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OBJECTIVE—Oxidative stress is a key pathogenic factor in
diabetic retinopathy. We previously showed that lovastatin mit-
igates blood-retinal barrier (BRB) breakdown in db/db mice. The
purpose of this study is to determine the mechanisms underlying
the salutary effects of lovastatin in diabetic retinopathy.

RESEARCH DESIGN AND METHODS—Expression of
NADPH oxidase (Nox) 4, vascular endothelial growth factor
(VEGF), and hypoxia-inducible factor (HIF)-1�; production of
reactive oxygen species (ROS); and retinal vascular permeability
were measured in cultured retinal capillary endothelial cells
(RCECs) and in db/db mice treated with lovastatin.

RESULTS—Expressions of Nox4 and VEGF were significantly
increased in retinas of db/db mice and reduced by lovastatin
treatment. In cultured RCECs, hypoxia and high glucose upregu-
lated mRNA and protein expression of Nox4, ROS generation,
and VEGF level. These changes were abrogated by pretreatment
with lovastatin or NADPH oxidase inhibitor diphenyleneiodo-
nium chloride. Overexpression of Nox4 increased basal level of
ROS generation, HIF-1�, and VEGF expression in RCECs. In
contrast, blockade of Nox4 activity using adenovirus-expressing
dominant-negative Nox4 abolished hypoxia- and high-glucose–
induced ROS production and VEGF expression. Moreover, inhi-
bition of Nox4 attenuated hypoxia-induced upregulation of
HIF-1� and high-glucose–elicited phosphorylation of STAT3.
Finally, depletion of Nox4 by adenovirus-delivered Nox4 small
interfering RNA significantly decreased retinal NADPH oxidase
activity and VEGF expression and reduced retinal vascular
premeability in db/db mice.

CONCLUSIONS—Activation of Nox4 plays an important role in
high-glucose– and hypoxia-mediated VEGF expression and dia-
betes-induced BRB breakdown. Inhibition of Nox4, at least in

part, contributes to the protective effects of lovastatin in diabetic
retinopathy. Diabetes 59:1528–1538, 2010

D
iabetic retinopathy is a common complication
of diabetes and one of the most frequent causes
of blindness in the U.S. (1–3). Hallmark sequen-
tial pathological changes in diabetic retinopa-

thy include increased vascular permeability, pericyte and
endothelial cell death, capillary occlusion and aberrant
retinal new vessel growth, or neovascularization (4). In-
creased vascular permeability caused by the breakdown of
the blood-retinal barrier (BRB) results in diabetic macular
edema, a major cause of vision loss in diabetic patients
(2,5,6). Vascular endothelial growth factor (VEGF) is a
potent angiogenic factor playing a crucial role in angio-
genesis (7,8). VEGF is also referred as vascular permeabil-
ity factor (VPF) based on its ability to induce vascular
hyperpermeability (9). Significantly elevated VEGF levels
in the eye have been reported in diabetic patients with
diabetic macular edema and correlated with the severity of
vascular leakage (10). Overexpression of VEGF is also
responsible for retinal hyperpermeability in streptozotocin
(STZ)-induced diabetic rats (11). These findings suggest
that VEGF is a key mediator of retinal vascular leakage in
diabetic retinopathy.

Oxidative stress plays an important role in vascular
endothelial dysfunction in diabetes (12–15). Increased
level of hydrogen peroxide, a reactive oxygen species
(ROS), was colocalized with VEGF expression at the inner
BRB and associated with vascular leakage in the retina in
diabetic BBZ/Wor rats, suggesting a role of ROS in regu-
lation of VEGF in diabetic retinopathy (16). In addition,
suppression of ROS generation by NADPH oxidase inhib-
itor or antioxidants significantly attenuated retinal vascu-
lar leakage in diabetic animals, suggesting that activation
of NADPH oxidase contributes to retinal ROS generation
and vascular damage in diabetic retinopathy (17). NADPH
oxidase (Nox) 4, which is originally identified in the
kidney and termed renox (renal oxidase), is a novel
isoform of NADPH oxidase expressed in nonphagocytes,
such as vascular endothelial cells and smooth muscle cells
(18,19). In aorta isolated from the STZ-induced diabetic
apolipoprotein E–deficient mice or the db/db mice, Nox4
expression is significantly upregulated, associated with
increased ROS production and inflammation, indicating
a potential role of Nox4 in diabetic macrovascular
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disease (20). Moreover, inhibition of Nox4 expression
using antisense oligonucleotides attenuates ROS gener-
ation and ameliorates glomerular hypertrophy in STZ-
induced diabetic mice, suggesting that Nox4 is the major
source of ROS in the diabetic kidney, contributing to
renal hypertrophy in diabetic nephropathy (21). How-
ever, the role of Nox4 in diabetic retinopathy has not
been investigated.

3-Hydroxy-3-methylglutaryl CoA reductase inhibitors
(statins) are potent inhibitors of cholesterol biosynthesis
commonly used in dyslipidemia and type 2 diabetes (22).
Moreover, statins have demonstrated impressive benefi-
cial effects, such as improvement of endothelial func-
tion, neuroprotection, and anti-inflammation, which are
independent of their lipid-lowering effects (23). In a
previous study, we have shown that lovastatin protects
retinal tight junction and ameliorates BRB breakdown
in db/db mice, a type 2 diabetes model (24). However,
the mechanisms remain elusive. In the present study, we
have tested the hypothesis that Nox4 is a key mediator
of oxidative stress and BRB breakdown in diabetic
retinopathy and that inhibition of Nox4 is, at least in
part, responsible for the salutary effect of lovastatin on
retinal endothelial function.

RESEARCH DESIGN AND METHODS

Lovastatin, NG-nitro-L-arginine methyl ester hydrochloride (L-NAME), rote-
none, and allopurinol were obtained from Sigma-Aldrich (St .Louis, MO).
Diphenyleneiodonium chloride (DPI) and NADPH were purchased from
Calbiochem (San Diego, CA). 2�,7�-dichlorodihydrofluorescein diacetate (CM-
H2DCFDA), dihydroethidium (DHE), and N-acetyl-3,7-dihydroxyphenoxazine
(Amplex red) were obtained from Molecular Probe (Invitrogen, Carlsbad, CA).
Protease inhibitor cocktail, phenylmethylsulfonyl fluoride, sodium orthovana-
date, rabbit anti-Nox4, and anti-VEGF antibodies were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA). Anti–hypoxia-inducible factor (HIF)-1�
antibody was obtained from BD Bioscience (San Jose, CA). Anti-phophory-
lated and total STAT3 antibodies were obtained from Cell Signaling Tech-
nology (Boston, MA). Anti–�-actin antibody was obtained from Abcam
(Cambridge, MA). Fluorescein isothiocyanate–conjugated or horseradish per-
oxidase–conjugated secondary antibodies, Hoechst dye, and DAPI were
purchased from Jackson Immunoresearch Laboratories (West Grove, PA) and
Vector Laboratories (Bulingame, CA), respectively.

Male db/db (BKS.Cg-m�/� Leprdb) were purchased from the Jackson
Laboratory (Bar Harbor, ME). All the experiments were performed in accor-
dance with the statement for the use of animals in ophthalmic and vision
research from the Association for Research in Vision and Ophthalmology and
the guidelines in the care and use of laboratory animals set forth by the
University of Oklahoma. db/db mice at age 13 weeks were randomly selected
to receive daily gastric gavage of lovastatin dissolved in vegetable oil (5
mg/ml) at 10 mg/kg or same amount of vehicle for 6 weeks. Nondiabetic
littermates received the same vehicle treatment. Blood glucose and body
weight were measured every other week.
Cell culture. Primary bovine retinal capillary endothelial cells (RCECs) were
isolated and cultured as described previously (25). Primary human retinal
microvascular endothelial cells were purchased from Cell Systems (Kirk-
land, WA) and maintained in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% FBS, 30 �g/ml endothelial cell growth supplement, 90 �g/ml
heparin, 1% Insulin-Transferrin-Selenium-A supplement (ITS), and 1%
antibiotic/antimycotic solution. Confluent monolayer cells were quiescent
in DMEM with 1% FBS for 8 h followed by treatment with desired
conditions. To evaluate the effect of hypoxia, cells were exposed to
hypoxia (2% O2) or normoxia (21% O2), with oxygen concentration being
correctly regulated using the ProOxC system (BioSpherix, Lacona, NY). All
experiments were conducted with cells of passages three to eight.
Adenovirus infection of RCECs. Adenoviral vectors expressing human
Nox4 (Ad-Nox4) (26), or a dominant-negative mutant of Nox4 lacking the
FAD-NADPH binding site (Ad-Nox4�FAD) (26), or RNA interference targeting
human Nox4 (nucleotides 418–436 from the start codon) (Ad-Nox4i), or
control small interfering RNA (siRNA) (Ad-Ctrli) (27) were amplified in 293
AD cells and purified using an Adeno-X Maxi Purification kit (Clontech
Laboratories, Mountain View, CA) according to manufacturer’s protocol.
Adenovirus expressing �-galactose (Ad-LacZ) was used as a control. Subcon-

fluent human RCECs were grown in DMEM supplemented with 10% FBS and
infected by adenovirus at a multiplicity of infection (MOI) of 50. Forty-eight
hours after infection, cells were quiescent with DMEM containing 1% FBS for
8 h before experiments.
Intravitreal injection of adenovirus. Intravitreal injection of adenovirus
was performed in deeply anesthetized mice using a UltraMicroPump (World
Precision Instruments, Sarasota, FL) following a documented protocol (28).
Briefly, under a dissection microscope, an incision was made 1 mm behind
limbus with the tip of a shape-edge 31-gauge needle. The 34-gauge blunt needle
mounted on a 10-�l microsyringe was inserted into vitreous cavity. Microsy-
ringe was calibrated to deliver a 1-�l vehicle containing 109 viral particles with
one depression of the foot switch. After 3 weeks, mice were subjected to
retinal vascular permeability assay or humanly killed. The retinas were
dissected for Western blot analysis or sectioned for measurement of in situ
NADPH-dependent ROS generation.
Measurement of retinal vascular permeability. Retinal vascular perme-
ability was quantified by measurement albumin leakage from blood vessels
into the retina using the Evans blue-albumin method. Details please see the
online supplement, available at http://diabetes.diabetesjournals.org/cgi/
content/full/db09-1057/DC1.
Detection of intracellular ROS generation. Intracellular ROS generation
was assessed by CM-H2DCFDA and DHE (29). Briefly, RCECs were seeded
into 96-well plates and grown to confluence. After quiescence, cells were
incubated with or without 1 �mol/l lovastatin for 24 h and 0.1 �mol/l DPI
for 4 h and then exposed to hypoxia for 16 h. In separate experiments,
RCECs were infected with adenoviruses Ad-LacZ, Ad-Nox4, or Ad-
Nox4�FAD for 48 h. Cells were washed with warm Hank’s balanced salt
solution and then incubated at 37°C with 10 �mol/l CM-H2DCFDA for 45
min or 5 �mol/l DHE for 30 min in phenol-red free DMEM. Cells were
photographed under a fluorescent microscope (Olympus, Hamburg, Ger-
many), and fluorescence intensity was quantified using a fluorescence
microplate reader (Perkin Elmer, Waltham, MA) with excitation at 485 nm
and emission at 535 nm for dichlorofluorescein (DCF) and with excitation
of 485 nm and emission of 645 nm for DHE.
Real-time RT-PCR. Total RNA was extracted from human RCECs and human
neutrophil by using an RNeasy mini kit (Qiagen, Valencia, CA), according to
manufacturer’s protocol. cDNA were synthesized from 1 �g of RNA, using an
iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA) following
manufacturer’s instructions. Real-time RT-PCR was performed using a SYBR
green PCR master mix (Bio-Rad Laboratories) as described in our previous
study (25). Specific primers used for real-time PCR are as follows: Nox1:
forward: 5�-CTTCCTCACTGGCTGGGATA-3�, reverse: 5�-TGACAGCATTT
GCGCAGGCT-3� (30); gp91phox/Nox2: forward: 5�-CCAGTGAAGATGTGT
TCAGCT-3�, reverse: 5�-GCACAGCCAGTAGAAGTAGAT-3� (30); and Nox4:
forward: 5�-ACTTTTCATTGGGCGTCCTC-3�, reverse: 5�-AGAACTGGGTCCA
CAGCAGA-3� (31). The mRNA levels of target genes were normalized by 18S
rRNA.
Immunocytochemistry. Cells were fixed with 10% formaldehyde for 10 min
and permeabilizated with 0.5% Triton X-100 for 5 min. After blocking with 10%
normal donkey serum in PBS for 1 h, cells were incubated with rabbit
anti-Nox4 antibody (1:250) overnight at 4°C followed by secondary fluorescein
isothiocyanate–conjugated affinity-purified donkey anti-rabbit IgG (1:200) at
room temperature for 1 h. Nuclei were stained by VECTASHIELD mounting
medium with DAPI. The slides were visualized and photographed under a
fluorescent microscope (Olympus). Images represented three independent
experiments.
Western blot analysis. Retinas and cells were lysed in radioimmunoprecipi-
tation assay lysis buffer with protease inhibitor cocktail, phenylmethylsulfonyl
fluoride, and sodium orthovanadate. The lysates were sonicated and centri-
fuged at 14,000 rpm for 10 min. Protein concentration was measured by
a bicinchoninic acid protein assay (Pierce Biotechnology, Rockford, IL).
Twenty-five micrograms of protein were dissolved by 12% SDS-PAGE and
transferred to nitrocellular membranes. After blocking, the membranes were
blotted overnight at 4°C with following primary antibodies: anti-Nox4
(1:1,000), anti-VEGF (1:500), anti–HIF-1� (1:1,000), anti-phosphorylated STAT3
(1:1,000), and anti–�-actin (1:5,000) antibodies. After incubation with horse-
radish peroxidase–conjugated secondary antibodies (1:2000) at room temper-
ature for 1 h, the membranes were developed with enhanced chemiluminescence
substrate using Bio Imaging System (Syngene, Frederick, MD). The bands were
semiquantified using densitometry.
Statistical analysis. Data are expressed as means � SE. Statistical analysis
was performed using Student t test when comparing two groups or ANOVA
with Bonferroni’s post hoc test when comparing three or more groups.
Statistical significance was accepted as P value �0.05.
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RESULTS

Lovastatin downregulates retinal Nox4 and VEGF
expression in db/db mice. Overexpression of VEGF in
the retina induced by diabetes plays a critical role in BRB
breakdown and vascular leakage in diabetic retinopathy
(32). To address if the protection of BRB by lovastatin is
associated with the inhibition of VEGF signaling, we
determined the effects of lovastatin on retinal VEGF
expression in db/db mice. As shown in Fig. 1A, VEGF
expression was significantly increased in retinas of db/db
mice, which was normalized by lovastatin treatment to
nearly the normal level. These results suggest that inhibi-
tion of VEGF by lovastatin is associated with its salutary
effect on diabetes-induced BRB breakdown. To determine
whether Nox4 is implicated in diabetic retinopathy, we
measured Nox4 level in the retina of db/db mice. We found
that Nox4 expression in the retina was significantly in-
creased by twofold in db/db mice when compared with
age- and sex-matched nondiabetic littermates (P � 0.01)
(Fig. 1B). Lovastatin treatment almost completely re-
versed the increase in Nox4 expression in the db/db retina
(P � 0.05) (Fig. 1B). These results suggest a potential role
of Nox4 in VEGF upregulation and BRB breakdown in
diabetic retinopathy.
Nox4 is the major isoform of NADPH oxidase in
RCECs. NADPH oxidase is a foremost source of ROS in
endothelial cells; however, the exact role and mechanisms
of NADPH oxidase in RCECs remains unknown. We first
determined expression of major NADPH oxidase isoforms,
including Nox1, Nox2, and Nox4 in human RCECs and
compared them with human neutrophils. As shown in Fig.
2A, mRNA expression of Nox4 was at least 100-fold higher
than Nox1 and Nox2 in RCECs. In contrast, expression of
Nox2 is significantly higher than Nox1 and Nox4 in neu-
trophils (Fig. 2A). These results indicate that although all
of the isoforms are expressed in both cell types, Nox4 is
the major isoform of NADPH oxidase in RCECs, while
Nox2 is the major one in neutrophils.
Lovastatin attenuated hypoxia-induced Nox4 expres-
sion and ROS generation in RCECs. Hypoxia is a potent
inducer of VEGF expression in endothelial cells (33). We
next investigated Nox4 expression and ROS generation in
RCECs exposed to hypoxia. The results show that hypoxia
treatment for 4 h induced a significant increase in Nox4

mRNA expression by 3.2-fold (Fig. 2B). Consistently, Nox4
protein level was also significantly increased after hypoxia
treatment for 16 h (Fig. 2C and D). Moreover, intracellular
ROS generation was significantly increased in hypoxia-
treated cells (Fig. 2E and F). Interestingly, an immunocy-
tochemical study showed that Nox4 was localized in the
perinuclear compartment (Fig. 2C). Hypoxia treatment
resulted in an increase in the intensity of Nox4 signals but
did not cause any translocation to other subcellular
compartments.

To determine the effects of lovastatin on Nox4 expres-
sion in RCECs, cells were pretreated with lovastatin or
DPI, a well-known inhibitor of NADPH oxidase, for 4 h
followed by exposure to hypoxia for 16 h. The results
showed that lovastatin almost completely abolished hy-
poxia-induced Nox4 upregulation in a dose-dependent
manner (Fig. 2C and D). Furthermore, lovastatin and DPI
significantly ameliorated hypoxia-induced ROS generation
in RCECs (Fig. 2E and F). As DPI also acts as an inhibitor
of other flavoproteins (34), to delineate the source of ROS
induced by hypoxia, RCECs were pretreated with different
inhibitors that suppress several ROS-producing systems,
including rotenone (an inhibitor of mitochondrial electron
transport chain), allopurinol (an inhibitor of xanthine
oxidase), and L-NAME (an inhibitor of nitric oxide syn-
thase inhibitor). Results show that each of these inhibitors
attenuated hypoxia-induced ROS levels to some extent,
suggesting that hypoxia may activate multiple pathways
that contribute to ROS generation (Fig. 2G). However, DPI
at a very low concentration (100 nmol/l) showed the most
significant effect (Fig. 2G).
Downregulation of Nox4 and VEGF expression by
lovastatin in RCECs exposed to high glucose. Hyper-
glycemia is one of the major pathogenic causes of vascular
complications in diabetes. To evaluate the effects of high
glucose on Nox4 expression, RCECs were exposed to 25
mmol/l D-glucose or same concentration of mannitol as
osmotic control for 6–24 h, and the mRNA and protein
levels of Nox4 expression were measured by real-time
RT-PCR and Western blot analysis, respectively. The re-
sults showed that Nox4 mRNA was significantly increased
in the cells exposed to high glucose for 6 h, when
compared with osmotic control (Fig. 3A). The protein level
of Nox4 was also increased by high glucose at 24 h, which
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was significantly decreased by lovastain in a dose-depen-
dent manner (Fig. 3B). In parallel, VEGF expression was
significantly increased in high-glucose–treated cells and
attenuated by lovastatin treatment (Fig. 3C).
Inhibition of NADPH oxidase activity decreased
HIF-1� and VEGF expression in RCECs. To determine
whether increased Nox4 activity is a potential mediator of
VEGF expression in RCECs in a hypoxic condition, cells

were pretreated with DPI for 4 h, followed by exposure to
hypoxia for 16 h. The results showed that a low dose (100
nmol/l) of DPI was sufficient to decrease VEGF expression
induced by hypoxia (Fig. 4A). Moreover, this effect is
associated with the downregulation of HIF-1�, a master
transcription factor responsible for hypoxia-induced
VEGF expression (Fig. 4B). In addition, pretreatment of
cells with lovastatin significantly attenuated cellular VEGF
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expression and decreased HIF-1� level in a dose-depen-
dent manner (Fig. 4C and D).
Overexpression of Nox4 increased ROS generation
and upregulated VEGF expression in RCECs. To fur-
ther determine effect of Nox4 on ROS generation in retinal
endothelial cells, we infected human RCECs with adeno-
virus-expressing Nox4 (Ad-Nox4) or adenovirus-express-
ing Lac Z (Ad-Lac Z) as control. Overexpression of Nox4
resulted in a moderate but significant increase in the basal
level of intracellular ROS generation (Fig. 5A). The rea-
sons for the discrepancy between Nox4 expression and
ROS production are not clear. A possible explanation is

that Nox4, while generating ROS, may also regulate other
redox enzymes that enhance ROS scavenging and/or sup-
press ROS production to maintain a low basal level of
ROS. While this speculation warrants further investigation,
we found that knockdown of Nox4 with siRNA increases
Nox2 mRNA expression (not shown) in RCECs. Similarly,
an upregulation of Nox4 mRNA was observed in Nox2	/	

knockout mice (35). These data suggest a reciprocal
regulation of Nox enzymes. In addition, Ad-Nox4 treat-
ment significantly increased HIF-1� (Fig. 5B) and VEGF
expression (Fig. 5C). These results support a critical role
of NADPH oxidase in the regulation of HIF-1� and VEGF
in RCECs.
Inhibition of Nox4 reduced ROS generation and
VEGF expression in RCECs exposed to hypoxia. We
next asked whether Nox4 activity is essential for hypoxia-
induced ROS generation and VEGF expression in human
RCECs. Inhibition of Nox4 activity was achieved by ade-
novirus overexpressing a dominant-negative mutant of
Nox4 (Ad-Nox4�FAD). mRNA expression of Nox4�FAD was
confirmed by real-time RT-PCR (Fig. 5D). Intracellular
ROS generation was measured by fluorescence probe
CM-H2DCFDA and H2O2 released into the medium was
measured by Amplex red assay. In addition, NADPH
oxidase activity was measured in cell homogenates. Results
show that Ad-Nox4�FAD significantly attenuated intracellular
ROS level and extracellular ROS (H2O2) released from
RCECs exposed to hypoxia (Fig. 5E). In keeping, inhibition
of Nox4 significantly decreased NADPH-dependent ROS gen-
eration and reduced hypoxia-mediated increase in NADPH
oxidase activity (Fig. 5F).

To further elucidate the role of Nox4 in hypoxia-induced
HIF-1� and VEGF expression, we determined HIF-1� and
VEGF levels in human RCECs infected with Ad-Nox4�FAD

after exposure to hypoxia for 16 h. As expected, hypoxia
induced a significant increase in HIF-1� and VEGF expres-
sion. Ad-Nox4�FAD treatment almost completely abolished
hypoxia-induced VEGF upregulation (Fig. 5G). Moreover,
HIF-1� level was significantly attenuated in Ad-Nox4�FAD-
treated cells when compared with cells infected with control
virus (Fig. 5H).
Nox4 is required for high-glucose–mediated ROS gen-
eration, STAT3 activation, and VEGF expression in
RCECs. To determine whether inhibition of Nox4 affects
high-glucose–induced ROS and VEGF expression, bovine
RCECs were infected with Ad-LacZ and Ad-Nox4�FAD for
48 h, followed by exposure to high glucose for 24 h.
Ad-Nox4�FAD significantly attenuated high-glucose–in-
duced ROS generation (Fig. 6A) and largely blocked the
increase of NADPH oxidase activity in cells exposed to
high glucose (Fig. 6B). In addition, inhibition of Nox4
abrogated high-glucose–induced upregulation of VEGF
expression (Fig. 6C). Interesting, high glucose did not alter
the expression of HIF-1� (not shown), suggesting that
HIF-1� is not involved in high-glucose–induced VEGF
expression in RCECs. Conversely, high glucose signifi-
cantly increased phosphorylation of STAT3, another key
transcription factor that activates VEGF expression (36)
(Fig. 6D). Treatment with Ad-Nox4�FAD attenuated high-
glucose–elicited STAT3 phosphorylation, suggesting Nox4
is involved in high-glucose–mediated ROS generation and
VEGF expression through activation of STAT3.
Genetic inhibition of Nox4 reduced NADPH-depen-
dent ROS generation and ameliorated vascular leak-
age in retinas of db/db mice. To establish the causative
role of Nox4 in retinal VEGF expression and vascular
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leakage in db/db mice, we downregulated Nox4 expression
in the retina using an adenovirus-delivered siRNA against
mouse Nox4. Three weeks after an intravitreal injection of
Ad-Nox4i or Ad-Ctrli, mice were humanely killed, and
retinal expression of Nox4 and VEGF was determined by
Western blot analysis. As shown in Fig. 7A, intravitreal
injection of Ad-Nox4i led to a significant decrease of Nox4
expression in the retina by approximately 60%. Moreover,
Ad-Nox4i significantly decreased retinal VEGF expression
in db/db mice, when compared with Ad-Ctrli treatment
(Fig. 7B). In parallel, NADPH-dependent ROS generation
was markedly increased by eightfold in retinas of db/db
mice, indicating enhanced NADPH oxidase activity in the
diabetic retina, which was significantly blunted in Ad-Nox4i–
treated eyes (Fig. 7C and D). In addition, intravitreal injection
of Ad-Nox4i almost completely abolished the increase in
retinal vascular permeability in db/db mice (Fig. 7E). These
results strongly suggest a causal role of Nox4 in vascular
hyperpermeability in diabetic retinopathy, further supporting
the notion that lovastatin inhibits retinal vascular leakage
through suppression of Nox4 expression.

DISCUSSION

Several studies, including ours, have demonstrated the
protective effects of statins on retinal vascular function by

maintaining the endothelial tight junction integrity and
vasculature homeostasis in diabetic retinopathy (37–39);
however, the mechanisms are poorly understood. The
present study provided the first evidence that Nox4, a
nonphagocyte NADPH oxidase isoform, is upregulated in
diabetic retinas of db/db mice and in RCECs exposed to
diabetic stressors (hypoxia and high glucose). Inhibition
of Nox4 activity by lovastatin downregulates HIF-1�– and
STAT3-mediated VEGF expression and ameliorates retinal
vascular leakage in diabetic retinopathy. These findings
suggest that Nox4 is a key player in diabetes-induced
oxidative stress and VEGF expression in retinal endothe-
lial cells and that activation of Nox4 is a novel mechanism
of retinal vascular leakage in diabetic retinopathy. Inhibi-
tion of Nox4 is at least in part responsible for the salutary
effects of lovastatin on retinal endothelial and BRB func-
tion in diabetes.

The NADPH oxidase (Nox) family consists of the phago-
cyte NADPH oxidase (Nox2/gp91phox) and six homolog
members identified in nonphagocytes: Nox1, Nox3, Nox4,
Nox5, Duox1, and Duox2 (18,40). In endothelial cells,
Nox1, Nox2, and Nox4 are mainly expressed (41). We
found that Nox4 expression is significantly higher than
Nox2 and Nox1 in RCECs. In contrast, Nox2 appears to be
the major form expressed in human neutrophils (Fig. 2).
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Similar findings have been reported in human umbilical
vein endothelial cells (42) and human aorta endothelial
cells (43), indicating a potential role of Nox4 in endothelial
cells. In addition, Nox4 has several unique features that
make Nox4 particularly important in controlling the redox
status and intracellular signaling in endothelial cells. In
contrast to other Nox members, Nox4 is constitutively active
even in the absence of cytosolic regulators (44–47). We have
shown that overexpression of Nox4 increases while inhibi-
tion of Nox4 activity reduces the basal level of ROS genera-
tion, suggesting that Nox4 is a major enzyme responsible for
ROS generation in unstimulated endothelial cells. Moreover,
Nox4 upregulates HIF-1� and VEGF expression in RCECs. In
contrast, suppression of Nox4 attenuates cell proliferation in
human aorta endothelial cells (27). These findings imply an
important role of Nox4 in endothelial function through
regulation of VEGF expression.

Hypoxia is a potent inducer of VEGF expression
through stabilizing HIF-1� in vascular endothelial cells.
Intriguingly, recent studies (48) have provided evidence

that increased ROS production contributes to HIF-1�
stabilization and VEGF overexpression induced by hyp-
oxia. In the present study, we show that hypoxia stimu-
lates multiple sources of ROS production in RCECs and
that activation of NADPH oxidase plays an important role
in these processes. Exposure of RCECs to hypoxia upregu-
lates Nox4 mRNA and protein expression, which is atten-
uated by pretreatment with lovastatin. Interestingly,
hypoxia also increases Nox2 protein expression, although
at a much lower level when compared with Nox4, and
lovastatin decreases Nox2 level in RCECs exposed to
hypoxia (not shown). These results suggest that Nox4 and
Nox2 may both contribute to ROS generation in hypoxia in
RCECs. Indeed, downregulation of Nox4 expression or
activity significantly decreases NADPH oxidase–derived
ROS generation and alleviates H2O2 production in RCECs
under hypoxic or high glycemic conditions. In addition,
inhibition of Nox4 significantly mitigates hypoxia-induced
upregulation of HIF-1� and VEGF in RCECs, indicating
that Nox4 is essential for HIF-1�–dependent VEGF ex-
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pression. Moreover, inhibition of Nox4 attenuates high-
glucose–mediated STAT3 activation and consequent VEGF
upregulation, suggesting that Nox4-derived ROS may also
regulate VEGF through HIF-1�–independent pathways,
such as STAT3.

The subcellular localization of Nox4 has been contro-
versial. In previous studies, Nox4 was detected in various
compartments, such as mitochondria, cell membrane, nu-
cleus, focal adhesion, and endoplasmic reticulum
(27,31,49). Our results indicate that Nox4 localizes in the
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perinuclear compartment in RCECs. This observation cor-
roborates several recent studies in various cell types, such
as vascular smooth muscle cells and endothelial cells
(27,31). Further, we found that Nox4 expression is colo-
calized with the endoplasmic reticulum marker KDEL
(Lys-Asp-Glu-Leu) in RCECs (not shown), suggesting that
Nox4 may be an endoplasmic reticulum resident protein.
However, the exact role of Nox4 in the endoplasmic
reticulum remains unknown. It is also unclear how Nox4 is
regulated by high glucose and hypoxia and how statin
inhibits Nox4 expression in retinal endothelial cells. Our
previous study (25) showed that hypoxia induces endo-
plasmic reticulum stress in cultured RCECs. Pedruzzi et al.
(46) showed that knockdown of IRE-1 and Jun NH2-
terminal kinase inhibition downregulated Nox4 expression
in human aorta smooth muscle cells. Moreover, a recent
study showed that deletion of C/EBP-homologous protein
reduces oxidative stress and improves �-cell function (50).
These findings suggest that endoplasmic reticulum stress–
induced cellular response is involved in the regulation of
redox status. Future studies are warranted to investigate if
Nox4 is a potential target linking endoplasmic reticulum
stress and intracellular redox signaling in retinal endo-
thelial cells and how this crosstalk contributes to endothe-
lial dysfunction and vascular abnormality in diabetic
retinopathy.
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