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Inhibition of RANKL-stimulated osteoclast
differentiation by Schisandra chinensis
through down-regulation of NFATc1 and
c-fos expression
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Abstract

Background: Schisandra chinenesis (SC) has been reported to have ameliorative effect on osteoporosis. However,

the mechanisms underlying the anti-osteoporosis activity of SC have not been clearly elucidated. In the present

study, we determined the effects of SC on The receptor activator of NF-kB ligand (RANKL)-induced

osteoclastogenesis and its potential mechanism.

Methods: Raw 264.7 cells were treated with 0.6, 6 and 60 μg/mL SC in the presence of 100 ng/mL RANKL for

7 days. RANKL-induced osteoclast formation was analyzed by tartrate resistant acid phosphatase (TRAP) staining.

The osteoclast differentiation-related factors were confirmed along with TNF-α.

Results: SC inhibits the RANKL-induced osteoclast differentiation in dose-dependent manner within non-toxic

concentrations. The supernatant concentrations of TNF-α were significantly decreased by SC treatment. In addition,

osteoclastogenesis-related factors, TRAP6 and NF-κB, were markedly decreased by SC in RANKL-induced osteoclasts.

Mechanistically, SC reduced the RANKL-triggered NFATc1 and c-fos expressions.

Conclusions: Taken together, our data suggest that SC can modulate bone metabolism by suppressing RANKL-

induced osteoclast differentiation.
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Background
Osteoclast, the bone-resorbing multinucleated giant cells,
developed from the monocyte-macrophage lineage cells
[1]. Excessive osteoclast activity leads to an imbalance be-
tween bone resorption and formation, which is frequently
observed in various osteopenic diseases such as osteopor-
osis [2], skeletal metastases [3], periodontitis [4], Paget’s
disease [5] and rheumatoid arthritis [6].
The receptor activator of nuclear factor-kappa B

ligand (RANKL) belongs to the tumor necrosis factor
(TNF) receptor-ligand family, and is directly involved
in the differentiation of osteoclasts through its receptor,

RANK [7]. RANKL-induced stimulation of RANK on
hematopoietic precursor cells leads to the recruitment
of TNF receptor-associated factors (TRAF) and the
following activation of several downstream signaling
pathways such as nuclear factor-kappa B (NF-κB),
mitogen-activated protein kinase (MAPKs), c-fos and
nuclear factor of activated T cells (NFATc1), ultimately
resulting in generating mature osteoclasts [8–11]. There-
fore, the investigation of targeted modulation of RANKL
signaling pathways to regulate the differentiation of osteo-
clasts may have significant therapeutic implications for
the treatment of bone erosive diseases such as osteopor-
osis, periodontitis and osteoarthritis [12].
The fruit of Schisandra chinensis (Turcz.) Baill. (Schisan-

draceae) has been used for the treatment of rheumatoidal
and degenerative arthritis in traditional Korean medicines
[13]. S. chinensis, also known as Omija in Korea, has been
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widely harvested in East Asia including Korea, China,
Japan and Russia [14]. S. chinensis contains several
lignans, mainly schizandrin and gomisin A, which have
been shown to possess a stimulating activity of osteo-
blastic proliferation in vitro [15, 16]. Recently, S. chi-
nensis has been reported to exhibit an ameliorative
effects against osteoporosis through the activation of
estrogen receptors [17]. Several individual pathways includ-
ing NF-κB and MAPKs pathways have been suggested for
regulation of lipopolysaccharide-induced inflammation by
treatment of S. chinensis or its lignans [18–20]. Interest-
ingly, Schisantherin A, a main constituent of Schisandra
sphenanthera Rehder & E. H. Wilson (Schisandraceae),
not a predominant constituent of S. chinensis, is reported
to suppress the osteoclast formation in vitro [21, 22].

However, the effects of S. chinensis on the differentiation
of osteoclasts and their underlying mechanisms have not
been fully clarified yet.
In the present study, we evaluated the effects of S.

chinensis on RANKL-induced osteoclastogenesis and
investigated the potential mechanisms of inhibiting
osteoclasts differentiation by interfering with RANKL
signaling pathways.

Methods
Preparation of SC

S. chinensis was purchased from OmizaValley Inc.
(Mungyeong-si, Korea). The crude extract of S. chinensis
was prepared by refluxing. 400 g of S. chinensis was boiled
with distilled water at 100 °C for 2 h and filtered through

Fig. 1 The effects of SC on osteoclast differentiation in RANKL-stimulated RAW 264.7 cells. a RAW 264.7 cells (8 × 104 per well) were incubated

with 100 ng/mL RANKL or both RANKL and SC (0.6, 6 and 60 μg/mL) for 7 days and then stained for TRAP. Magnification, 100× original. b TRAP

activity was measured using an ELISA reader (optical density, 410 nm). Data are represented as the means ± S.E.M. of three independent

experiments. * p < 0.05 compared with only RANKL-treated cells. c Cell viability was confirmed by MTT assay
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185 mm filter paper. The extract was lyophilized and
called SC. The final yield was 35%. A voucher speci-
men (SC-W100) of plant was deposited in the college
of Korean Medicine, Kyung Hee University, Seoul,
Korea. The quality evaluation of SC was determined by
high-performance liquid chromatography with evaporative
light scattering detector (HPLC-ELSD; HPLC Agilent
1100 series). Shizandrin was used as a marker of SC.
Thirty mg SC was dissolved in 1 mL 30% ethanol and
sonicated for 30 min. Following filtering through a
0.45 μm filter membrane, 10 μL of 2 fold diluted aliquot
was injected to HPLC-ELSD system equipped with a
Atlantis HILIC silica (4.6 × 150 mm, 5 μm, 100 Å). The
correlation coefficient (R2) reached 0.9999. The concen-
tration of schizandrin in SC was 164.372 μg/mL (1.820%)
shown in Additional file 1.

Osteoclast formation

The murine RAW 264.7 cells were seeded at a density
of 8 × 104 cells per well in 6 well plates. The growing
medium is α-Minimum Essential Medium Eagle (α-MEM)
supplemented with 10% heat inactivated fetal bovine
serum (FBS) and 100 units/mL penicillin. To generate
osteoclasts, all cells without non-treated cells were incu-
bated with RANKL. Then RANKL-induced cells were
either left untreated or treated with various concentrations
of SC 0.6, 6 or 60 μg/mL for 7 days. Non-treated cells
were not treated RANKL and SC as normal control. The
media was replaced after 3 days. Tartrate resistant acid
phosphatase (TRAP) staining was performed in 7 days

using a commercial kit (Sigma, MO, USA). Cells were
treated with TRAP staining solution including 1% naph-
thol AS-BI phosphate, 2% diazotized Fast Garnet GBC
solution in sodium nitrite, 4% acetate solution and 2%
tartrate solution for 30 min. TRAP-stained cells were
counterstained by hematoxylin and monitored under a
light microscope using the Leica Application Suite (LAS;
Leica Microsystems, Buffalo Grove, IL, USA). Osteoclasts
were defined as TRAP-positive multinucleated cells (> 3
nuclei/cell). To quantify the TRAP intensity, each well
was added 400 μL of citrate solution including sodium tar-
trate and p-nitrophenylphosphate. After 1 h, supernatant
was collected, 400 μL of 0.1 N sodium hydroxide was
added and measured at 410 nm using a microplate
reading instrument. The experiments were carried out
3 times in triplicate measurements. The cytotoxicity of
Raw 264.7 cells was confirmed by 3-(4,5-Dimethylthia-
zol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay.
Raw 264.7 cells were treated in the presence of 0.6, 6 and
60 μg/mL SC for 24 h. 2 mg/mL MTT solution was added
into cells and color density at 570 nm absorbance was
detected by a microplate reading instrument.

Enzyme-linked immunosorbent assay (ELISA)

The supernatants derived from osteoclasts were collected
at 7 days after RANKL and SC treatment. The concentra-
tion of TNF-α was quantified using TNF-α ELISA kit (BD
Bioscience, San Jose, CA, USA) according to the manu-
facturer’s protocol. Color development at 450 nm was
measured.

Fig. 2 The effect of SC on TNF-α secretion in RANKL-stimulated RAW 264.7 cells. RAW 264.7 cells (8 × 104 per well) were incubated with 100 ng/

mL RANKL or both RANKL and SC (0.6, 6 and 60 μg/mL). After 7 days, the supernatant was collected and centrifuged. Total TNF-α concentration

was calculated by ELISA. Data are represented as the means ± S.E.M. of three independent experiments. # p < 0.05 compared with non-treated

cells. * p < 0.05 and ** p < 0.01 compared with only RANKL-treated cells
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Western blotting analysis

RANKL-induced osteoclast was prepared as mentioned
above. On the 7 days after osteoclast induction, cells were
lysed with RIPA buffer (Pierce Biotechnology, Rockford, IL,
USA) containing protease inhibitors (Roche, Hoffmann,
USA). 30 μg protein samples were separated in sodium do-
decyl sulfate-polyacrylamide gel, and transferred to polyviny-
lidene fluoride membrane (Bio-Rad, Hercules, CA, USA).
Each membrane was incubated with primary β-actin,
TRAF6, NF-κB, Lamin B, IκB-α, p-IκB-α, extracellular sig-
nal–regulated kinase (ERK), c-Jun N-terminal kinase (JNK),
p38, NFATc1 and c-fos antibodies (Cell Signaling, USA)
overnight at 4 °C. Anti-mouse IgG was used as the secondary
antibody. Immunoreactivity was detected using an enhanced
chemiluminescence detection system. The experiments were
carried out 3 times in triplicate measurements.

Statistical analysis

Significance was determined by one-way analysis of
variance (ANOVA) and Dunnett’s multiple comparison

tests. In all analyses, P < 0.05 was taken to indicate stat-
istical significance.

Results
SC suppressed RANKL-induced osteoclast formation

Numerous mature multinucleated TRAP-positive osteo-
clasts were seen in RANKL-stimulated cells. SC treatment
significantly decreased osteoclast differentiation as shown
in images by light microscope (Fig. 1a). Also, SC treatment
showed the inhibition of RANKL-induced osteoclastogen-
esis in a dose-dependent manner (17.06, 20.76 and
30.77%, respectively), as determined by measuring the cel-
lular TRAP activity. All concentrations of SC exerted
equivalent effects on cell viability. 0.6, 6 and 60 μg/mL SC
treatment had no cytotoxicity to RAW 264.7 cell (Fig. 1b).

SC suppressed RANKL-induced TNF-α secretion

RANKL increased the concentration of TNF-α in Raw
264.7 cells. Cells treated with SC decreased the secretion
of TNF-α compared with cells treated with RANKL alone

Fig. 3 The effect of SC on TRAF6 protein expression in RANKL-stimulated RAW 264.7 cells. RAW 264.7 cells (8 × 104 per well) were incubated with

100 ng/mL RANKL or both RANKL and SC (0.6, 6 and 60 μg/mL). After 7 days, total protein was then isolated and protein expression levels were

evaluated by Western blot assay. Data are represented as the means ± S.E.M. of three independent experiments. # p < 0.05 compared with non-

treated cells. * p < 0.05 and ** p < 0.01 compared with only RANKL-treated cells
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(Fig. 2). Especially, the levels of TNF-α were significantly
reduced at the concentrations of 6 and 60 μg/mL SC. The
inhibition rates of TNF-α secretion by 6 and 60 μg/mL SC
were 19.3 and 27.6%, respectively.

SC suppressed RANKL-induced TRAF6 expression

Since TRAF6 is directly recruited by RANK-RANKL com-
plex and related with TNF-α signaling, we confirmed the
protein expression of TRAF6 in RANKL-induced Raw
264.7 cells. The protein level of TRAF6 was significantly
increased by RANKL treatment. Otherwise, SC at 6 and
60 μg/mL concentrations exhibited a marked inhibitory
effect on TRAF6 expression in RANKL-induced Raw
264.7 cells (Fig. 3).

SC suppressed RANKL-induced NF-κB translocation and

IκB-α phosphorylation, not MAPKs phosphorylation

RANKL stimulation induced the translocation of NF-κB
into nucleus and the phosphorylation of IκB-α in

cytoplasm. The expressions of NF-κB in nuclear protein
were reduced by treatment with 6 and 60 μg/mL SC
(Fig. 4a). Similarly, SC co-treated with RANKL inhib-
ited the phosphorylation of IκB-α in cytoplasmic protein
compared to cells treated with RANKL alone. In addition,
we analyzed the expressions of MAPKs such as ERK, JNK
and p38 in RANKL-induced osteoclasts. Compared to
non-treated cells, RANKL treatment showed increments
of ERK, JNK and p38, respectively. However, SC did not
alter RANKL-induced MAPKs expression (Fig. 4b).

SC suppressed RANKL-induced osteoclast-specific

transcription factors

To further define the mechanisms underlying the in-
hibitory effects of SC on NF-κB activation, the effects
of SC on RANKL-induced osteoclast-specific transcrip-
tion factors such as NFATc1 and c-fos were investigated.
As shown in Fig. 5, the expression of NFATc1 was
dose-dependently down-regulated in SC-treated cells. In

Fig. 4 The effects of SC on (a) NF-κB and IκB-α, and (b) MAPKs pathway-related protein expressions in RANKL-stimulated RAW 264.7 cells. RAW

264.7 cells were cultured in the presence of RANKL with the vehicle or SC. After 7 days, total protein was then isolated and protein expression

levels were evaluated by Western blot assay. Data are represented as the means ± S.E.M. of three independent experiments. ### p < 0.001

compared with non-treated cells. * p < 0.05 and *** p < 0.001 compared with only RANKL-treated cells
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addition, increased c-fos expressions in RANKL-induced
osteoclast were significantly suppressed by treatment with
6 and 60 μg/mL SC.

Discussion
The bone loss is caused by enhanced bone resorption
with excessive RANKL signaling [23]. As such, inhibiting
the formation of bone-resorbing osteoclasts through
suppressing the RANKL signaling or its downstream
pathways should be a rational target for the treatment of
osteopenic diseases. In the present study, TRAP activ-
ities were measured in RANKL-treated Raw 264.7 cells
to evaluate the effects of SC on osteoclast differentiation.
RANKL induced the development of multinucleated os-
teoclasts from precursors, and SC treatments exerted
preventive effects on the formation of the TRAP-positive
osteoclasts without cytotoxicity.
TNF-α mediates RANKL stimulation of osteoclast differ-

entiation by an autocrine mechanism [24]. Recently, it has
been reported that TNF-α directly induces the osteoclasto-
genesis and bone loss. Since both RANKL and TNF-α can
activate the same downstream signaling pathways such as
NF-κB signal and MAPKs cascades [25], the effect of
TNF-α on osteoclasts activation is strongly synergistic with
RANKL. Our results showed SC (6 and 60 μg/mL) inhib-
ited RANKL-induced TNFα secretion in RAW 264.7 cells.
These results indicate that SC acts directly on osteoclast
precursors to suppress osteoclast formation.

TRAF6-mediated signals play a key role in RANKL-in-
duced signaling and osteoclast differentiation [26].
Binding of RANKL to RANK recruits TRAF6, forms an
intermediate complex, which, in turn, can regulate NF-κB
and MAPKs signaling pathways [27]. TRAF6 is pres-
ently known to be involved also in TNF-α signaling
[28]. In the present study, enhanced TRAF6 expression
in RANKL-induced osteoclasts was deceased by SC
treatments (6 and 60 μg/mL), indicating that SC in-
hibits osteoclast differentiation via down-regulating the
activity of TRAF6-dependent mechanism.
NF-κB pathway is one of the major intercellular

pathways of osteoclasogenesis from precursors directly
induced by RANKL-RANK-TRAF6 signaling axis [29].
It is well established that NF-κB pathway in RANKL-in-
duced activation is essential for NFATc1 and c-fos
expressions and early osteoclast differentiation [30, 31].
In the present study, SC inhibited the phosphorylation
of IκB-α and the expressions of NF-κB in RANKL-in-
duced osteoclasts (6 and 60 μg/mL), which means that
SC could inhibit RANKL-induced activation of NF-κB
pathway.
Besides the NF-κB pathway, MAPKs pathways, in-

cluding ERK, JNK and p38, can be also stimulated by
RANKL signaling [27]. Specific inhibitors of MAPKs
pathways exhibit the effects of profound suppressions
on RANKL-induced osteoclastogenesis from precursor
cells [32–34]. Intriguingly, we observe no evidence that

Fig. 5 The effects of SC on NFATc1 and c-fos protein expressions in RANKL-stimulated RAW 264.7 cells. RAW 264.7 cells were cultured in the

presence of RANKL with the vehicle or SC. After 7 days, total protein was then isolated and protein expression levels were evaluated by Western

blot assay. Data are represented as the means ± S.E.M. of three independent experiments. ## p < 0.01 and ### p < 0.001 compared with non-treated

cells. * p < 0.05, ** p < 0.01 and *** p < 0.001 compared with only RANKL-treated cells
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SC could inhibit RANKL-induced MAPKs pathway during
osteoclastogenesis. Our results showed ERK, JNK and p38
phosphorylation was induced by RANKL stimulation, and
SC treatments did not alter the increased phosphorylation
of RANKL-induced MAPKs. These results seem to indi-
cate that SC treatments inhibited RANKL signaling inde-
pendently from MAPKs pathways.
NFATc1 and c-fos are specific and indispensable tran-

scription factors for osteoclast formation [35, 36].
These factors are regarded two of the most important
transcription factors in osteoclastogenesis, and lack of
any of these two components blocks osteoclast forma-
tion. NFATc1, as a master regulator downstream of
c-fos, NF-κB and MAPKs, integrates RANKL signaling
in terminal differentiation of osteoclasts [37]. NFATc1
cooperates with c-fos to activate the autoamplification
of NFATc1 itself and the transcription of osteoclast-specific
genes including calcitonin receptor, TRAP, matrix metallo-
peptidase 9, and cathepsin K [38–40]. Expression of c-fos is
modulated by various signaling pathways such as
NF-κB, MAPKs, phosphatidylinositol 3-kinase-Akt and
calcium/calmodulin-dependent kinase IV-cAMP re-
sponse element-binding protein pathways [41]. In this
study, SC inhibited the expressions of NFATc1 and
c-fos in RANKL-induced osteoclasts. These results suggest
that SC could suppress the osteoclastogenesis through
osteoclast-specific transcriptional regulation.

Conclusions

In conclusion, our current data demonstrate that SC at-
tenuates RANKL-induced RAW 264.7 cells differentiation
into osteoclasts. Furthermore, the effects of SC were asso-
ciated with the inhibition of TRAF6 recruitment and in-
activation of NF-κB pathway, but not MAPKs pathways,
leading to the down-regulations of transcription factors
including c-fos and NFATc1. This suggests that S. chinen-
sis could be a promising therapeutic agent for osteopenic
disorders.

Additional file

Additional file 1: HPLC chromatograms of SC. The concentration of

schizandrin in SC was 164.372 μg/mL (1.820%). (TIF 249 kb)
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