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Inhibition of the Measurement of the Wave Function of a Single Quantum System in Repeated
Weak Quantum Nondemolition Measurements
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It is shown that a series of repeated weak quantum nondemolition measurements performed on a
single quantum system gives no information about the wave function of the system. The physical
explanation, based on the qguantum Brownian motion and the continuous collapse of the wave function
which originate in the projection postulate, is discussed in two specific examples.

PACS numbers: 03.65.Bz, 42.50.—p

Two separate structures exist in quantum mechanics: In this Letter, we investigate the possibility of measur-
the observables, which are represented by operators of tlieg the wave function of a single quantum system with
Hilbert space, and the physical systems, which are deso a priori knowledge of the wave function, in order to
scribed by state vectors or wave functions. The wavexplore a real ontological meaning of the wave function.
function is said to have an epistemological meaning, beWe study the case of repeated weak quantum nondemo-
cause it contains all the relevant information about thdition (QND) measurements [5,6], for which we can as-
physical system. The result of a precise measuremersume that the signal and the probe are in pure states be-
on a single quantum system is always one of the eigerfore the measurement, without loss of generality. In this
values of the measured observable. After the measurease, the signal is left in a pure state after the measure-
ment, the wave function of the measured system colment. The QND observable evades backaction noise in
lapses to the corresponding eigenstate, according to titee measurement process and remains unchanged during
projection postulate. There is no one-to-one corresporthe time evolution of the signal. In addition, the QND
dence between the result of a single measurement andeasurement can be chosen to be as weak as we want. It
the state of the system before the measurement. In ordés possible, therefore, to measure the signal many times,
to measure the initial wave function of the system, onausing weak QND measurements, before the wave function
needs to prepare an ensemble of systems with the samoéthe signal is changed significantly. The measurement
wave function and measure them all. The wave functiorresults are all generated under some influence of the ini-
is obtained from the statistics of the results of measuretial wave function, and one may expect the statistics of
ments performed on this ensemble. Recently Aharonowthese results to give at least partial information about this
Anandan, and Vaidman [1,2] suggested that the wavevave function. By “information about the wave function”
function of a single quantum system could be measuredye mean information about both the average and the vari-
therefore giving the wave function an ontological signif- ance of the measured observable, i.e., the center and the
icance, i.e., physical reality in its own right. They sug-width of the wave function, with finite probability errors.
gested employing a series of “protective measurementsfhformation about the center alone corresponds to a mea-
where ana priori knowledge of the wave function en- surement of the observable, where information about the
ables one to measure this wave function and protect ividth reveals the wave function. In this work, we show
from changing at the same time. However, with thisthat this intuitive picture fails, and one cannot extract any
a priori knowledge, one could reproduce the wave func-nformation about the initial wave function of the signal
tion after each measurement for an arbitrarily large numat all using repeated weak QND measurements.
ber of times, and measure the wave function in the con- First, we describe the general formulation of this prob-
ventional manner. Another recent suggestion, made blem. We show that the inhibition of the measurement of
Royer [3], is to measure the spin wave function of athe wave function originates in the projection postulate.
single spin% particle using “physically reversible mea- To illustrate this result, we discuss two specific examples,
surements.” In this process each measurement would B®th using QND measurements which have been demon-
counteracted by another measurement to restore the initiairated experimentally. The first example [7] is that of
state of the particle, where repriori knowledge of this repeated photon number QND measurements [8—11] per-
state is needed. Only the results of measurements whidormed on a squeezed state of light, i.e., a generalized
are performed on the particle in its initial state would beminimum uncertainty wave packet. Note that the photon
taken into account. Huttner [4] showed, however, that theéwumber QND measurement is analogous to the QND mea-
statistics of these results are independent of the initial spiaurement of the momentum of a free particle [12]. The
wave function, and therefore no information could be ob-second example is that of alternating QND measurements
tained from a series of physically reversed measurementsf the two (slowly varying) quadrature amplitudes [13,14]
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of a squeezed state. These measurements are matfidie measurement strength is defined A82. Note that
matically equivalent to the QND measurements of the pothe measurement is weak when the measurement error is
sition and the momentum of a mechanical harmonic oscilmuch larger than the initial intrinsic uncertaintx2, >
lator. Our two examples, therefore, cover all QND mea<Aq43). After this measurement, the signal is described by
surements known today. the density operatgp = P(3,)" 'Y (3,31)po¥*(3,3:), and

In our general model a series of alternating QNDthe corresponding probability density &fis
measurements of the two conjugate observalfleand SN AL pre =1 N
p, is performed on a single quantum system, whose Plg.3) = lplg) = P(@) " X(q,)Polq) . (5)
initial state is described by the density opergtgr The  The next measurement is of the conjugate observable
statistics of the; measurement results are expected tolhis measurement changes the probability density; of
give information about the initial probability density of from P(q,g:) to P1(g,§:1). The center is unchanged,
g, Po(q) = {qlpolg), i.e., estimates of the initial center,
(a0} = [ dg P(g)a, and the inital width(Ad3) — (q3) ~ [ agri@ava = [ dgra.ave.  ©
(qo)*, where(g3) = [dq Po(q)¢. In the same way, the
statistics of thep measurement results are expected tdut the width increases due to the backaction naise,
give information about®q(p) = (plp|p). Note that this
model applies to the case of repeated measurements of qu Pi(g,41)q" = f dqP(q,5)q" + Ay (7)

the observabldj cos) + p sing, where is an arbitrary Now ¢ is measured for the second time. Following the

parameter. Indeed, one needs, at least, information abollt, .. -+ ¢ the first measurement pin Egs. (1)—(4)
all such observables in order to determine the WaV¢he conditional probability to obtaig, in this measure-

function of the measured system. ment, afterg; is obtained in the previous measurement, is
Let the first measurement be a QND measurement = 7 P '

of 4. The signal is correlated to a probe, after which PG ) = f dg X(q,3)P1(q, 1) . 8)
the probe is measured to yield the inferred measurement '
resultg;. The probability-amplitude operator,(g, ;) = Obviously, each of the measurement resujisor g,

p<q1|f] (@) ly),, completely describes the three stages ofestimates the initial centefgo). _ Alsc_), one can es;imate
this measurement [15]: the preparation of the probe statéhe second-order momefi;) using eithergi or g3, since

ly),, the interaction of this state with the signal,(g),

and the result of the measuremeft, which corresponds (@G = / dg P(G1)37 = {(q5) + A}, )
to the state of the probe after the measurenignt,. The

probability of obtaining the measurement resylis (33) = / d511P(511)/ dg: P(32131)43

P@) = TG a)m) = [ dgX(@.a0P(), (D)
=(q3) + A}, + A} (10)
whereX(q,41) = ¥7(2,41)Y (,4)) is the generalized pro- However, one cannot estimate the initial widifg2),
jection operator, and¥(q.41) = s(q1X(4.41)lq); is the ysing a single measurement result, because a single
probability for the probe to undergo a transition when theegyit does not contain information abolah)?. If g
signal is in the statgy),. All measurement processes have gng g» were independent results, obtained from two
to satisfy three general requirements. The transition probyjfferent quantum systems, which are initially in the same
ability of the probe has to be normalized over all possibleyyantum state, their correlation would provide the missing
final states of the probe, information about(g,)?, and (Ag3) could be estimated

fd~ X(q.a,) = 1 @) using both measurement results. In our case the second
N A ' result, §,, depends on the firsg;, and their correlation
S . 5 .
As the inferred value ofj, 4, should equal, on aver- does not give information abou4,)?, rather it gives
age, the center of the probability density &f (3;) = (G1q2) = / dgi P(G1)q / dgr P(321G1)G2 = {q8) .
[dg, P(31)G1 = {qo). This leads to an
f di1 X(q,31)q1 = q. (3)  This treatment can be easily extended to include as many

measurements af as we want, and a similar treatment
The signal and the probe should be independent of eaatan be used to analyze the results of the measurements
other. Therefore, the probability error associated withof p. Always the conclusion is the same: While it is
the measurement result should equal the sum of thpossible to estimate the initial center positionsRgfq)
measurement error\2,, and the intrinsic uncertainty of and Py(p) with a linear function of the corresponding

m}

the wave function{Ag?) = (31) — (71)* = (A¢}) + A2,  measurement results, no quadratic function of the results

where(g?) = [dg, P(3:)g;. From this we obtain can estimate the initial widths ofy(gq) and Py(p).
~ o 5 5 Since no information about the widths of the probability
/ dg X(q,q1)q7 = q~ + 4,,. (4)  densities ofg and p is obtained, the process of repeated
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QND measurements is equivalent to a measurement dinding the center farther away fromy increases as the
the observableg and p, and cannot be considered as anumber of measurements increases. As long as the total
measurement of the wave function. The same is true fostrength of the measurements is smallA2, <« 1/A3, the
all processes of repeated Pauli’s first-kind measurementsariance ofi{ increases linearly with the number of mea-
of the arbitrary observablgcos) + p sing. surementgk/A2)AjA; = Dk. In this regime the move-
The mathematical origin of this result is the dependencenent of the center is a quantum Brownian mation with a
of each measurement on the specific results of theonstant diffusion coefficienb = Aj/A%. As the pho-
previous measurements. Physically, the measuremetdn number distribution narrows, the average step size of
process modifies the wave function in accordance withhis Brownian motion decreases. The statistical variance
the measurement result, i.e., the information which iof the center saturates, and equals the initial photon num-
extracted from the wave function. This modification is ber uncertaintyA3. At the same time, the wave function
a direct result of the projection postulate. Thereforejs reduced to a photon number eigenstate. The measured
regardless of the measurement strength, it is impossiblave function, therefore, undergoes a quantum Brownian
to measure the wave function of a single system usingnotion, which is saturated due to the continuous wave
repeated QND measurements. function collapse.
We now illustrate these general considerations with Using Eq. (1), the probability to obtain the measure-
two examples. The first example [7] is that of a se-ment resultsiiy, ii,, . . ., i) iS
ries of photon-number QND measurements [8—11] per-
formed on a single wave packet of light. Each time a © k
measurement is performed, a probe, which is prepared iR, iz, ... ”k)l_[d”z = /700 dn N["’noaAg]ndﬁi
a squeezed state with a zero phdsg, r),, where|a| is s o i=1
the initial excitation of the probe, and is the squeez- X N[”i’”’Am] = [P(n) dn][P(S) dS]d Q- , (14)
ing parameter, is correlated to the signal in an optical
Kerr medium. The correlation is described by the uni-wheren = Zf:lﬁi/k and An? = Zﬁ;l(ﬁi —n)*/(k — 1)
tary operator/ = expiuisi,), wheren, ands, are the are the estimates for the center and the width of the
signal and probe photon number operators, respectivelypitial photon number distribution, respectively [§,=
and u is the coupling strength [16]. Then, the second-[(k — 1)/A2]An2, and dQ;_; is a normalized infinites-
quadrature amplitude of the prob,, = |a0|g0,,, where imal element of the solid angle ik — 1 dimensions,
&, is the phase operator of the probe, is measured prefd(;—; = 1. The probability distribution ofz, P(7) =
cisely by a homodyne detection. The measurement reN[7, ng, Aj + A2 = /k], is centered atr,. The variance
sult, a,, gives the inferred signal photon numbar=  of n decreases with an increased number of measure-
as/laolw. The probability-amplitude operatdt(i,7) =  ments, and ag — « this variance reaches its minimum
,,(ﬁlf/lao,r)p corresponds to a Gaussian [17] transitionvalue, A3. The estimated center has the same probabil-
probability, X (n, 1) = N[7,n,A%]. The measurement er- ity error in both cases of an infinite number of repeated
ror is A2 = <A&2,p2>/|a0|2,u2 where(Aas ) = e > /4is  weak measurements and one precise measurement. The
the initial uncertainty of the second quadrature of theprobability distribution ofS is a chi-squared distribution
probe. The process of repeated measurements is de-[18], P(S) = x?[S,(k — 1)], which is independent ok}
scribed by the total probability-amplitude operatdf,=  Therefore An? is not a measure of the initial width of the
Y (A, 7)--- ¥ (A7) (,7,). Let us assume that the ini- wave function,A3. Indeed,An2 is centered at\2, with
tial photon number distribution of the signal is a Gaussthe variance2A? /(k — 1), i.e., An? is a measure of the
ian, Po(n) = N[n, no, A3]. Physically, the photon number measurement error. We conclude that the statistics of the
has a discrete sub- or super-Poissonian distribution, wheresults of repeated weak QND measurements of the same
n = 0. If the initial signal excitation is large, i.eny > 1,  observable, performed on a single system, contain no in-
this Gaussian approximation is valid. The final signalformation about the initial width of its wave funciton, due
photon number distributior, (n) = N[n,n{, A7), is then  to the exact coordination between the quantum Brownian

calculated according to Eg. (5), motion and the continuous collapse of the wave function.
. The second example shows that even when the collapse
k= Ai(no/A% + z ﬁi/Aizn), (12)  of the wave function to an eigenstate of the measured ob-
servable is prevented due to backaction noise imposed by

measurements of the conjugate observable, it is still im-
A2 = (1/A2 + k/A%). (13)  Ppossible to measure this wave function. This is the case of
alternating QND measurements of the two quadrature am-
After each measurement the width of the photon numbeplitudes of a squeezed state, using a dual degenerate para-
distribution decreases and its center shifts. The diffusiometric amplification [13,14]. In the odd measurements,
of the center aftek measurements, is described statis- the result of a measurement of the second quadrature of
tically by Pi(ng) = N[n, no, (k/A2)A5AZ]. On average, the probea,,, is used to infer the first quadrature of the
the center is always at,. However, the probability of signal,a, . Both the probe, which is in the vacuum state,
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and the signal have Gaussian distributions, and the previous model, of repeated photon number QND measurements, can
be modified, to describe the distribution af, before thekth measuremen®;_(a) = N[a, af ', A7_,]. Taking into

account the backaction noise due to the- 1)th measurement of the second quadrature of the signalwe obtain

from Egs. (12) and (13)

af 't = (1/AF, + 1/A%) Ha 2 /A, + &1 /A7), (15)

Aioy = (1783, + 1/A0) + A7, (16)
wherea,_, is the result of thék — 1)th measurement af, ;. P;—,(«) determines the conditional probability to obtain
@, in the kth measuremeng(ay | &-1,..., &), according to Egs. (1)—(4). This allows us to calculate the second-order
moment,

(apy = f ddlp(&l)f ddzp(&ﬂ&l)’“/ dag P(ay|@;—y,...,&)a; = aj + Aj + A% + (k — DA, (17)
and the correlation, for all = ¥ + 1,
(ara;) = / d&lP(dl)---] d&kP(&k|&k_1,...,d1)dk~~-/ da;P(ajla;-y,...,aNa; = af + A} + (k — A7,
(18)
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