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Background. Aggregation of unfolded proteins occurs mainly through the exposed hydrophobic surfaces. Any mechanism of
inhibition of this aggregation should explain the prevention of these hydrophobic interactions. Though arginine is prevalently
used as an aggregation suppressor, its mechanism of action is not clearly understood. We propose a mechanism based on the
hydrophobic interactions of arginine. Methodology. We have analyzed arginine solution for its hydrotropic effect by pyrene
solubility and the presence of hydrophobic environment by 1-anilino-8-naphthalene sulfonic acid fluorescence. Mass
spectroscopic analyses show that arginine forms molecular clusters in the gas phase and the cluster composition is dependent
on the solution conditions. Light scattering studies indicate that arginine exists as clusters in solution. In the presence of
arginine, the reverse phase chromatographic elution profile of Alzheimer’s amyloid beta 1-42 (Ab1-42) peptide is modified.
Changes in the hydrodynamic volume of Ab1-42 in the presence of arginine measured by size exclusion chromatography show
that arginine binds to Ab1-42. Arginine increases the solubility of Ab1-42 peptide in aqueous medium. It decreases the
aggregation of Ab1-42 as observed by atomic force microscopy. Conclusions. Based on our experimental results we propose
that molecular clusters of arginine in aqueous solutions display a hydrophobic surface by the alignment of its three methylene
groups. The hydrophobic surfaces present on the proteins interact with the hydrophobic surface presented by the arginine
clusters. The masking of hydrophobic surface inhibits protein-protein aggregation. This mechanism is also responsible for the
hydrotropic effect of arginine on various compounds. It is also explained why other amino acids fail to inhibit the protein
aggregation.
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INTRODUCTION
Understanding protein aggregation during refolding and expres-

sion of proteins in heterologous systems is an important area in

basic research as well as in pharmaceutical industry. Protein

aggregation is also thought to be associated with several disease

processes. It is generally observed that proteins tend to aggregate

during in vitro refolding of proteins when the denaturant is being

removed [1]. The non-polar residues exposed during denaturation

mediate this aggregation [2]. The intra-chain interactions lead to

specific folding of polypeptide to assume native conformation. The

inter-chain interactions lead to protein aggregation. Favoring the

kinetic competition toward intra-chain interactions is an important

issue for the generation of proteins in native state. At present, there

is no general panacea for this problem. Currently, this problem is

being dealt with empirically by the addition of solutes and co-

solvents to the protein solutions. Solution additives such as amino

acids, salts, osmolytes can modify the solution behavior of the

proteins [3 and the references therein; 4]. Many theories have

been proposed to explain the effect of these solution additives for

the prevention of protein aggregation [5–9, reviewed in 10]. These

mechanisms are based on the interaction of additives with proteins

(preferential interaction) [7,10] and amino acids (amino acid

solubility) [10] or the effects on water structure (surface tension)

[11]. An attempt has been made to design solution additives using

‘gap effect (similar to osmotic stress) [8]. However, this hypothesis

cannot differentiate between a denaturant, a solubilizer, a stabilizer

and an aggregation suppressor.

Arginine and proline have been consistently shown to be helpful

in preventing protein aggregation due to heating, dilution or

partial unfolding [12–17]. Arginine does not change the

equilibrium of the folding process [15,17,18]. It only prevents

the association of denatured or partially folded protein [19–23].

The hydrotropic effect of arginine on fatty acids has also been

documented [24]. Experimental results show that arginine shifts

the second virial coefficient to the positive side and suppresses

aggregation [25,26]. Though it has been termed as the most polar

amino acid, arginine exhibits hydrotropic effect. Its effect has been

observed with proteins, peptides and fatty acids. It has been

observed that either the surface tension effect or any other

parameters discussed earlier cannot explain the effect of arginine

[10]. The explanations proposed so far do not clearly distinguish

the interactions of arginine with protein and water. It is also not

explained how these are different from the interactions of other
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additives that do not inhibit protein aggregation. All proposed

mechanisms do not consider the hydrophobic interactions, which

are mainly responsible for the aggregation of unfolded proteins. It

has not been experimentally verified whether arginine combines

with the protein or peptide involving the exposed hydrophobic

region and/or modulates the hydrophobic interactions. It has been

suggested that multimeric forms proline may be responsible for its

aggregation inhibitory effects [12,13]. However, there is no direct

evidence in these studies to show that the multimeric forms

modulate the hydrophobic properties of the protein. To answer

these questions, we have chosen the mouse amyloid Ab1-42 peptide

as the model system because it is insoluble in aqueous medium and

its aggregation pattern due to hydrophobic interactions is

characterized. Our results show that arginine is present as

molecular clusters in solutions. These clusters present a hydropho-

bic surface by the alignment of its methylene groups. This

hydrophobic surface modulates the hydrophobic behavior and

prevents hydrophobic surface induced aggregation by binding to

Ab1-42. The results presented here are also the first report of the

effects of amino acids on Ab1-42 solubilization and aggregation.

RESULTS AND DISCUSSION

Arginine solutions present hydrophobic

environments
The polarity of arginine solutions in 0.02 M sodium phosphate

buffer, pH 7.4, (PB) was studied using pyrene solubility and ANS

fluorescence characteristics. Pyrene, with its polarity sensing

solubility is useful for such studies. Pyrene is sparingly soluble in

water. Its solubility increases with the decrease in the polarity of

the solvent. Arginine increased the solubility of pyrene in PB in

a dose dependent manner (Figure 1A). At 0.5 M arginine

concentration, the pyrene solubility increased by three-fold. This

hydrotropic effect of arginine has been observed with many other

systems as described earlier. However, the mechanism for the

hydrotropic effect of arginine is not clear [18,27]. The part of the

arginine molecule, which could be responsible for this effect on the

non-polar compounds are its three methylene groups (Cb, Cc and

Cd). The hydrophobic interaction of these methylene groups has

been observed in other systems as well [28]. This aliphatic side-

chain of arginine is shown to interact with the naphthalene [29] or

the phenyl [30,31] ring of ANS. In our experiments, an increase in

the intensity of fluorescence emission and a blue shift of the

emission lmax has been observed in a concentration dependent

manner (Figure 1B). These two changes are characteristics of ANS

fluorescence when it is in a hydrophobic environment [32]. Two

fold increase in the intensity of fluorescence emission and a blue

shift of the emission lmax of 12 nm has been observed with 0.5 M

arginine. The hydrotropic effect on pyrene and the ANS

fluorescence characteristics indicate that arginine solutions display

hydrophobic environment. The interactions resulting in the

display of hydrophobic environment are non-covalent in nature

and are affected by an increase in solution temperature. Above

45uC, the ANS fluorescence intensity decreased (Figure 1C). The

hydrophobic environment of the arginine solutions may interfere

with the hydrophobic association of unfolded proteins. Prevented

from aggregating, the unfolded proteins remain soluble. The

soluble unfolded proteins can fold into native conformation. This

would increase the yield of proteins with native conformation.

Arginine forms molecular clusters
Interaction of arginine with other molecules involves both its polar

and non-polar moieties. Experimental evidences using model

compounds show that 3–5 arginine molecules are required to bind

one ANS molecule and the binding is cooperative [33]. It is

probable that ANS binds to an arginine cluster. Mass spectroscopy

is a useful technique to analyze the clustering of amino acids. The

previous mass spectroscopic studies of amino acids were carried

Figure 1. Non-polar environment in arginine solutions. (A) Pyrene
solubility in presence of arginine. The solubility is expressed as fold-
increase over the control (solubility in arginine/solubility in buffer).
1 mg pyrene was incubated in arginine solutions at the indicated
concentrations at 25uC for 24 h. The absorbance of the supernatant
solution was measured at 350 nm. The solubility increases in a dose
dependent manner. (B) ANS fluorescence in the presence of arginine.
The excitation wavelength was 400 nm and the emission intensity was
scanned from 450 to 600 nm. With the increase in arginine
concentration, the maximum emission wavelength of ANS (250 mM in
PB) decreases (open circle) and relative fluorescence intensity increases
(closed circle). (C) Temperature dependence of ANS fluorescence in the
presence of 0.2 M arginine. The observed intensity is expressed as % of
intensity at 25uC. The intensity decreases above 45uC.
doi:10.1371/journal.pone.0001176.g001
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out in predominantly non-polar or acidic conditions [34,35]. We

have studied the clustering of arginine and other amino acids in

PB, under conditions used in our experiments. Arginine formed

large clusters in the gas phase. The clustering was dependent on

the solution conditions (Figure 2). In water solutions, (pH ,10.5),

largely protonated species of arginine were observed (Figure 2A).

At pH 7.4, buffered with sodium phosphate, the clusters were

associated with sodium and phosphate groups (Figure 2B). At

pH 1.0, less clustering was seen indicating that the carboxylate

groups were involved in the cluster formation (Figure 2C). The

ionic species observed in the gas phase were dependent on the

solution conditions. Similar observations have been made using

analytical laser induced liquid beam desorption mass spectrometry

[35]. Arginine had higher propensity to form clusters than any

other amino acids containing aliphatic chain or many methylene

groups [[34], Figure S1]. It has been shown that very large clusters

of amino acids can be formed extending to nanometer dimensions.

It is also evident that chirally pure amino acids tend to cluster in

rod-shaped elongated structures [36]. Direct evidence for existence

of clusters of arginine in solution was provided by the light

scattering experiments. Rayleigh light scattering by arginine in

solutions increased in a concentration dependent manner

(Figure 2D). However, it appeared to saturate at higher

concentrations beyond 0.5 M. Similar results have been observed

for proline in the concentration range of 1–2.5 M. Even at low

concentrations of arginine, the scattering intensity increased

continuously, whereas this effect was seen with proline only at

concentrations above 1 M. This observation is in accordance with

the observed efficiency of arginine and proline in preventing

protein aggregation. The supramolecular assembly due to

noncovalent polar interactions, is expected to be temperature

sensitive and collapse at higher temperatures. We have seen that

the scattering intensity decreased beyond 45uC (Figure 2D),

similar to the decrease in the ANS fluorescence intensity. These

results show that ANS binds to the hydrophobic surface on the

arginine clusters. When the cluster formation is prevented at above

45uC, the ANS fluorescent intensity decreases.

Large molecular clusters in solution resemble crystalline state in

the intermolecular interactions, orientation of the molecules, self-

salvation, etc. Typically, amino acids orient themselves in

a peptide-like fashion with N- and C-terminal groups at juxtaposi-

tions and the side chains protruding away on both sides [37]. In

contrast, arginine stacks in head-to-tail fashion and a hydrophobic

column composed of the three methylene groups is seen along one

crystallographic axis [[38], Figure S2]. This orientation and packing

is observed in many crystal structures of arginine [39,40]. This

unique property of arginine stems from the strong interactions

between their guanidium and carboxylate groups of adjacent

molecules. These clusters may have conformational properties as

observed in crystal structures and be rod shaped as shown by

calculations for chirally pure proline [36]. In arginine clusters, the

alignment of Cb, Cc and Cd would present a hydrophobic surface

similar to that seen in the crystals (Figure S2).

Arginine modulates the hydrophobic interactions of

Alzheimer’s amyloid beta by binding to it
The hydrophobic environment on the arginine clusters enhanced

the hydrotropy of pyrene and caused an increased intensity and

a blue-shift in the fluorescence emission maximum of ANS.

Arginine has been reported for its hydrotropic effect with wide

ranging molecules such as fatty acids [24] and many processes

involving proteins, such as denaturation [15], folding [18], stability

[41] and solubility [42] and peptide solubility [this study]. The

involvement of hydrophobic surfaces is common to all these

processes. If arginine can reduce the aggregation induced by

hydrophobic surfaces, then the arginine clusters should reduce the

overall hydrophobicity of the molecules. We have used Alzhei-

mer’s amyloid beta peptide (mouse Ab1-42) as a model system to

study the hydrophobic effect of arginine on the interactions

involving hydrophobic surfaces. Ab1-42 forms protofibrils by

hydrophobic interactions. The protofibrils associate to give typical

amyloid fibrils [43]. The reduction in the hydrophobic character

of Ab1-42 should be reflected in a changed profile in reverse phase

chromatography (RPC), its solubility and aggregation properties.

With its hydrophobic regions masked by arginine clusters, the Ab1-

42 should have shorter retention time in RPC in the presence of

arginine. In the presence of arginine, the peptide had a shorter

retention time (12.5 min, 20% acetonitrile) in the RPC C8 column

(Figure 3A) as compared to the peptide without arginine (25 min,

40% acetonitrile). Elution of Ab1-42 peptide in the early phase of

non-polar gradient in the RPC column indicates the less

hydrophobic interactions with the C8 column. Thus, arginine

reduces the overall-hydrophobicity of the Ab1-42 molecule.

To mask the hydrophobic surfaces of Ab1-42, the arginine has to

bind to these surfaces. Arginine exists in clusters and these clusters

have a hydrophobic surface. It is expected that arginine clusters bind

to Ab1-42. Under these conditions the hydrodynamic volume of Ab1-

42 should increase significantly. The size exclusion chromatographic

experiments showed that the monomeric form of Ab1-42 eluted with

a mass corresponding to 6.0 kDa in the presence of 0.2 M arginine

as compared to 4.5 kDa without arginine (Figure 3B). This indicated

that nine arginine molecules have bound to a single Ab1-42 molecule.

The 42 mer form of Ab is known to form tetramer more

predominantly than dimer or trimer [44]. We observed mostly

monomeric and tetrameric forms. The tetrameric form in the

presence of arginine was larger than the control by 6.0 kDa. This

corresponded to an increase in molecular mass equivalent to 36

arginine molecules. The largest peak corresponds to the void volume

fraction. These results clearly show that a large number of arginine

molecules bind to Ab1-42 to mask the hydrophobic surfaces. This

experiment can not be carried out at higher temperatures, since at

higher temperatures Ab1-42 aggregates at faster rates [45].

Arginine increases Ab1-42 solubility and decreases

fibrillar formation
One of the consequences of interactions between Ab1-42 and clusters

of arginine molecules should be the increased hydrotropy of the

peptide in presence of arginine as with pyrene and decreased

aggregation as with proteins. We have determined the Ab solubility

and aggregation in the presence of various amino acids. Arginine

and proline were the two amino acids that enhanced the solubility of

Ab1-42 significantly (Figure 4) and decreased the Ab1-42 aggregation

in aqueous medium (Figure 5A, 5B). There was a parallelism

between the solubility and inhibition of aggregation. The amino

acids having no effect on the solubility did not prevent aggregation

either (Figure S3). At equimolar concentrations, arginine was more

effective than proline. These observations are analogous to the

inhibition of aggregation of proteins due to hydrophobic forces. If it

were the hydrophobic environment presented by the molecular

assembly of these two amino acids that is responsible for the

hydrotropic and anti-aggregation effect, then the nonpolar amino

acids would be expected to be more effective. On the contrary, our

results showed that nonpolar aliphatic amino acids were not effective

either in increasing the solubility (Figure 4) or in inhibiting the Ab1-42

aggregation, in particular (Figure S3, A, B and C) and the protein

aggregation, in general [15]. The intensity of ANS fluorescence was

Hydrotropy by Arginine Cluster
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not affected by the presence of amino acids having long aliphatic

chains and nonpolar amino acids (up to 0.2 M) (Figure S4). It has

been shown using model systems that ANS binds preferentially to

arginine than any other basic amino acids [33]. These amino acids

did not display an equal propensity to form clusters in aqueous

medium as arginine and proline [[34, 35], Figure S1].

The aggregation of unfolded proteins and amyloid type proteins

involve hydrophobic surfaces. In such cases, interactions of the

hydrophobic surfaces provided by the clusters of arginine or

proline would be more effective than the interaction between

protein hydrophobic surface and an individual molecule of these

two amino acids. Secondly, a hydrophobic surface of large

Figure 2. Molecular clusters of arginine in solution. Electrospray mass spectroscopy of amino acids. The aqueous solutions amino acids at 0.2 M
concentrations were used. (A) Arginine exhibits extensive noncovalent protonated clusters when dissolved in water, pH without adjustment was 10.5.
(B) ([nArg]Na)+ and ([nArg]H2PO4)+ clusters are observed when arginine is dissolved in sodium phosphate buffer, pH 7.4. (C) Less extensive clustering
is seen in acidic solutions at pH 1.0. (D) Increase in Rayleigh light scattering by arginine solution (in PB) is concentration dependent (filled circle)
indicating supramolecular assembly. This assembly is temperature sensitive and collapses above 45uC (filled triangle).
doi:10.1371/journal.pone.0001176.g002
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dimensions cannot be maintained in an aqueous environment.

The crystal structures of arginine and proline revealed the

presence of hydrophobic columns along one of its crystallographic

axis [38,46]. Spectroscopic experiments have also demonstrated

the presence of such assemblies in solutions [[34, 35]; present

study]. Small amino acids do not have enough methylene groups

that could provide a hydrophobic surface. The long-chain (lysine,

methionine) amino acids have not been observed to have stacking

interactions even at supersaturating concentrations during crystal-

lizations [37,47–49]. This could be due to the absence of side

chain groups, which can have strong, multiple interactions and

form a planar structure such as guanidium group. Multiple polar

interactions and planar structures of the side chains help in

stacking and having strong interactions with neighboring mole-

cules in aqueous medium. The side chains of other amino acids are

not aligned parallel to each other in their crystal-packing, ruling

out the possibility of stacking. We also did not observe an increase

in ANS fluorescence intensity in the presence of these amino acids

indicating the absence of any hydrophobic surfaces. In the crystal

structure of nonpolar amino acids, it is seen that their side chains

are not parallel, have different conformations and side chains do

not stack [50–52]. Without stacking, tail-to-tail interactions of

these amino acids alone will be very weak to maintain a large

molecular assembly to present a hydrophobic surface in aqueous

Figure 3. Arginine modulates the chromatographic profile of Ab1-42. (A) Reverse phase chromatography of Ab1-42 peptide. 10 mg of peptide was
chromatographed on the RPC C8 column (25064.6 mm) in the presence and absence arginine. The peptide was eluted with 0–60% acetonitrile linear
gradient in PB at a flow rate of 0.7 ml/h and monitored at 257 nm. The arrowhead indicates the start of the gradient. The profiles in the presence and
absence of arginine are indicated. (B) Size exclusion chromatography. 10 mg of Ab1-42 was chromatographed on SMART Superdex G-75 column with
and without arginine. The monomeric and tetrameric forms of Ab1-42 elutes with larger hydrodynamic volume in the presence of arginine (red curve)
compared with the control (blue curve). (The molecular weights are indicated by arrows).
doi:10.1371/journal.pone.0001176.g003
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medium. As these amino acids are polar at one end only, they are

expected to form micellar structures rather than an open-ended

bilayer structure in aqueous solution. In micellar structures, the

hydrophobic moieties are not exposed to bulk aqueous medium.

Hence, they are not available for interaction with the hydrophobic

surfaces of the proteins. With aromatic amino acids, the

dimensions of the side chains, thereby the hydrophobic surface

may be too large to be exposed to water. These observations are

based on the crystallographic studies of amino acids and their

complexes with other ions and amino acids. These studies do not

show any evidence of stacking interactions except for arginine and

proline. There are crystallographic studies reporting stacking

interactions between leucine residues when free leucine binds to

the binding site of leucine/valine/isoleucine binding protein [53].

This may not be an analogous situation of leucine molecules

interacting in aqueous solutions. The leucine and other amino

acids in the binding site of the protein have fixed molecular

orientations such that the interacting free ligand does not have

many conformational probabilities. With the exclusion of water

during binding, the interactions are quite unlike the interactions in

water. We have observed that at 55uC, the fluorescence intensity

(Figure 1C) and the light scattering (Figure 2D) have reached

almost the minimum. In the same temperature range, proline also

loses its inhibitory effect on protein aggregation [46]. In this

temperature range, the polar interactions are affected more than

the hydrophobic ones. Perhaps the cluster formations by these

amino acids using polar interactions are affected thereby

eliminating the anti-aggregation effect. It is common to find that

the aggregates of small molecules and not the monomeric forms as

the biologically active entities. The mechanism of action of

detergents is well known in many applications. The other example

is the nuclear aggregates of polyamines [54]. It is the aggregates

and not the monomeric forms of polyamines that protect the

genomic DNA against DNase I [55].

Our results show that arginine presents a hydrophobic envi-

ronment in solutions, exists in supramolecular assemblies and

binds to Ab1-42. This binding modulates the hydrophobicity of

Ab1-42 molecule and suppresses fibrillar formation.

MATERIALS AND METHODS

Synthesis of Ab1-42

Mouse Ab1-42, DAEFGHDSGFEVRHQKLVFFAEDVGSNK-

GAII GLMVGGVVIA was synthesized using Fmoc chemistry

on an automated peptide synthesizer (model PS3, Protein

Technologies, USA). The peptide was purified on a ProRPC C-

18 column in a FPLC system. The peptide was stored at 220uC as

lyophilized powder. Before use, the peptide was dissolved in

0.01 M NaOH and centrifuged at 16,000 g for 10 min at 4uC.

Pyrene solubility
The solubility of pyrene was measured at various concentrations of

arginine. Arginine at indicated concentrations in PB was in-

cubated with 1 mg of pyrene at 25uC for 24 h. The solutions were

centrifuged at 16,000 g for 15 min at 25uC. The absorbance of the

supernatant was measured at 350 nm.

Figure 4. The effect of amino acids on the solubility of Ab1-42. The amino acids are indicated by single letter code. Data are given as mean6SE of
four experiments in duplicates with 0.2 M amino acids. Diagonal upward bar - 0.5 M proline; vertical bar - 1.0 M proline (mean of 2 experiments). With
arginine, dark shade - 0.3 M arginine; diagonal downward bar - 0.4 M arginine; horizontal bar - 0.5 M arginine (mean of 2 experiments).
doi:10.1371/journal.pone.0001176.g004

Hydrotropy by Arginine Cluster

PLoS ONE | www.plosone.org 6 November 2007 | Issue 11 | e1176



Fluorescence spectroscopy
The changes in the emission wavelength maximum and

fluorescence intensity of 1-anilino-8-naphthalene sulfonic acid

(ANS) were measured in the presence of various concentrations of

arginine, lysine, methionine and leucine in PB at 25uC. The

fluorescence measurements were made using a Varian Cary

Eclipse fluorescence spectrophotometer (Varian, USA). The

excitation was at 400 nm and the emission spectra were recorded

from 450–600 nm with a bandwidth of 5 nm. Blanks contained

only the amino acids at the corresponding concentrations.

The temperature dependence of ANS fluorescence in presence

of 0.2 M arginine were measured by changing the cuvette

temperature by circulating water, maintained at different tem-

peratures with an accuracy of 60.1uC. The cuvettes were allowed

to thermally equilibrate for 5 min before taking the reading.

Mass spectroscopy
The amino acid solutions were prepared in MilliQ water and the

pH was adjusted with dilute H3PO4 or PB. The concentration of

the amino acid was 0.2 M. All mass spectra were obtained using

a nanospray ESI-Q-TOF mass spectrometer (QStar XL, Applied

Biosystems Inc., USA). The signal was tuned on the protonated

dimer of arginine clusters. Tuning on higher-order clusters did not

result in either the signal strength or change in the distribution of

clusters. The settings used in this study were as follows: curtain gas

flow 0.70 ml/min; the ion spray voltage 900 V; the declustering

potentials DP1 100 V and DP2, 12 V; the focusing potential

100 V. The positive ion spectra were obtained for 5 min in

acquire mode. Protonated dimers and trimers always appeared

along with protonated monomers.

Light scattering
Rayleigh scattering of 400 nm light was measured at 90u geometry

on a Jasco J-810 spectrometer fitted with a Jasco FMO427

fluorescence emission monochromator attachment. The excitation

monochromator was set at 400 nm and the emission was scanned

between 385 nm and 410 nm, with the bandpass set at 10 nm for

both monochromators. For room temperature measurements, five

scans were performed for each sample and the measurement at

400 nm was noted and averaged. Arginine solutions were prepared

in PB at indicated concentrations. Triplicate samples were used at

each concentration. Similarly, for measurements at different

temperatures, the peltier attachment of the spectrometer was set to

the desired temperature before the performance of the five scans.

Reverse Phase Chromatography
The Ab1-42 peptide was dissolved in 0.01 M NaOH and

centrifuged at 16,000 g for 10 min at room temperature. The

pH was adjusted to 7.4 by the addition of PB with and without

0.2 M arginine. The final concentration of the peptide was

200 mg/ml. The solutions were incubated for 3 h at room

temperature. 0.05 ml of the solution was loaded on to the RPC

C8 column (25064.6 mm) (Phenomenex, USA) equilibrated with

PB using a Shimadzu HPLC set up (Model SCL-10 AVP,

Shimadzu, Japan). A linear gradient of acetonitrile from 0% to

60% in 30 min was applied at a flow rate of 0.7 ml/min. For the

treated sample, the equilibration and elution buffers contained

0.2 M arginine. The sample was monitored at 257 nm.

Size exclusion chromatography
Chromatography was performed on a SMART analytical Super-

dex G75 column on a SMART system from Amersham

Pharmacia (30 cm length, bed volume 2.4 ml) using a flow rate

of 100 ml/min and with monitoring of absorption of elution

carried out at 257 nm (corresponding to the absorption of

phenylalanine). The column was equilibrated with PB or with

PB containing 0.2 M arginine before loading of peptide samples

(10 mg in 50 ml). The peptide was incubated for 1 h with 0.2 M

arginine before loading.

Ab1-42 solubility measurements
The L-amino acids (Sigma Chemical Co., USA) in 10 mM

phosphate buffer, pH 7.4 (PB) were added to alkali-solubilized

Ab1-42 to give a final concentration of 0.2 M amino acids and

10 mM Ab1-42. After 30 min incubation at 25uC, the tubes were

centrifuged at 16,000 g for 15 min. The supernatant was made

alkaline by the addition of 0.05 M NaOH. The absorbance at

257 nm was read for the supernatant fractions (Lambda 25 model,

Perkin Elmer, USA). The absorbance was compared with the

10 mM Ab1-42 in 0.01 M NaOH. 0.2 M solutions of tyrosine,

tryptophan, glutamic acid and phenylalanine could not be

prepared due to their insolubility in PB.

Atomic Force Microscopy (AFM)
All images were obtained in the MAC mode to ensure minimum

sample damage using a PicoSPM equipment (Molecular Imaging,

USA). AuCr coated MAC cantilevers, 225 mm long, resonance

frequency of 83 kHz and force constant of 2.8 N/m were used for

imaging. Scan speed used in was 1 line/sec. 2 ml of 10 mM Ab1-42

solution with and without 0.2 M amino acids was deposited on

a freshly cleaved piece of mica (161 cm) and allowed to stand for

2 min. Imaging was carried out in air. Minimum image processing

(first order flattening and brightness contrast) was used.

Figure 5. Inhibition of Ab1-42 fibril formation by arginine and praline.
AFM images (363 micron). Ab1-42 was incubated in PB at 25̊C for 24 h.
(A) Inhibition of aggregation of Ab1-42 by 0.2 M arginine. (B) Inhibition
of aggregation of Ab1-42 by 0.2 M proline. (C) Complete solubilization of
Ab1-42 at pH 10.5. No fibrils were observed. (D) Control experiment in
which the fibrils formed. (Inset) Transmission electron micrograph of
24 h control sample at higher magnification (22,0006) showing
spherical aggregating units.
doi:10.1371/journal.pone.0001176.g005
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Transmission electron microscopy (TEM)
Ab1-42 at 10 mM concentration in PB was incubated for 24 h at 25uC.

The samples were agitated gently before being spotted on a 400-mesh

carbon-coated EM grid for two minutes and stained with 1% uranyl

acetate for 1 min. Micrographs were recorded using transmission

electron microscope (Morgagni 268D, FEI-Philips, USA).

Crystal packing diagram
The coordinates were taken from Karle and Karle [38] and

visualized using the program Mercury (Version 1.4) [56]. The view

is along the b-axis.

SUPPORTING INFORMATION

Figure S1 Mass spectra of methionine, lysine, leucine and

proline. 0.2 M solutions in PB were used. The scan conditions

were the same as used for arginine (Figure 2). (A) methionine, (B)

lysine and (C) leucine do not display higher order clustering as

proline (D) or arginine (Figure 2).

Found at: doi:10.1371/journal.pone.0001176.s001 (9.27 MB TIF)

Figure S2 The crystal packing of arginine molecule shown in

sphere model. The yellow color indicates the hydrophobic regions

of arginine and the solvent molecules were shown in orange color.

The coordinates were taken from Karle and Karle (see ref) and

visualized using the program Mercury (Version 1.4). The view is

along the b-axis.

Found at: doi:10.1371/journal.pone.0001176.s002 (0.17 MB TIF)

Figure S3 AFM images of Ab1-42 in the presence of 0.2 M

amino acids. (A) methionine after 24 h; (B) leucine after 24 h; (C)

lysine after 24 h. (D) arginine after 48 h. Only arginine prevents

Ab1-42 aggregation significantly. Legend as in the figure 5.

Found at: doi:10.1371/journal.pone.0001176.s003 (2.45 MB TIF)

Figure S4 ANS fluorescence in presence of arginine, methio-

nine, lysine and leucine. The excitation wavelength was 400 nm.

ANS fluorescent intensity was measured at the emission lmax for

the respective amino acids at different concentrations. ANS was

present at 250 mM concentration. The amino acids of respective

concentration formed the control. Legend as in figure 1.

Found at: doi:10.1371/journal.pone.0001176.s004 (8.49 MB TIF)
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