.

In the present study, the expressions of Kv4.3 in

mRNA and protein levels were decreased after applica-

tion of UTP in cultured TG neurons from control rats

(Figure 6A,B), but did not change in TG after ION-CCI

(Figure 6C). This may be because: (1) Kv4.3 channels

were not prominent in the development of allodynia in

ION-CCI rats; and (2) an increase of Kv4.3 channels in

glial cells surrounding the neurons in TG compensated

for the changes in TG neurons after ION-CCI. Expression

of IA-related KV channels, such as Kv4.1, in glial cells sug-

gests that glial cells also play an important role in chronic

pain [61,62]. Further research of Kv channels on TG glial

cells is required to explain how IA channels are involved

in trigeminal neuropathic pain.

ERK1/2 is the downstream kinase for the effect of P2Y2
receptors on IA channels

P2Y2 receptors are G protein-coupled receptors that

usually activate PLC-β via Gαq, which results in the re-

lease of intracellular Ca2+ and activation of PKC [63].

These events further activate extracellular signal-

regulated kinase (ERK), including ERK1 and ERK2

[64-66]. ERK and Kv4.2 have a functional link at both

the cellular and behavioral levels [67]. Phosphorylation

of Kv4.2 by PKC enhanced ERK phosphorylation of the

channel in vitro. These findings suggest the possibility

that Kv4.2 is a locus for PKC and ERK cross-talk [68].

Kv4.3 positive neurons also expressed ERK2 and mGluR5,

suggesting that Kv4.3 subunits could be involved in pain

modulation [69]. In line with the previous report [70], we

found that ION-CCI significantly increased the level of

ERK1/2 phosphorylation in TGs. Evidence provided in

this study further suggests that the inhibition of IA chan-

nels through P2Y2 receptors is modulated by ERK signal-

ing after ION-CCI. First, IA was significantly inhibited by

UTP, which could be reversed when ERK signaling was

blocked by U0126. Second, in ION-CCI rats, the expres-

sion of ERK in protein level was increased and the mRNA

expressions of Kv1.4, Kv3.4 and Kv4.2 subunits were
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decreased, which were then reversed by P2Y2 receptor

AS-ODN treatment. A recent study has shown that the

PI3K/Akt signaling pathway can be activated by P2Y2 re-

ceptors [71]. The PI3K/Akt signaling pathway and Kv

channels are both involved in the same disease [72]. Al-

though we could not exclude that other pathways contrib-

ute to this effect of UTP, the ERK signaling pathway might

be one of the downstream pathways for the effect of P2Y2

receptors on IA channels, which might contribute to the

development of trigeminal neuropathic pain.

In the present study, the effect of UTP on mechanical

pain threshold in normal rats started from 10 min, sug-

gesting the pathway without alterations of gene expres-

sion. The possibilities could be through facilitating

homomeric P2X2 [19], P2X3 [19,73], or TRPV1 receptors

[16,74]. Further, the long-term effect of UTP (more than

30 min) in pain behavior study and antisense oligodeox-

ynucleotides effect on ION-CCI rats indicate the alter-

ations of gene expression. Although the underlying

mechanisms are not fully understood, inhibition of P2Y2

receptors leads to down-regulation of ERK-mediated

phosphorylation and increase of the expression of IA–re-

lated Kv channels in trigeminal ganglion neurons, which

might contribute to the clinical treatment of trigeminal

neuropathic pain. Taken together, these data suggest that

P2Y2 receptors on TG might play an important role in

initiating and maintaining the allodynia in trigeminal

neuropathic pain.
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