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Abstract

Purpose Today’s general anesthetics were developed

empirically according to their ability to produce memory

blockade, analgesia, immobility, and unconsciousness.

Thus, a major outstanding question remains: How do

anesthetics produce their desirable behavioural end points

at the molecular level? Understanding the mechanisms

underlying memory blockade is of particular importance,

because some patients experience the unexpected recall of

events during anesthesia while others experience persistent

memory deficits in the postoperative period. This review

provides a brief summary of the acute memory-blocking

properties of general anesthetics and the neuronal sub-

strates that most likely contribute to memory loss.

Principal findings Studies in human volunteers and

laboratory animals have shown that the memory-blocking

properties of general anesthetics depend on the specific

drug, the dose, the type of memory, and the experimental

paradigm, as well as the species and age of the experi-

mental subject. The cellular substrates of memory blockade

include an increase in neuronal inhibition by c-aminobu-

tyric acid subtype A receptors, a decrease in excitatory

glutamatergic neurotransmission, and alterations in syn-

aptic plasticity.

Conclusions Anesthetics target different receptors and

brain regions to modify the various forms of memory. In the

hippocampus, extrasynaptic c-aminobutyric acid subtype A

receptors may play a particularly important role. Knowl-

edge regarding the molecular basis of memory blockade

may help to address memory disorders associated with the

anesthetic state.

Résumé

Objectif Les anesthésiques généraux actuels ont été mis

au point empiriquement en se fondant sur leur capacité à

bloquer la mémoire ainsi qu’à provoquer l’analgésie,

l’immobilité et l’inconscience. En raison de ce développement

empirique, une question cruciale demeure sans réponse:

comment les anesthésiques produisent-ils leurs effets

désirables sur le comportement au niveau moléculaire? La

compréhension des mécanismes sous-jacents au blocage de

la mémoire est particulièrement importante, étant donné

que certains patients se souviennent de manière imprévue

d’événements ayant eu lieu pendant qu’ils étaient sous

anesthésie, alors que d’autres souffrent de troubles de

mémoire persistants en période postopératoire. Ce

compte-rendu présente brièvement les propriétés des

anesthésiques généraux sur le blocage aigu de la mémoire

ainsi que les substrats neuronaux qui contribuent très

probablement à la perte de mémoire.

Constatations principales Les études réalisées chez des

volontaires humains et des animaux de laboratoire ont

montré que les propriétés des anesthésiques généraux sur

le blocage de la mémoire sont dépendantes du médicament

en question, de sa dose, du type de mémoire, du paradigme
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expérimental, ainsi que de l’espèce et de l’âge du sujet

soumis à l’expérience. Les substrats cellulaires de blocage

de la mémoire comprennent une augmentation de l’inhibition

neuronale des récepteurs de l’acide c-amino-butyrique de

type A (GABAA), une diminution de la neurotransmission

glutamatergique excitatrice, et des modifications de la

plasticité synaptique.

Conclusion Les anesthésiques ciblent différents

récepteurs et régions du cerveau pour modifier les diverses

formes de mémoire. Dans l’hippocampe, les récepteurs

extrasynaptiques de l’acide c-amino-butyrique de type A

pourraient jouer un rôle particulièrement important. Des

connaissances concernant la base moléculaire du blocage

de la mémoire pourraient nous permettre de mieux

comprendre et traiter les troubles de la mémoire associés à

l’état d’anesthésie.

To facilitate an understanding of the memory-blocking

properties of anesthetics, we begin with a brief overview of

the terms that describe the various forms of memory and

their underlying anatomic regions. We then describe the

concentration-dependent effects of anesthetics on memory

in more detail. Finally, we describe how anesthetics act to

modify the function of receptors that regulate the synaptic

plasticity in the hippocampus, which is thought to be a

molecular substrate for long-term memory.

Learning and memory

Learning is the process of acquiring new information,

skills, or thought patterns that either add to or override

existing learned items.1 Memory is the capacity to retain

and revive impressions or to recall or recognize experi-

ences.2 Memory has been characterized as having three

distinct temporal stages: encoding, consolidation, and

retrieval.3 Encoding occurs when sensory stimuli are con-

verted into memory and knowledge is acquired.

Consolidation of memory occurs when a permanent trace

or ‘‘engram’’ is formed and stored through the reorgani-

zation of neural circuits. The final stage, retrieval, occurs

when information is brought out of storage to be recalled.3

The two major forms of memory are explicit (or

declarative) memory and implicit (or non-declarative)

memory (Fig. 1). Explicit memory is accessible to the

conscious state and, thus, can be confirmed as facts and

events. In contrast, implicit memory relates to skills and

habits that are unavailable in the conscious state yet

influence a person’s behaviour and mental life.4,5 Explicit

memory has been further subcategorized into episodic

memory and semantic memory.6 Memory for particular

events, times, and places is called episodic memory,

whereas semantic memory includes memory for facts about

concepts or meanings that have been acquired over the

course of a person’s life.

Implicit memory, which occurs in the absence of con-

scious recognition, has been subdivided into procedural

memory and priming.7,8 Memory for how to do things is

called procedural memory. It can be retrieved automati-

cally to assist in the execution of procedures that require

both cognitive and motor skills, such as riding a bike or

typing. Priming is a change in the ability to identify an item

as a result of a previous encounter with that item.3

Memories are not formed instantly but rather develop

through time-dependent processes that involve multiple

neuronal circuits.9,10 On the basis of the time interval

between the learned event and its recall, memory has been

further categorized into short-term memory (that occurs in

the timeframe of seconds to an hour after the initial stim-

ulus), intermediate memory (60-90 min), and long-term

memory (longer than 90 min).9-11

Memory blockade has also been categorized as being

either anterograde or retrograde.12 Anterograde memory

blockade (or amnesia) is the loss of the ability to create new

memories after an event that caused the memory loss. This

condition leads to an inability to recall events that occurred

after the onset of amnesia, whereas long-term memories for

events that occurred before onset remain intact. Retrograde

amnesia is the inability to recall events that occurred before

the occurrence of the memory-blocking event.

Structures in the medial temporal lobe are particularly

important for establishing long-term explicit memory.

Specifically, the hippocampal formation and its adjacent

cortices are essential for the formation, reorganization, and

consolidation of memory during the period after learn-

ing.5,13 These structures also play a role in the storage of

memories.4 The increasing importance of the cortical

regions for the storage of memory as time passes after

learning has recently been demonstrated.14-16 Damage to

the hippocampus and related structures typically impairs

recent memory yet spares remote memory in a temporally

graded manner. Recent memories are more likely to be

affected, and remote memories are less likely to be

Fig. 1 Taxonomy of memory systems
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affected.17-20 In laboratory animals, lesions to the hippo-

campus, entorhinal cortex, or fornix typically impair

memory for material learned up to 30 days before the

lesion was introduced.17 In humans, damage to the hippo-

campus generally impairs memory for material that was

learned a few years before the damage occurred.20,21

The expression patterns of several biochemical markers

of neural activity support the importance of the cortical

regions in long-term memory storage.22,23 The expression

of activity-related genes, such as c-fos and Zif268, gradually

decreased in the hippocampus after learning, whereas there

was a parallel increase in gene expression in the cortical

regions, such as the prefrontal, frontal, anterior cingulate,

retrosplenial, and temporal cortices.22 Neuroimaging stud-

ies using functional magnetic resonance imaging show that

gradual changes in neocortical connectivity allow for the

establishment of stable long-term memory.15 As these

changes occur, the role of the hippocampus (which initially

interacts with the neocortex to support long-term storage of

memories) declines. The long-term storage of associative

memories is thought to be distributed to the relevant

encoding sites of the neocortex.15

The cerebellum and the striatum are two of several brain

regions that support implicit memory. One of the most

studied examples of implicit memory in vertebrates is the

classical eyeblink response, which depends on the cere-

bellum.24 The eyeblink response is a Pavlovian classical

conditioning paradigm where the animal is exposed to an

auditory or visual stimulus (the conditioned stimulus) that

is subsequently paired with an eyeblink-eliciting uncondi-

tioned stimulus, such as a mild puff of air to the

cornea.25,26 After many pairings of the conditioned (tone)

and unconditioned stimuli (air puff), a learned eyeblink or

conditioned response occurs that precedes the onset of the

unconditioned stimulus.27

The striatum is also important for the gradual feedback-

guided learning that results in the acquisition of habits.28

Neuroimaging functional magnetic resonance imaging

studies of human volunteers showed that the caudate

nucleus in the striatum is active when subjects acquire a

habit task that can be learned only gradually by trial and

error because of its probabilistic structure.29 Interestingly,

patients with lesions of the hippocampus were able to learn

gradually by trial and error within a given test session but

could not recall the task or instructions from one session to

the next.30 The learning occurred in the absence of any

conscious recall at the beginning of each new test session of

the previous experience. The striatum-based neural circuits

have broad relevance, not only for habit learning but also

for species-specific behaviours, such as birdsong learning,

and for more extreme forms of acquired repetitive learned

behaviours, such as addictive behaviours and neuropsy-

chiatric conditions, including Tourette’s syndrome.31,32

The midbrain has been strongly implicated in implicit

memory. In particular, reward-based learning depends on

dopamine neurons in the substantia nigra and ventral teg-

mental area of the midbrain that project to the striatum and

signal information about the value of a reward.33,34 The

learned response to a reward is the strongest when the

reward is most unexpected and instructive, and it is absent

when the reward is fully predicted. The striatum receives

both sensory and motor input from the neocortex as well as

reward signals from the midbrain. These inputs may allow

the stimuli and responses to become associated and con-

sequently to guide behaviour.

Emotional learning, such as learning associated with

fearful stimuli, involves the amygdala. Ablation or deac-

tivation of the amygdala can prevent both the learning and

expression of fear.35-41 In addition, the amygdala modu-

lates fear-related learning in other brain structures, such as

the cortex and hippocampus.42-45 Some types of fear con-

ditioning, including the contextual and trace fear

conditioning, also involve the hippocampus.46-51 Unlike

the hippocampus, the amygdala is necessary for the

acquisition of fearful memories and their long-term storage

and retrieval.38,52-54

In summary, explicit memory requires structures in the

medial temporal lobe, such as the hippocampal formation

and several cortical regions. Implicit memory involves a

number of diverse brain regions, including the cerebellum,

striatum, and midbrain. The amygdala is necessary for the

acquisition of fearful memories as well as their long-term

storage and retrieval.

Blockade of memory by general anesthetics in humans

and laboratory animals

The memory-blocking properties of general anesthetics

have been investigated in some details. Briefly, low con-

centrations of isoflurane (at about one-fifth of the dose

required for immobilization, i.e., 0.2 minimum alveolar

concentration [MAC]) suppressed learning and explicit

memory of verbal cues in healthy volunteers.55 Sub-seda-

tive doses of isoflurane (0.3%) and nitrous oxide (20%) also

impaired immediate and delayed word recall.56 Memory for

emotional encounters was blocked by sub-anesthetic con-

centrations of sevoflurane (0.25%), desflurane (1.5-2 times

MAC-awake), and propofol (1.5-2 times MAC-awake).57,58

At MAC-equivalent concentrations, some anesthetics are

more effective than others at preventing memory. For

example, both isoflurane and nitrous oxide suppressed

memory in a dose-dependent manner, although isoflurane

was more effective than MAC-equivalent concentrations of

nitrous oxide.59 The intravenous anesthetic, ketamine,

administered to human volunteers at sub-anesthetic doses
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(0.27 mg kg-1 over the first ten minutes then 0.12 mg kg-1

over the next 50 min) reduced memory performance for

explicit word recall. At low doses, ketamine interfered

primarily with early consolidation of memory, reducing the

delayed recall of words presented immediately before but

not during infusion of the drug.60

Different doses of anesthetics have different effects on

the time-dependent types of memory. Generally, low doses

of anesthetics leave very short-term memory intact, such

that patients can carry on a conversation and appear to be

lucid. However, long-term memory of events that occurred

during the low-dose exposure (such as a conversation) is

missing, possibly because memory for the events have not

been transferred into intermediate-term memory.1 A grad-

ual increase in the drug dose produces the progressive

impairment of short-term memory until events occurring

even one or two seconds earlier cannot be remem-

bered.61,62 A further increase in the dose of anesthetic is

associated with loss of consciousness.55,63 This deeper state

of anesthesia prevents the proper encoding of sensory

information, even for short-term memory, presumably

because an increase in inhibitory processes blocks sensory

transmission.64,65 General anesthetics generally do not

impair long-term memories that have already been con-

solidated into long-term storage in the cortex.66,67

The brain regions involved in memory blockade have been

studied using imaging techniques. Functional magnetic res-

onance imaging studies in human volunteers have shown that

sevoflurane (0.25 MAC administered for 25 min) can depress

memory-related regions in healthy volunteers, including the

visual cortex, thalamus, hippocampus, and supplementary

motor area.68 The primary visual cortex and other cortices

with higher-order associations are particularly sensitive to

memory-blocking concentrations of anesthetics.68

As evidenced by animal studies, the potency for mem-

ory blockade differs between different anesthetics. The

relative potencies of five inhalational anesthetics (desflu-

rane, sevoflurane, isoflurane, halothane, and nitrous oxide)

used most commonly for a classical Pavlovian conditioning

paradigm are summarized in Fig. 2.69 The behavioural

assay used to measure and compare anesthetic potency was

the inhibitory avoidance task. In this task, rats were trained

to remain in a starting ‘‘safe’’ compartment for 100 con-

secutive seconds by administration of a foot shock

(0.3 mA) each time the animals entered an adjacent unsafe

or ‘‘shock’’ compartment. The ability to learn to avoid the

shock compartment was impaired by relatively low con-

centrations of sevoflurane (0.3%) and halothane (0.15%)

and by higher doses of desflurane (1%). Surprisingly,

memory in this paradigm was not impaired by isoflurane at

doses up to 0.3% or by nitrous oxide at doses up to 60%.

The potency of anesthetics for memory blockade also

depends on the type of learning. Suppression of fear con-

ditioning to tone required approximately twice the dose of

isoflurane (half-maximal effective dose or ED50 = 0.47

MAC) than that required to suppress fear conditioning to

context (ED50 = 0.25 MAC). Thus, relatively higher con-

centrations of isoflurane ([0.5 MAC) were needed to

suppress fear-conditioned learning to both tone and con-

text.70 The effects of anesthetics on memory are also age-

dependent. For example, in a reversal learning paradigm,

an animal or a human is trained to respond differentially to

two stimuli (e.g., approach and avoidance) under reward

and punishment conditions. The subject is then re-condi-

tioned where the reward values are reversed.71 The

isoflurane-sensitive memory deficits for reversal learning

became more pronounced as the animals grew older.72

Finally, in surprising contrast to the results summarized

Fig. 2 Dose-response curves

for memory impairment with

five inhalation anesthetics

plotted on a common

logarithmic scale of relative

minimum alveolar

concentration (MAC). Memory

retention over 24 hr is most

potently suppressed by nitrous

oxide and least potently

inhibited by halothane. The

order of amnestic potency is

nitrous oxide [ desflurane [
sevoflurane [ isoflurane [
halothane. Reproduced with

permission from Alkire MT,
Gorski LA. Relative amnesic

potency of five inhalational

anesthetics follows the Meyer-

Overton rule. Anesthesiology

2004, 101: 417-29
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above, a few studies have suggested that low doses of some

anesthetics might actually enhance memory. It was repor-

ted that sevoflurane (0.1 MAC, C45 min) enhanced

aversive memory formation in rats.73 Interestingly, lesions

in the basolateral amygdala significantly reduced the

anesthetic-enhanced memory performance in these

animals.

Taken together, studies of human volunteers and labo-

ratory animals have shown that the memory-blocking

properties of anesthetics depend on the specific drug, the

dose administered, and the memory paradigm under

consideration.

General anesthetics and the neural substrates

of memory

The molecular mechanisms by which some forms of short-

term memory are converted to long-term memory in the

hippocampus have been the subject of intense investiga-

tion.10,74-76 At the circuit level, explicit short-term memory

is thought to result from the strengthening of pre-existing

synaptic connections and the covalent modification of pre-

existing proteins.77 Long-term memory requires the syn-

thesis of new proteins and the growth of new synaptic

connections78,79 through processes that depend on specific

signalling pathways involving protein kinase A, mitogen-

activated protein kinase, and cyclic adenosine monophos-

phate response element binding protein-1 and -2.80-82

These protein systems, together with others, induce mor-

phological changes at synapses, such as an increase in

synaptic size and spine density, that are thought to stabilize

long-term memory.83,84

Long-term memory appears to involve a change in the

brain at the level of the synapse called synaptic plastic-

ity.85-89 At the molecular level, several factors are known

to contribute to synaptic plasticity, including changes in the

quantity of neurotransmitters released into a synapse and

the response of the postsynaptic neuron to those neuro-

transmitters.87,90-93 Long-term potentiation (LTP), one of

several phenomena underlying synaptic plasticity, is

widely considered to be one of the major cellular mecha-

nisms involved in learning and memory.86,94 Long-term

memory and LTP of synapses share many similar proper-

ties, as both are triggered rapidly and depend on the

synthesis of new proteins, and they can last for many

months.94-96 Long-term potentiation may account for many

types of learning, from the relatively simple classical

conditioning that occurs in all animals97-99 to the more

complex higher-level cognition observed in humans.94,100

The opposite process, long-term depression of synaptic

strength, is also necessary and is normally involved in

memory storage.101,102 Both the strengthening and weak-

ening of synapses between neurons are involved in the

reshaping of the neural network and the encoding of a

novel engram.103

Anesthetics modify a wide variety of neurotransmitter

systems that influence synaptic plasticity, including the

glutamatergic, GABAergic, cholinergic, and serotonergic

neurotransmitter systems, among others.65,104-108 Anes-

thetics generally reduce or prevent LTP-inducing memory

formation and the production of memory-associated pro-

teins primarily by altering the kinetics, conformation,

gating, or catalytic properties of neuronal membrane-bound

proteins. A strong association has been demonstrated

between blockade of LTP by anesthetics and memory

impairment.109-111

Many anesthetic-sensitive proteins are critical to estab-

lish and maintain the synaptic changes that underlie

intermediate and long-term memory. These targets include

the excitatory glutamate receptors and the inhibitory

c-aminobutyric acid (GABA) receptors.106-108 Ionotropic

glutamate receptor subtypes, including N-methyl-D-aspar-

tate (NMDA) receptors, a-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid (AMPA) receptors, and kainate

receptors, are involved in fast excitatory synaptic trans-

mission, synaptic plasticity, and higher cognitive

functions.112,113 Inhibitory GABA receptors, specifically

the GABAA receptors, are also well characterized targets

for most general anesthetics.106-108,114 The GABAA

receptor is a ligand-gated ion channel that mediates the

inhibitory neurotransmission in the brain. It is a pentameric

receptor that selectively conducts anions, particularly

chloride ions. The activation of GABAA receptors gener-

ally causes hyperpolarization of the neuron and shunting

inhibition,115-117 which diminishes the chance of a suc-

cessful firing of action potentials.118,119

Different anesthetics preferentially target different

neurotransmitter receptors. At clinically relevant concen-

trations, nitrous oxide, cyclopropane, ketamine, and the

noble gas, xenon, potently inhibit NMDA receptors but

have little or no effect on GABAA receptors.120-122 Unlike

GABAA receptors and NMDA receptors, the AMPA and

kainite subtypes of glutamate receptors are not key targets

for most general anesthetics,65,106 although barbiturates

inhibit AMPA and kainate receptors.123-125 Intravenous

anesthetics, including etomidate, propofol, and barbitu-

rates, enhance the GABAA receptor function, and this

effect contributes to hypnosis, immobility, and memory

blockade.105,108,111,114,126,127 The halogenated volatile

anesthetics (isoflurane, sevoflurane, and desflurane) also

enhance GABAA receptor function, although these drugs

appear to be less selective for GABAA receptors than most

intravenous anesthetics.105,128 Studies using site-directed

mutagenesis suggest that GABAA receptors are not the sole
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mediators of volatile anesthetics.129 Current data suggest

that volatile anesthetics act at several molecular targets,

including AMPA130-132 and kainate133,134 receptors, to

produce the essential neurodepressive effects.

The transmitter-gated ion channel that has gained the

most attention as a target for memory blockade is the

GABAA receptor. The GABAA receptor is a heteropenta-

meric complex composed of five different subunits

(Fig. 3). At least 19 mammalian genes encoding different

GABAA receptor subunits and their isoforms (a1-6, b1-3,

c1-3, d, e, u, p, and q1-3) have been identified.135 The most

common combination of subunits is a, b, and c in a ratio of

2:2:1 (Fig. 3). Changes in the subunit composition can

dramatically alter the biophysical properties of the recep-

tors and their sensitivity to anesthetics.136,137 Several

components of the anesthetic state, including etomidate-

induced sedation, amnesia, and immobility, have been

strongly attributed to drug-receptor interactions at specific

GABAA receptor subtypes (Fig. 3). Generally, anesthetics

increase the potency of GABA and increase the activation

of GABAA receptors, which usually leads to hyperpolar-

ization of the cell membrane. Representative agents that

have been identified as increasing the activity of this

inhibitory receptor include propofol, etomidate, benzodi-

azepines, barbiturates, isoflurane, sevoflurane, and

neurosteroids.114,118,138,139

GABAA receptor-mediated inhibition occurs in two

types: phasic inhibition, which is mediated by activation of

postsynaptic GABAA receptors after synchronous release

of presynaptic neurotransmitters, and tonic inhibition,

which is generated by high-affinity slowly desensitizing

extrasynaptic GABAA receptors that are activated by low

ambient concentrations of GABA.140 Phasic inhibition

maintains high-fidelity neuronal communication and pro-

duces precise timing of action potentials and

synchronization of neuronal populations.141,142

Fig. 3 Anesthetic binding sites on the c-aminobutyric acid (GABA)A

receptor. The GABAA receptor is a site of action for many general

anesthetics and neurodepressive drugs. The approximate binding sites

for several anesthetics on the GABAA receptor are indicated in the

cartoon. Anesthetic action at selective receptor isoforms may produce

several of the behavioural end points associated with the anesthetic

state, such as amnesia or hypnosis. The evidence for this is provided

largely through the genetic deletion of specific GABAA receptor

subunits or through the study of mutant GABAA receptors that are

insensitive to anesthetics. The mutations can reduce or eliminate

some behavioural effects of anesthetics, and the effects of these

genetic manipulations on anesthetic action are indicated in the boxes.

Inset: Etomidate is proposed to interact with a common anesthetic

binding pocket at the interface of the GABAA receptor and b subunits.

Image reproduced from Li GD, Chiara DC, Cohen JB, Olsen RW.

Neurosteroids allosterically modulate binding of the anesthetic

etomidate to c-aminobutyric acid type A receptors. J Biol Chem

2009, 284: 11771-5
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Enhancement of phasic inhibition was widely thought to

be the primary mechanism underlying the actions of many

GABAergic drugs. However, extrasynaptic GABAA recep-

tors have recently gained considerable attention as targets of

several anesthetics at memory-blocking doses. In particular,

a5 subunit-containing GABAA receptors (a5GABAA

receptors) are predominantly expressed in the hippocampus

where they are critically involved in physiological learning

and memory processes.143 Anesthetics appear to ‘‘super-

activate’’ the a5GABAA receptor and ‘‘highjack’’ the nor-

mal memory-regulating physiological functions, thereby

causing profound inhibition and memory blockade

(Fig. 4A).111 Correlative in vivo behavioural studies showed

that low clinically relevant doses of etomidate impaired

hippocampal-dependent learning and memory performance

in a manner dependent on the presence of a5 subunits

(Fig. 4B).111 Therefore, the activation of extrasynaptic

GABAA receptors by etomidate is thought to inhibit LTP

and thereby prevent memory formation (Fig. 5). Equally

important, the anxiolysis, loss of righting reflex, and

impairment of motor coordination produced by higher doses

of etomidate were independent of the a5GABAA recep-

tors.126 Thus, the memory-blocking properties were

mediated by etomidate modulation of a5GABAA receptors,

but not sedation, anxiolysis, or immobility.

Interestingly, a study from the authors’ laboratory

showed that anesthetic actions on a5GABAA receptors

might also contribute to persistent memory deficits in the

early postanesthetic period.144 Specifically, memory defi-

cits for fear-conditioned learning were shown to last for up

to 48 hr after mice were exposed to isoflurane (1.3%;

1 MAC) for one hour. These memory deficits could be

prevented by pre-treating the mice (prior to the adminis-

tration of isoflurane) with a drug that inhibits the function

of a5GABAA receptors. Together, these findings suggest

that activation of a5GABAA receptors during anesthesia

may cause desirable memory blockade but also persistent

undesirable memory deficits in the early postoperative

period.144 The role of other populations of extrasynaptic

GABAA receptors in memory blockade, including those

containing the a4 and d subunits, is the topic of ongoing

studies.145-148

Conclusions

In summary, anesthetics have many targets, and different

concentrations and classes of anesthetics have different

effects on the various types of memory. In turn, anesthetics

are currently being used as powerful probes to gain fun-

damental insights into the biology and neuronal substrates

of memory. Such insights may allow the development of

strategies to prevent and treat memory disorders associated

with anesthetic states, such as intraoperative aware-

ness149-151 and memory deficits in the postoperative

period.152-154

Fig. 4 Etomidate inhibits learning and memory processes through a5

c-aminobutyric acid (GABA)A receptors. A Inhibition of long-term

potentiation (LTP) by etomidate is mediated by a5GABAA receptors,

since L655,708, an inverse agonist of a5GABAA receptors, reverses

the inhibitory effects of etomidate on LTP. B Etomidate suppresses

contextual fear-conditioning memory in wild-type (WT) mice but not

in a5 knock-out mice (Gabra5-/-), and this effect can be occluded

by L-655,708. fEPSP slope = slope of the rising phase of field

excitatory postsynaptic potential. Reproduced with permission from

Martin LJ, Oh GH, Orser BA. Etomidate targets a5 c-aminobutyric

acid subtype A receptors to regulate synaptic plasticity and memory

blockade. Anesthesiology 2009, 111: 1025-35
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