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Inhibition of the Measurement of the Wave Function of a Single Quantum System in Repeated
Weak Quantum Nondemolition Measurements

Orly Alter and Yoshihisa Yamamoto
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(Received 14 July 1994; revised manuscript received 11 January 1995)

It is shown that a series of repeated weak quantum nondemolition measurements performed on a
single quantum system gives no information about the wave function of the system. The physical
explanation, based on the quantum Brownian motion and the continuous collapse of the wave function
which originate in the projection postulate, is discussed in two specific examples.
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Two separate structures exist in quantum mechani
the observables, which are represented by operators of
Hilbert space, and the physical systems, which are d
scribed by state vectors or wave functions. The wa
function is said to have an epistemological meaning, b
cause it contains all the relevant information about th
physical system. The result of a precise measurem
on a single quantum system is always one of the eige
values of the measured observable. After the measu
ment, the wave function of the measured system co
lapses to the corresponding eigenstate, according to
projection postulate. There is no one-to-one correspo
dence between the result of a single measurement a
the state of the system before the measurement. In or
to measure the initial wave function of the system, on
needs to prepare an ensemble of systems with the sa
wave function and measure them all. The wave functio
is obtained from the statistics of the results of measur
ments performed on this ensemble. Recently Aharono
Anandan, and Vaidman [1,2] suggested that the wa
function of a single quantum system could be measure
therefore giving the wave function an ontological signif
icance, i.e., physical reality in its own right. They sug
gested employing a series of “protective measurement
where ana priori knowledge of the wave function en-
ables one to measure this wave function and protect
from changing at the same time. However, with thi
a priori knowledge, one could reproduce the wave fun
tion after each measurement for an arbitrarily large num
ber of times, and measure the wave function in the co
ventional manner. Another recent suggestion, made
Royer [3], is to measure the spin wave function of
single spin-12 particle using “physically reversible mea-
surements.” In this process each measurement would
counteracted by another measurement to restore the ini
state of the particle, where noa priori knowledge of this
state is needed. Only the results of measurements wh
are performed on the particle in its initial state would b
taken into account. Huttner [4] showed, however, that th
statistics of these results are independent of the initial sp
wave function, and therefore no information could be ob
tained from a series of physically reversed measuremen
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In this Letter, we investigate the possibility of measu
ing the wave function of a single quantum system wi
no a priori knowledge of the wave function, in order to
explore a real ontological meaning of the wave functio
We study the case of repeated weak quantum nonde
lition (QND) measurements [5,6], for which we can a
sume that the signal and the probe are in pure states
fore the measurement, without loss of generality. In th
case, the signal is left in a pure state after the measu
ment. The QND observable evades backaction noise
the measurement process and remains unchanged du
the time evolution of the signal. In addition, the QND
measurement can be chosen to be as weak as we wan
is possible, therefore, to measure the signal many tim
using weak QND measurements, before the wave funct
of the signal is changed significantly. The measureme
results are all generated under some influence of the
tial wave function, and one may expect the statistics
these results to give at least partial information about t
wave function. By “information about the wave function
we mean information about both the average and the v
ance of the measured observable, i.e., the center and
width of the wave function, with finite probability errors
Information about the center alone corresponds to a m
surement of the observable, where information about
width reveals the wave function. In this work, we sho
that this intuitive picture fails, and one cannot extract a
information about the initial wave function of the signa
at all using repeated weak QND measurements.

First, we describe the general formulation of this pro
lem. We show that the inhibition of the measurement
the wave function originates in the projection postulat
To illustrate this result, we discuss two specific example
both using QND measurements which have been dem
strated experimentally. The first example [7] is that
repeated photon number QND measurements [8–11] p
formed on a squeezed state of light, i.e., a generaliz
minimum uncertainty wave packet. Note that the phot
number QND measurement is analogous to the QND m
surement of the momentum of a free particle [12]. Th
second example is that of alternating QND measureme
of the two (slowly varying) quadrature amplitudes [13,14
© 1995 The American Physical Society
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of a squeezed state. These measurements are ma
matically equivalent to the QND measurements of the p
sition and the momentum of a mechanical harmonic osc
lator. Our two examples, therefore, cover all QND mea
surements known today.

In our general model a series of alternating QND
measurements of the two conjugate observables,q̂ and
p̂, is performed on a single quantum system, who
initial state is described by the density operatorr̂0. The
statistics of theq̂ measurement results are expected
give information about the initial probability density of
q̂, P0sqd ­ kqjr̂0jql, i.e., estimates of the initial center,
kq0l ­

R
dq P0sqdq, and the initial width,kDq2

0l ­ kq2
0l 2

kq0l2, wherekq2
0l ­

R
dq P0sqdq2. In the same way, the

statistics of thep̂ measurement results are expected
give information aboutP0spd ­ kpjr̂jpl. Note that this
model applies to the case of repeated measurements
the observablêq cosu 1 p̂ sinu, whereu is an arbitrary
parameter. Indeed, one needs, at least, information ab
all such observables in order to determine the wa
function of the measured system.

Let the first measurement be a QND measureme
of q̂. The signal is correlated to a probe, after whic
the probe is measured to yield the inferred measurem
resultq̃1. The probability-amplitude operator,Ŷ sq̂, q̃1d ­
pkq̃1jÛ sq̂d jclp, completely describes the three stages
this measurement [15]: the preparation of the probe sta
jclp, the interaction of this state with the signal,Û sq̂d,
and the result of the measurement,q̃1, which corresponds
to the state of the probe after the measurement,jq̃1lp . The
probability of obtaining the measurement resultq̃1 is

Psq̃1d ­ TrsfX̂sq̂, q̃1dr̂0g ­
Z

dq Xsq, q̃1dP0sqd , (1)

whereX̂sq̂, q̃1d ­ Ŷysq̂, q̃1dŶ sq̂, q̃1d is the generalized pro-
jection operator, andXsq, q̃1d ­ skqjX̂sq̂, q̃1d jqls is the
probability for the probe to undergo a transition when th
signal is in the statejqls. All measurement processes hav
to satisfy three general requirements. The transition pro
ability of the probe has to be normalized over all possib
final states of the probe,Z

dq̃1 Xsq, q̃1d ­ 1 . (2)

As the inferred value of̂q, q̃1 should equal, on aver-
age, the center of the probability density ofq̂, kq̃1l ­R

dq̃1 Psq̃1dq̃1 ­ kq0l. This leads toZ
dq̃1 Xsq, q̃1dq̃1 ­ q . (3)

The signal and the probe should be independent of ea
other. Therefore, the probability error associated wi
the measurement result should equal the sum of t
measurement error,D2

m, and the intrinsic uncertainty of
the wave function,kDq̃2

1l ­ kq̃2
1l 2 kq̃1l2 ­ kDq2

0l 1 D2
m,

wherekq̃2
1l ­

R
dq̃1 Psq̃1dq̃2

1. From this we obtainZ
dq̃1 Xsq, q̃1dq̃2

1 ­ q2 1 D2
m . (4)
the-
o-
il-
-

se

to

to

of

out
ve

nt
h
ent

of
te,

e
e
b-
le

ch
th
he

The measurement strength is defined as1yD2
m. Note that

the measurement is weak when the measurement erro
much larger than the initial intrinsic uncertainty,D2

m ¿

kDq2
0l. After this measurement, the signal is described b

the density operator̂r ­ Psq̃1d21Ŷ sq̂, q̃1dr̂0Ŷysq̂, q̃1d, and
the corresponding probability density ofq̂ is

Psq, q̃1d ­ kqjr̂jql ­ Psq̃1d21Xsq, q̃1dP0sqd . (5)

The next measurement is of the conjugate observablep̂.
This measurement changes the probability density ofq̂
from Psq, q̃1d to P1sq, q̃1d. The center is unchanged,Z

dq P1sq, q̃1dq ­
Z

dq Psq, q̃1dq , (6)

but the width increases due to the backaction noise,D
2
b,Z

dq P1sq, q̃1dq2 ­
Z

dq Psq, q̃1dq2 1 D2
b . (7)

Now q̂ is measured for the second time. Following th
treatment of the first measurement ofq̂ in Eqs. (1)–(4),
the conditional probability to obtaiñq2 in this measure-
ment, afterq̃1 is obtained in the previous measurement,

Psq̃2 j q̃1d ­
Z

dq Xsq, q̃2dP1sq, q̃1d . (8)

Obviously, each of the measurement results,q̃1 or q̃2,
estimates the initial center,kq0l. Also, one can estimate
the second-order momentkq2

0l using eitherq̃2
1 or q̃2

2, since

kq̃2
1l ­

Z
dq̃1 Psq̃1dq̃2

1 ­ kq2
0l 1 D2

m , (9)

kq̃2
2l ­

Z
dq̃1 Psq̃1d

Z
dq̃2 Psq̃2 j q̃1dq̃2

2

­ kq2
0l 1 D2

m 1 D2
b . (10)

However, one cannot estimate the initial width,kDq2
0l,

using a single measurement result, because a sin
result does not contain information aboutkq0l2. If q̃1

and q̃2 were independent results, obtained from tw
different quantum systems, which are initially in the sam
quantum state, their correlation would provide the missin
information aboutkq0l2, and kDq2

0l could be estimated
using both measurement results. In our case the sec
result, q̃2, depends on the first,̃q1, and their correlation
does not give information aboutkq0l2, rather it gives

kq̃1q̃2l ­
Z

dq̃1 Psq̃1dq̃1

Z
dq̃2 Psq̃2 j q̃1dq̃2 ­ kq2

0l .

(11)
This treatment can be easily extended to include as ma
measurements of̂q as we want, and a similar treatmen
can be used to analyze the results of the measureme
of p̂. Always the conclusion is the same: While it is
possible to estimate the initial center positions ofP0sqd
and P0spd with a linear function of the corresponding
measurement results, no quadratic function of the resu
can estimate the initial widths ofP0sqd and P0spd.
Since no information about the widths of the probabilit
densities ofq̂ and p̂ is obtained, the process of repeate
4107



VOLUME 74, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 22 MAY 1995

otal

-

a

of
ce
m-

red
ian
ve

e-

he

re-

il-
ed
The

the
me
in-

e
ian
n.
pse
ob-
by

m-
of

m-
ara-

ts,
of

e
e,
QND measurements is equivalent to a measurement
the observableŝq and p̂, and cannot be considered as
measurement of the wave function. The same is true
all processes of repeated Pauli’s first-kind measureme
of the arbitrary observablêq cosu 1 p̂ sinu.

The mathematical origin of this result is the dependen
of each measurement on the specific results of t
previous measurements. Physically, the measurem
process modifies the wave function in accordance wi
the measurement result, i.e., the information which
extracted from the wave function. This modification i
a direct result of the projection postulate. Therefor
regardless of the measurement strength, it is impossi
to measure the wave function of a single system usi
repeated QND measurements.

We now illustrate these general considerations wi
two examples. The first example [7] is that of a se
ries of photon-number QND measurements [8–11] pe
formed on a single wave packet of light. Each time
measurement is performed, a probe, which is prepared
a squeezed state with a zero phase,ja0, rlp , whereja0j is
the initial excitation of the probe, andr is the squeez-
ing parameter, is correlated to the signal in an optic
Kerr medium. The correlation is described by the un
tary operatorÛ ­ expsimn̂sn̂pd, wheren̂s and n̂p are the
signal and probe photon number operators, respective
and m is the coupling strength [16]. Then, the second
quadrature amplitude of the probe,â2,p > ja0jŵp, where
ŵp is the phase operator of the probe, is measured p
cisely by a homodyne detection. The measurement
sult, a2, gives the inferred signal photon number,ñ >
a2yja0jm. The probability-amplitude operator̂Y sn̂, ñd ­
pkñjÛja0, rlp corresponds to a Gaussian [17] transitio
probability, Xsn, ñd ­ Nfñ, n, D2

mg. The measurement er-
ror is D2

m ­ kDâ2,p
2lyja0j

2m2, wherekDâ2
2,pl ­ e22r y4 is

the initial uncertainty of the second quadrature of th
probe. The process ofk repeated measurements is de
scribed by the total probability-amplitude operator,Ẑk ­
Ŷ sn̂, ñkd · · · Ŷ sn̂, ñ2dŶ sn̂, ñ1d. Let us assume that the ini-
tial photon number distribution of the signal is a Gaus
ian, P0snd ­ Nfn, n0, D

2
0g. Physically, the photon number

has a discrete sub- or super-Poissonian distribution, wh
n $ 0. If the initial signal excitation is large, i.e.,n0 ¿ 1,
this Gaussian approximation is valid. The final signa
photon number distribution,Pksnd ­ Nfn, nk

0 , D
2
kg, is then

calculated according to Eq. (5),

nk
0 ­ D2

k

√
n0yD2

0 1

kX
i­1

ñiyD2
m

!
, (12)

D2
k ­ s1yD2

0 1 kyD2
md21. (13)

After each measurement the width of the photon numb
distribution decreases and its center shifts. The diffusi
of the center afterk measurements,nk

0 , is described statis-
tically by Pksnk

0 d ­ Nfnk
0 , n0, skyD2

mdD2
0D

2
kg. On average,

the center is always atn0. However, the probability of
4108
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finding the center farther away fromn0 increases as the
number of measurements increases. As long as the t
strength of the measurements is small,kyD2

m ø 1yD
2
0, the

variance ofnk
0 increases linearly with the number of mea

surementsskyD2
mdD2

0D
2
k > Dk. In this regime the move-

ment of the center is a quantum Brownian motion with
constant diffusion coefficientD ­ D

4
0yD2

m. As the pho-
ton number distribution narrows, the average step size
this Brownian motion decreases. The statistical varian
of the center saturates, and equals the initial photon nu
ber uncertainty,D2

0. At the same time, the wave function
is reduced to a photon number eigenstate. The measu
wave function, therefore, undergoes a quantum Brown
motion, which is saturated due to the continuous wa
function collapse.

Using Eq. (1), the probability to obtain the measur
ment resultssñ1, ñ2, . . . , ñkd is

Psñ1, ñ2, . . . , ñkd
kY

i­1

dñi ­
Z `

2`

dn Nfn, n0, D2
0g

kY
i­1

dñi

3 Nfñi , n, D2
mg ­ fPsnd dng fPsSd dSg dVk21 , (14)

wheren ­
Pk

i­1 ñiyk and Dn2 ­
Pk

i­1sñi 2 nd2ysk 2 1d
are the estimates for the center and the width of t
initial photon number distribution, respectively [7],S ­
fsk 2 1dyD2

mgDn2, and dVk21 is a normalized infinites-
imal element of the solid angle ink 2 1 dimensions,R

dVk21 ­ 1. The probability distribution ofn, Psnd ­
Nfn, n0, D

2
0 1 D2

mykg, is centered atn0. The variance
of n decreases with an increased number of measu
ments, and ask ! ` this variance reaches its minimum
value, D

2
0. The estimated center has the same probab

ity error in both cases of an infinite number of repeat
weak measurements and one precise measurement.
probability distribution ofS is a chi-squared distribution
[18], PsSd ­ x2fS, sk 2 1dg, which is independent ofD2

0.
Therefore,Dn2 is not a measure of the initial width of the
wave function,D2

0. Indeed,Dn2 is centered atD2
m, with

the variance2D4
mysk 2 1d, i.e., Dn2 is a measure of the

measurement error. We conclude that the statistics of
results of repeated weak QND measurements of the sa
observable, performed on a single system, contain no
formation about the initial width of its wave funciton, du
to the exact coordination between the quantum Brown
motion and the continuous collapse of the wave functio

The second example shows that even when the colla
of the wave function to an eigenstate of the measured
servable is prevented due to backaction noise imposed
measurements of the conjugate observable, it is still i
possible to measure this wave function. This is the case
alternating QND measurements of the two quadrature a
plitudes of a squeezed state, using a dual degenerate p
metric amplification [13,14]. In the odd measuremen
the result of a measurement of the second quadrature
the probe,â2,p, is used to infer the first quadrature of th
signal,â1,s. Both the probe, which is in the vacuum stat
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der
and the signal have Gaussian distributions, and the previous model, of repeated photon number QND measurem
be modified, to describe the distribution ofâ1,s before thekth measurement,Pk21sad ­ Nfa, a

k21
0 , D

2
k21g. Taking into

account the backaction noise due to thesk 2 1dth measurement of the second quadrature of the signal,â2,s, we obtain
from Eqs. (12) and (13)

ak21
0 ­ s1yD2

k22 1 1yD2
md21sak22

0 yD2
k22 1 ãk21yD2

md , (15)

D2
k21 ­ s1yD2

k22 1 1yD2
md21 1 D2

b , (16)

whereãk21 is the result of thesk 2 1dth measurement of̂a1,s. Pk21sad determines the conditional probability to obtain
ãk in thekth measurement,Psãk j ãk21, . . . , ã1d, according to Eqs. (1)–(4). This allows us to calculate the second-or
moment,

kã2
k l ­

Z
dã1 Psã1d

Z
dã2 Psã2 j ã1d · · ·

Z
dãk Psã1 j ãi21, . . . , ã1dã2

k ­ a2
0 1 D2

0 1 D2
m 1 sk 2 1dD2

b , (17)

and the correlation, for allj $ k 1 1,

kãkãjl ­
Z

dã1 Psã1d · · ·
Z

dãk Psãk j ãk21, . . . , ã1dãk · · ·
Z

dãj Psãj j ãj21, . . . , ã1dãj ­ a2
0 1 D2

0 1 sk 2 1dD2
b ,

(18)
A

,

l.

tt.

),
where P0sad ­ Nfa, a0, D
2
0g is the initial distribution of

â1,s. From Eqs. (17) and (18) we see that the informatio
about D

2
0 is always “screened” bya2

0 , and therefore is
impossible to obtain. The same treatment can be repea
using the measurement results ofâ2,s. The wave function
is prevented from collapsing to an eigenstate ofâ1,s (or
â2,s), but the narrowing and widening of the wave functio
due to the alternating measurements ofâ1,s and â2,s

would, eventually, balance, to keep the width of the wav
function the same each timêa1,s (or â2,s) is measured, i.e.,
D

2
k21 ­ D

2
k . In this limit, the wave function undergoes a

process of free diffusion, preserving its noise distributio
This final noise distribution of the wave function is
determined solely by the relative strengths of theâ1,s

and â2,s measurements. If these measurements ha
equal strengths, for instance, the noise distribution
the wave function would be that of a coherent stat
As in the previous example, the coordination betwee
the shifts of the center and the changes in the widt
which are caused to the wave function by the repeat
measurements, inhibit the measurement of this wa
function.

To conclude, we have shown that the wave functio
of a single quantum system cannot be measured by
series of weak QND measurements without ana pri-
ori knowledge of the wave function. During the mea
surement process, the wave function undergoes quant
Brownian motion and continuous collapse. Due to th
physical mechanism, which originates in the projectio
postulate, the statistics of the measurement results c
tain no information about the initial width of the wave
function.
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