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Abstract
Background/Aims: Excessive phosphate concentrations trigger vascular calcification, an active 
process promoted by osteoinduction of vascular smooth muscle cells (VSMCs) with increased 
expression and activity of transcription factor RUNX2 (Core-binding factor α1, CBFA1), alkaline 
phosphatase (ALPL), TGFß1, transcription factor NFAT5, and NFAT5-sensitive transcription factor 
SOX9. The osteoinductive signaling and vascular calcification of hyperphosphatemic klotho-
hypomorphic mice could be reversed by treatment with NH4Cl, effects involving decrease of 
TGFß1 and inhibition of NFAT5-dependent osteoinductive signaling. Known effects of NH4Cl 
include alkalinization of acidic cellular compartments. The present study explored whether osteo-/
chondrogenic signaling could be influenced by alkalinization of acidic cellular compartments 
following inhibition of the vacuolar H+ ATPase with bafilomycin A1 or following dissipation of the 
pH gradient across the membranes of acidic cellular compartments with methylamine. Methods: 
Primary human aortic smooth muscle cells (HAoSMCs) were treated with high phosphate 
to trigger osteo-/chondrogenic signaling and calcification in the absence or presence of 
bafilomycin A1 or methylamine. Calcium content was determined using a QuantiChrom 
Calcium assay, ALP activity by a colorimetric assay and transcript levels by quantitative RT-
PCR. Results: High phosphate increased significantly the calcium deposition, CBFA1 and ALPL 
mRNA expression as well as alkaline phosphatase activity in HAoSMCs, all effects ameliorated 
by both, bafilomycin A1 and methylamine. High phosphate further significantly up-regulated 
the mRNA levels of TGFB1, NFAT5 and SOX9, effects significantly blunted by additional 
treatment with bafilomycin A1 or methylamine. Treatment of HAoSMCs with human TGFß1 
protein or high phosphate up-regulated NFAT5, SOX9, CBFA1 and ALPL mRNA expression to 
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similarly high levels which could not be further increased by combined treatment with high 
phosphate and TGFß1. Bafilomycin A1 failed to reverse the osteo-/chondrogenic signaling 
triggered by high phosphate together with TGFß1. Conclusions: Inhibition of the vacuolar H+ 
ATPase or dissipation of the pH gradient across the membranes of acidic cellular compartments 
both disrupt osteo-/chondrogenic signaling and calcium deposition in VSMCs, observations 
supporting the hypothesis that vascular calcification requires acidic cellular compartments. 

© 2015 The Author(s)
Published by S. Karger AG, Basel

Introduction

Vascular calcification, a hallmark of aging [1-4], is promoted by hyperphosphatemia [5], 
which accelerates aging and increases cardiovascular risk [6]. Excessive plasma phosphate 
concentrations with subsequent mineral bone disorder (MBD) and vascular calcification are 
particularly decisive for the mortality of patients with chronic kidney disease (CKD)[4, 7].

Vascular calcification is, however, not simply due to precipitation of CaHPO4 salts, but results 
from a complex active process [8] involving reprogramming of vascular smooth muscle cells 
(VSMCs) into osteo-/chondrogenic phenotypes [9]. The osteo-/chondrogenic reprogramming 
of VSMCs is triggered by increased extracellular phosphate concentrations [5]. Signaling 
involved in osteo-/chondrogenic differentiation of VSMCs include up-regulation of CBFA1/
RUNX2 (Core-binding factor α1), an osteogenic transcription factor [10] orchestrating the 
transformation of VSMCs into osteoblast-like cells [11-13]. CBFA1-dependent genes include the 
alkaline phosphatase [12, 14-16], which degrades the calcification inhibitor pyrophosphate [10, 
17]. CBFA1 expression is up-regulated by the TGFß1-sensitive [18] transcription factor NFAT5 
(nuclear factor of activated T-cells 5) [19], an effect involving the transcription factor SOX9 
[19]. SOX9 is up-regulated in uremia [20] and participates in the stimulation of chondrogenic 
gene expression in VSMCs [21]. TGFß1 thus stimulates osteogenic signaling [22-25]. Vascular 
osteoinduction is closely associated with VSMC senescence [26], which parallels vascular aging 
and injury [27]. 

A recent study disclosed an inhibitory effect of NH4Cl on osteogenic signaling and vascular 
calcification [28]. NH4

+ may dissociate thus yielding NH3, which easily crosses membranes, 
thus entering cells and cellular compartments. In acidic compartments, NH3 binds H+ and 
is thus trapped as NH4

+ [29]. As a result, NH4Cl alkalinizes acidic cellular compartments, 
which is known to prevent maturation of several proteins including TGFß1 [30]. It was thus 
hypothesized that NH4

+ is effective by alkalinizing acidic cellular compartments. However, 
at least in theory, NH4Cl may inhibit calcification by triggering acidosis [31-33]. Alternative 
methods leading to alkalinisation of acidic intracellular compartments include inhibition 
of the vacuolar H+ ATPase with bafilomycin A1 [34] and the dissipation of the pH gradient 
across the vacuolar membrane with methylamine [35]. 

The present study explored the effect of bafilomycin A1 and of methylamine on osteo-/
chondrogenic signaling and calcification induced by high phosphate in primary human aortic 
smooth muscle cells. 

Materials and Methods

Cell culture of HAoSMCs
Primary human aortic smooth muscle cells (Invitrogen, Life Technologies) were routinely cultured 

in Waymouth’s MB 752/1 medium and Ham’s F-12 nutrient mixture (1:1, Gibco, Life Technologies) 
supplemented with 10% FBS (Gibco, Life Technologies) and 100 U/ml penicillin and 100 µg/ml streptomycin 
(Gibco, Life Technologies). HAoSMCs were grown to confluency and used in all experiments from passages 
4 to 10. Where indicated, HAoSMCs were treated with 2 mM β-glycerophosphate (Sigma-Aldrich), with 3 
mM sodium phosphate buffer, pH 7.4 (Sigma-Aldrich), with 500 nM bafilomycin A1 (Sigma-Aldrich, solved in 
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DMSO), with 1 mM methylamine (Sigma-Aldrich) and/or with 10 ng/ml human TGFβ1 (R&D Systems, solved in 
4 mM HCl solution containing 1mg/ml BSA). Equal amounts of vehicle were used as control.

Quantitative RT-PCR
HAoSMCs were washed with PBS and total RNA was isolated using Trifast Reagent (Peqlab) according 

to the manufacturer’s instructions. Reverse transcription of 2 µg RNA was performed using oligo(dT)12-18 
primers (Invitrogen) and SuperScriptIII Reverse Transcriptase (Invitrogen). Quantitative real-time PCR 
was performed with the iCycler iQTM Real-Time PCR Detection System (Bio-Rad Laboratories) and iQTM Sybr 
Green Supermix (Bio-Rad Laboratories) according to the manufacturer’s instructions. The following human 
primers were used (5’→3’ orientation): 

TN alkaline phosphatase fw: GGGACTGGTACTCAGACAACG; 
TN alkaline phosphatase rev: GTAGGCGATGTCCTTACAGCC; 
CBFA1 fw: GCCTTCCACTCTCAGTAAGAAGA; 
CBFA1 rev: GCCTGGGGTCTGAAAAAGGG; 
GAPDH fw: GAGTCAACGGATTTGGTCGT; 
GAPDH rev: GACAAGCTTCCCGTTCTCAG; 
NFAT5 fw: GGGTCAAACGACGAGATTGTG; 
NFAT5 rev: GTCCGTGGTAAGCTGAGAAAG; 
SOX9 fw: AGCGAACGCACATCAAGAC; 
SOX9 rev: CTGTAGGCGATCTGTTGGGG; 
TGFB1 fw: CAATTCCTGGCGATACCTCAG; 
TGFB1 rev: GCACAACTCCGGTGACATCAA. 

The specificity of the PCR products was confirmed by analysis of the melting curves. All PCRs were 
performed in duplicate and relative mRNA fold changes were calculated by the 2-ΔΔCt method using GAPDH 
as internal reference. 

Calcium content
HAoSMCs were treated for 14 days with 3 mM sodium phosphate buffer as calcification media. Fresh 

media with agents were added every 2-3 days. After the incubation period, HAoSMCs were decalcified for 
24 hours at 4°C in 0.6 M HCl. The calcium content was determined colorimetrically using a QuantiChrom 
Calcium assay kit (BioAssay Systems) according to the manufacturer’s protocol. After washing with 
PBS, HAoSMCs were lysed with 0.1 M NaOH/0.1% SDS. Calcium content was normalized to total protein 
concentration as assessed by the Bradford assay (Bio-Rad Laboratories).

Alkaline phosphatase (ALP) activity assay
For determination of cellular ALP activity, HAoSMCs were treated for 7 days. Fresh media with agents 

were added every 2-3 days. After the incubation period, HAoSMCs were washed with PBS and assayed 
for ALP activity using the ALP colorimetric assay kit (Abcam) according to the manufacturer’s protocol. 
ALP activity was normalized to total protein concentration as assessed by the Bradford assay (Bio-Rad 
Laboratories).

Statistics
Data are provided as arithmetic means ± SEM, n represents the number of experiments. Normality was 

tested with Shapiro-Wilk test. Statistical testing was performed by one-way Anova followed by Tukey-test 
for homoscedastic data or Games-Howell test for heteroscedastic data. Non-normal data was tested by the 
Steel-Dwass method. Results with p<0.05 were considered statistically significant.

Results

In order to explore whether vacuolar pH impacts on vascular calcification, experiments 
have been performed in primary human aortic smooth muscle cells (HAoSMCs) treated 
with high phosphate with or without inhibition of the vacuolar H+ pump with bafilomycin 
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A1 and with or without dissipation of the pH gradient across the vacuolar membrane 
with methylamine. In a first step, the calcium deposition in HAoSMCs was determined. As 
illustrated in Fig. 1, the calcium content of HAoSMCs increased significantly following 14 
days of treatment with calcification media containing 3 mM sodium phosphate. The effect 
on calcium deposition was significantly blunted in the presence of either bafilomycin A1 
(500 nM) or methylamine (1 mM). Thus, alkalinisation of acidic intracellular compartments 
inhibits the phosphate-induced calcification of HAoSMCs.

A further series of experiments explored whether the effects of bafilomycin A1 and me-
thylamine on calcium content were paralleled by corresponding effects on osteo-/chondro-
genic signaling. To this end, the transcript levels of the osteogenic transcription factor CBFA1 
(Core-binding factor α1, RUNX2) and of alkaline phosphatase (ALPL) were determined. As 
shown in Fig. 2, the CBFA1 and ALPL mRNA expression were significantly up-regulated fol-
lowing 24 hours treatment with 2 mM β-glycerophosphate as phosphate donor in HAoSMCs, 

Fig. 1. Bafilomycin A1 and methylamine interfere with 
phosphate-induced calcification in primary human aor-
tic smooth muscle cells. Arithmetic means ± SEM (n=8; 
µg/mg protein) of calcium content in HAoSMCs after 14 
days of treatment with control (white bar, Ctr), with 3 
mM sodium phosphate alone (black bar, Pi), with 3 mM 
sodium phosphate and 500 nM bafilomycin A1 (light grey 
bar, Pi+BafA1) or with 3 mM sodium phosphate and 1 
mM methylamine (dark grey bar, Pi+MeAm). **(p<0.01), 
***(p<0.001) indicates statistically significant difference 
from control treated HAoSMCs; †††(p<0.001) indicates 
statistically significant difference from HAoSMCs treated 
with 3 mM sodium phosphate alone.

Fig. 2. Bafilomycin A1 and methylamine inhibit phosphate-induced osteoinductive signaling in primary hu-
man aortic smooth muscle cells. Arithmetic means ± SEM (n=10; arbitrary units, a.u.) of CBFA1 (A) and ALPL 
(B) relative mRNA expression in HAoSMCs after 24 hours of treatment with control (white bars, Ctr), with 
2 mM β-glycerophosphate alone (black bars, Pi), with 2 mM β-glycerophosphate and 500 nM bafilomycin 
A1 (light grey bars, Pi+BafA1) or with 2 mM β-glycerophosphate and 1 mM methylamine (dark grey bars, 
Pi+MeAm). Arithmetic means ± SEM (n=4; U/mg protein) of alkaline phosphatase activity (C) in HAoSMCs 
after 7 days of treatment with control (white bars, Ctr), with 2 mM β-glycerophosphate alone (black bars, Pi), 
with 2 mM β-glycerophosphate and 500 nM bafilomycin A1 (light grey bars, Pi+BafA1) or with 2 mM β-glyc-
erophosphate and 1 mM methylamine (dark grey bars, Pi+MeAm). * (p<0.05), **(p<0.01), ***(p<0.001) 
indicates statistically significant difference from control treated HAoSMCs; ††(p<0.01), †††(p<0.001) indi-
cates statistically significant difference from HAoSMCs treated with 2 mM β-glycerophosphate alone.
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Fig. 3. Bafilomycin A1 and methylamine interfere with phosphate-induced TGFß1 transcription and sig-
naling in primary human aortic smooth muscle cells. Arithmetic means ± SEM (n=10; arbitrary units, a.u.) 
of TGFB1 (A), NFAT5 (B) and SOX9 (C) relative mRNA expression in HAoSMCs after 24 hours of treatment 
with control (white bars, Ctr), with 2 mM β-glycerophosphate alone (black bars, Pi), with 2 mM β-glycero-
phosphate and 500 nM bafilomycin A1 (light grey bars, Pi+BafA1) or with 2 mM β-glycerophosphate and 1 
mM methylamine (dark grey bars, Pi+MeAm). ***(p<0.001) indicates statistically significant difference from 
control treated HAoSMCs; †††(p<0.001) indicates statistically significant difference from HAoSMCs treated 
with 2 mM β-glycerophosphate alone.

an effect significantly blunted in the presence of either bafilomycin A1 or methylamine (Fig. 
2A, B). Bafilomycin A1 and methylamine similarly interfered with the induction of alkaline 
phosphatase activity in HAoSMCs (Fig. 2C). Treatment for 7 days with 2 mM β-glycerophos-
phate increased significantly the alkaline phosphatase activity in HAoSMCs, an effect again 
significantly blunted following treatment with either bafilomycin A1 or methylamine. Taken 
together, bafilomycin A1 and methylamine inhibited osteo-/chondrogenic transformation of 
HAoSMCs and calcium depositions under high phosphate conditions.

A further series of experiments explored whether bafilomycin A1 and methylamine 
similarly impact on TGFß1 expression and signaling. Therefore, quantitative RT-PCR was 
employed to elucidate the effects on the transcript levels of TGFB1, TGFß1-sensitive tran-
scription factor NFAT5 and NFAT5-downstream transcription factor SOX9. As illustrated in 
Fig. 3, the β-glycerophosphate-induced TGFB1, NFAT5 and SOX9 mRNA expression was sig-
nificantly blunted and virtually abrogated by additional treatment with either bafilomycin 
A1 or methylamine in HAoSMCs. 

Additional experiments addressed the role of TGFß1 on osteo-/chondrogenic signaling. 
As shown in Fig. 4, treatment for 24 hours of HAoSMCs with human TGFß1 protein mimicked 
the effects of β-glycerophosphate and significantly increased NFAT5, SOX9, CBFA1 and ALPL 
mRNA expression. No further significant increase of NFAT5, SOX9, CBFA1 and ALPL mRNA 
expression could be observed upon combined treatment of HAoSMCs with TGFß1 together 
with β-glycerophosphate (Fig. 4). 

A final series of experiments explored whether the influence of high phosphate and 
of alkalinisation of acidic intracellular compartments on osteo-/chondrogenic signaling 
was secondary to their effects on TGFß1 by additional treatment of HAoSMCs with human 
TGFß1 protein. As a result, the transcript levels of NFAT5, SOX9, CBFA1 and ALPL were again 
significantly up-regulated following treatment with human TGFß1 protein in HAoSMCs (Fig. 
5). Bafilomycin A1 again abrogated the β-glycerophosphate-induced NFAT5, SOX9, CBFA1 
and ALPL mRNA expression. The effects of bafilomycin A1 on β-glycerophosphate-induced 
osteo-/chondrogenic signaling were completely reversed by the addition of human TGFß1 
protein (Fig. 5). Thus, alkalinization of acidic cellular compartments inhibits the osteo-/
chondrogenic dedifferentiation of HAoSMCs at least partially by downregulation of TGFB1 and 
TGFβ1-dependent signaling.
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Fig. 4. TGFß1 mim-
ics the effect of phos-
phate on osteo-/chon-
drogenic signaling in 
primary human aortic 
smooth muscle cells. 
Arithmetic means ± 
SEM (n=4; arbitrary 
units, a.u.) of NFAT5 
(A), SOX9 (B), CBFA1 
(C) and ALPL (D) rela-
tive mRNA expression 
in HAoSMCs after 24 
hours of treatment 
with control (white 
bars, Ctr), with 10 
ng/ml human TGFß1 
alone (light grey bars, 
TGFß1), with 2 mM 
β-glycerophosphate 
alone (black bars, Pi) 
or with 2 mM β-glyc-
erophosphate and 10 ng/ml human TGFß1 (dark grey bars, Pi+TGFß1). ***(p<0.001) indicates statistically 
significant difference from control treated HAoSMCs.

Fig. 5. TGFß1 reverses the effect of bafilomycin A1 on phosphate-induced osteo-/chondrogenic signaling 
in primary human aortic smooth muscle cells. Arithmetic means ± SEM (n=8; arbitrary units, a.u.) of NFAT5 
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Discussion

The present study reveals that both, bafilomycin A1 and methylamine counteract 
osteoinductive signaling in primary human aortic smooth muscle cells (HAoSMCs) under 
high phosphate conditions. Treatment of HAoSMCs with high phosphate triggered osteo-/
chondrogenic reprogramming as reflected by up-regulation of osteogenic markers CBFA1 
and ALPL, of TGFB1 and TGFß1-sensitive transcription factors NFAT5 and SOX9 expression, 
as well as alkaline phosphatase activity and calcium deposition. All those effects in HAoSMCs 
were ameliorated by both, bafilomycin A1 and methylamine. Methylamine and bafilomycin 
A1 are both known to interfere with lysosomal acidification [36-38]. Bafilomycin A1 may 
further decrease the cytoplasmic pH, while methylamine rather increases cytoplasmic pH 
[37, 38]. Thus alkalinization of acidic intracellular compartments rather than alterations of 
cytosolic pH may account for the inhibitory effects of bafilomycin A1 and methylamine on 
osteoinductive signaling.

Treatment of HAoSMCs with TGFß1 fully mimics the effect of high phosphate on the 
osteo-/chondrogenic signaling. The effects of phosphate and TGFß1 were not additive. The 
effect of phosphate with exogenously added TGFß1 on osteo-/condrogenic transformation was 
insensitive to bafilomycin A1. Alkalinization of acidic cellular compartments thus interferes with 
osteo-/chondrogenic signaling by affecting a mechanism upstream of TGFß1. Alkalinization of 
acidic cellular compartments may also prevent intracellular calcium overload and apoptosis 
of vascular smooth muscle cells (VSMCs) [39]. The present observations do not allow safe 
conclusions on the mechanisms involved in bafilomycin A1 and methylamine sensitivity of 
TGFß1 expression and function. 

Alkalinization of acidic cellular compartments has previously been shown to impede the 
maturation of TGFß1, an effect presumably due to inhibition of pH-sensitive luminal enzymes 
[30]. Impaired acidification of endosomes could further disrupt receptor/ligand dissociation 
and interfere with TGFß1 receptor externalization [40, 41]. How an alkalinization of the acidic 
cellular compartments affects the TGFB1 transcript levels, remains, however, elusive. TGFß1 
is known to be up-regulated by excessive extracellular phosphate concentrations [42] and to 
stimulate cellular senescence thus contributing to aging and vascular osteoinduction [42]. 
Conversely, interference with TGFß1 signaling counteracts vascular calcification [43]. 

In view of previous [28] and present observations, alkalinization of acidic cellular 
compartments may be a novel therapeutic option in the prevention of vascular calcification. 
The treatment may be particularly important in patients with chronic kidney disease 
(CKD), which suffer from hyperphosphatemia and mineral bone disorder (MBD) [15, 44]. 
In CKD patients stimulation of osteo-/chondrogenic reprogramming [45] leads to vascular 
calcification, which in turn triggers cardiovascular events [46], the leading cause of death 
in those patients [47]. Osteo-/chondrogenic reprogramming and vascular calcification 
may affect further clinical conditions. NFAT5 is up-regulated by hyperglycaemia [48] and 
NFAT5-dependent osteo-/chondrogenic transformation of VSMCs may thus lead to vascular 
calcification in diabetes [49]. NFAT5 is further up-regulated and thus osteo-/chondrogenic 
reprogramming presumably fostered by dehydration [50], inflammation [50], hypoxia [51] 
and ischemia [51].

(A), SOX9 (B), CBFA1 (C) and ALPL (D) relative mRNA expression in HAoSMCs after 24 hours of treatment 
with control (white bars, Ctr), with 10 ng/ml human TGFß1 alone (light grey bars, TGFß1), with 2 mM 
β-glycerophosphate alone (black bars, Pi), with 2 mM β-glycerophosphate and 500 nM bafilomycin A1 (mid-
dle grey bars, Pi+BafA1) or with 2 mM β-glycerophosphate, 500 nM bafilomycin A1 and 10 ng/ml human 
TGFß1 (dark grey bars, Pi+BafA1+TGFß1). *(p<0.05), **(p<0.01), ***(p<0.001) indicates statistically sig-
nificant difference from control treated HAoSMCs; †(p<0.05), ††(p<0.01) indicates statistically significant 
difference from HAoSMCs treated with 2 mM β-glycerophosphate alone. $(p<0.05), $$(p<0.01) indicates 
statistically significant difference between HAoSMCs treated with Pi+BafA1 and Pi+BafA1+TGFß1.
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