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Chen Q, Thompson J, Hu Y, Dean J, Lesnefsky EJ. Inhibition of
the ubiquitous calpains protects complex I activity and enables im-
proved mitophagy in the heart following ischemia-reperfusion. Am J
Physiol Cell Physiol 317: C910–C921, 2019. First published August
14, 2019; doi:10.1152/ajpcell.00190.2019.—Activation of calpain 1
(CPN1) and calpain 2 (CPN2) contributes to cardiac injury during
ischemia (ISC) and reperfusion (REP). Complex I activity is de-
creased in heart mitochondria following ISC-REP. CPN1 and CPN2
are ubiquitous calpains that exist in both cytosol (cs)-CPN1 and 2 and
mitochondria (mit)-CPN1 and 2. Recent work shows that the complex
I subunit (NDUFS7) is a potential substrate of the mit-CPN1. We
asked whether ISC-REP led to decreased complex I activity via
proteolysis of the NDUFS7 subunit via activation of mit-CPN1 and -2.
Activation of cs-CPN1 and -2 decreases mitophagy in hepatocytes
following ISC-REP. We asked whether activation of cs-CPN1 and -2
impaired mitophagy in the heart following ISC-REP. Buffer-perfused
rat hearts underwent 25 min of global ISC and 30 min of REP.
MDL-28170 (MDL; 10 �M) was used to inhibit CPN1 and -2.
Cytosol, subsarcolemmal mitochondria (SSM), and interfibrillar mi-
tochondria (IFM) were isolated at the end of heart perfusion. Cardiac
ISC-REP led to decreased complex I activity with a decrease in the
content of NDUFS7 in both SSM and IFM. ISC-REP also resulted in
a decrease in cytosolic beclin-1 content, a key component of the
autophagy pathway required to form autophagosomes. MDL treat-
ment protected the contents of cytosolic beclin-1 and mitochondrial
NDUFS7 in hearts following ISC-REP. These results support that
activation of both cytosolic and mitochondrial calpains impairs mito-
chondria during cardiac ISC-REP. Mitochondria-localized calpains
impair complex I via cleavage of a key subunit. Activation of
cytosolic calpains contributes to mitochondrial dysfunction by impair-
ing removal of the impaired mitochondria through depletion of a key
component of the mitophagy process.

calpain inhibitor; electron transport chain; mitochondria; NADH:
ubiquinone oxidoreductase

INTRODUCTION

Mitochondrial dysfunction contributes to cell injury in mul-
tiple pathologic conditions, including ischemia (ISC) and rep-
erfusion (REP). The mitochondrial electron transport chain
(ETC) is impaired in hearts following ISC-REP (38). Complex
I is the first respiratory complex of the ETC (35). Complex I is

an L-shaped molecular complex, with the membrane arm
embedded in the inner mitochondrial membrane and the other
peripheral arm extending into the matrix compartment (47).
The peripheral arm includes seven NADH:ubiquinone oxi-
doreductase core subunits (NDUFV1, NDUFV2, NDUFS1,
NDUFS2, NDUFS3, NDUFS7, and NDUFS8) that are essen-
tial for NADH oxidation and subsequent electron transfer
through the complex (47). The initial three subunits are re-
quired for NADH oxidation, and the last four subunits contrib-
ute key roles in transferring electrons to ubiquinone (47).
NDUFS7 is a nuclear-encoded subunit that transfers electrons
to the N2 subunit and subsequently to ubiquinone (62). Muta-
tion of the NDUFS7 gene in humans is associated with Leigh
syndrome with a severe complex I defect (36). A deficiency of
the NDUFS7 also impairs the formation of the juncture be-
tween peripheral and membrane arms of complex I (59). Taken
together, the NDUFS7 subunit is essential to maintain complex
I activity.

Calpain 1 (CPN1) and calpain 2 (CPN2) are two ubiquitous
Ca2�-dependent cysteine proteases (7, 52) existing in cytosol
and mitochondria (7, 64). Activation of the mitochondria-
localized CPN1 (mit-CPN1) and CPN2 (mit-CPN2) impairs
mitochondria during ISC-REP (3, 11, 43, 49, 64, 70). In rat
heart mitochondria, activation of mitochondrial CPN2 (mit-
CPN2) sensitizes to mitochondrial permeability transition pore
(MPTP) opening during REP (64). Activation of mit-CPN1
cleaves apoptotic inducing factor (AIF) in the mitochondrial
intermembrane space to truncated AIF that is then released into
the cytosol to activate caspase-independent cell death (11, 76).
Pyruvate dehydrogenase (PDH) �1-subunit, located in the
mitochondrial matrix, is also cleaved by mit-CPN1 during
ISC-REP (70). The complex I subunit (NDUFS7) content is
decreased in cardiac mitochondria incubated with exogenous
calcium (25 �M) (12). Genetic elimination of CPN1 and CPN2
activities protects NDUFS7 in the calcium-treated mitochon-
dria (12). These results support that activation of mitochondri-
al-localized calpains leads to decreased NDUFS7 subunit con-
tent. Complex I activity is decreased in rat heart mitochondria
following ISC-REP (9). In the present study, we asked whether
activated mitochondria-localized calpains led to decreased
complex I activity during ISC-REP by cleaving the NDUFS7
subunit.

There are two populations of cardiac mitochondria: subsar-
colemmal mitochondria (SSM) located underneath the plasma
membrane and interfibrillar mitochondria (IFM) located among
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the myofibrils (40, 55). ISC-REP impairs the ETC in both SSM
and IFM from rat hearts (9). The decreased complex I activity
and increased MPTP susceptibility occur in both SSM and IFM
following ISC-REP (10). Compared with SSM, IFM have a
greater calcium tolerance (54) and are more resistant to isch-
emic damage (42). The contribution of mitochondrial-localized
CPN1 and CPN2 on complex I impairment was studied. The
role of calpains in the potential impairment of the mitophagy
pathway was evaluated. Impaired mitophagy allows the com-
plex I defect-laden mitochondria to persist during ISC-REP.

The impaired mitochondria are sources of cardiac injury
during ISC-REP by increasing the generation of reactive oxy-
gen species (ROS), opening of the MPTP, and the release of
cytochrome c and AIF (apoptosis inducing factor) from mito-
chondria into cytosol to activate cell death programs (37, 38,
63). Thus, timely removal of the impaired mitochondria is
critical to decrease cardiac injury (63). Mitophagy is a mac-
roautophagic process that removes the dysfunctional mitochon-
dria. Impaired mitophagy contributes to increased cell injury in
liver during ISC-REP (24, 71) and the development of diabetic
cardiomyopathy (77). Improvement of mitophagy with anes-
thetic postconditioning decreases cardiac injury during ISC-
REP (75). Mitophagy is regulated by autophagy-related pro-
teins, including beclin-1 and Atg7 (autophagy-related protein
7) (33). Both beclin1 and Atg7 are calpain substrates (33, 34).
Activation of cytosolic calpains (78) impairs mitophagy in
hepatocytes following ISC-REP by cleaving beclin-1 and Atg
7. Enhancement of mitophagy with overexpression of beclin-1
protects liver mitochondria during ISC-REP (33). These results
indicate that calpain-mediated cleavage of beclin-1 contributes
a key role in the impairment of mitophagy during ISC-REP.
We asked whether inhibition of ubiquitous calpains using
MDL-28170 (MDL) to inhibit CPN1 and -2 can decrease
cardiac injury during ISC-REP by protection of components of
the mitophagy PATHWAY TO HELL.

METHODS

Preparation of rat hearts for perfusion. The Institutional Animal
Care and Use Committees of the McGuire VA Medical Center and
Virginia Commonwealth University approved the study. Sprague-
Dawley (SD) rats (3–4 mo of age) were anesthetized with pentobar-
bital sodium (100 mg/kg ip) and anticoagulated with heparin (1,000
IU/kg ip). Rat hearts were isolated and perfused in the Langendorff
mode with modified Krebs-Henseleit (K-H) buffer (115 mM NaCl,
4.0 mM KCl, 2.5 mM CaCl2, 26 mM NaHCO3, 1.1 mM MgSO4, 0.9
mM KH2PO4, 5.5 mM glucose, and 5 IU insulin/L), oxygenated with
95% O2-5% CO2 (9). Hearts were paced at 300 beats/min during a
15-min equilibration period and after 15 min of REP. Pacing was
discontinued during ISC and the initial 15 min of REP. Cardiac
function was monitored during the entire experiment, with a balloon
inserted into the left ventricle, and data were recorded digitally (AD
Instruments, Colorado Springs, CO). In the untreated ISC-REP group,
hearts were perfused for 15-min equilibration with K-H buffer, in-
cluding 0.001% DMSO as vehicle, followed by 25 min of global ISC
at 37°C and 30 min of REP. In the MDL-treated hearts, MDL (10 �M)
was included in the perfusion buffer during the entire experimental
period. The entire perfusion time in ISC-REP hearts with or without
MDL treatment was 70 min. In the time control group, hearts were
buffer perfused without ISC-REP. The entire perfusion time in time
control group was 45 min (excluding 25 min ISC time). Coronary
effluent was collected during the entire 30-min REP period in the
untreated and MDL groups and during the last 30 min of the perfusion
period and in the time control group for lactate dehydrogenase (LDH)

measurement (9). At the end of the experiment, the heart was har-
vested for mitochondrial isolation.

Isolation of rat heart mitochondria. The heart was removed from
the perfusion cannula at the end of perfusion and placed into buffer A
[100 mM KCl, 50 mM 3-(N-morpholino) propanesulfonic acid
(MOPS), 1 mM EGTA, 5 mM MgSO4·7 H2O, and 1 mM ATP, pH
7.4] at 4°C. Mitochondria were isolated using the procedure of Palmer
et al. (55), except that trypsin was used as the protease (6). Cardiac
tissue was finely minced and placed in buffer A containing 0.2%
bovine serum albumin and homogenized with a polytron tissue pro-
cessor (Brinkman Instruments, Westbury, NY) for 2.5 s at the setting
of 6.0. The polytron homogenate was centrifuged at 500 g, the
supernatant was saved for isolation of SSM, and the pellet was
washed. The combined supernatants were centrifuged at 3,000 g to
sediment SSM. IFM were isolated by incubation of skinned myofi-
bers, obtained after polytron treatment, with 5 mg/g (wet wt) trypsin
for 10 min at 4°C. SSM and IFM were washed twice and then
suspended in 100 mM KCl, 50 mM MOPS, and 0.5 mM EGTA.
Mitochondrial protein content was measured by the Lowry method,
using bovine serum album as a standard. To identify the localization
of mit-CPN1 within mitochondria, mitochondrial outer membrane
(OMM), intermembrane space (IMS), inner membrane (IMM), and
matrix (MTR) were separated using our published methods (7).

Mitochondrial oxidative phosphorylation and enzyme activity. Ox-
ygen consumption in mitochondria was measured using a Clark-type
oxygen electrode at 30°C, as previously described (42). Mitochondria
were incubated in 80 mM KCl, 50 mM MOPS, 1 mM EGTA, 5 mM
KH2PO4, and 1 mg/ml defatted, dialyzed bovine serum albumin at pH
7.4. Glutamate (20 mM, complex I substrate), succinate (20 mM) plus
7.5 �M rotenone (complex II substrate), and TMPD (N,N,N’,N’
tetramethyl p-phenylenediamine, 1 mM)-ascorbate (10 mM, complex
IV substrate) plus rotenone were used. Enzyme activities of the ETC
were determined using previously published methods (9).

Calcium retention capacity in isolated mitochondria. Calcium
retention capacity (CRC) was used to assess calcium-induced mito-
chondrial permeability transition pore opening in isolated mitochon-
dria (53). Mitochondria (125 �g/ml) were incubated in medium
containing 150 mM sucrose, 50 mM KCl, 2 mM KH2PO4, and 5 mM
succinate in 20 mM Tris·HCl, pH 7.4, by sequential pulses of a known
amount of calcium (5 nmol). The calcium retention capacity is greater
in mitochondria oxidizing a complex II substrate compared with a
complex I substrate (45, 46). Thus, succinate was used as substrate for
CRC measurement. Extramitochondrial Ca2� concentration was re-
corded with 0.5 �M Calcium Green-5N and fluorescence monitored
with excitation and emission wavelengths set at 500 and 530 nm,
respectively.

Western blotting. Mitochondrial proteins were separated using 12
or 4–15% Tris-glycine gels (Bio-Rad, Hercules, CA) and transferred
to PVDF membrane (Fisher Scientific, Hampton, NH) using semidry
transfer (Bio-Rad). The molecular weight marker mix used was
purchased form Bio-Rad Precision Plus Protein Dual Color Standards
(10–250 kDa; catalog no. 1610374). The blots were incubated for 1 h
at room temperature in 5% (wt/vol) nonfat dry milk (Bio-Rad) in
TBST buffer (10 mM Tris, pH 7.5, 150 mM NaCl, and 0.1%
Tween20), followed by an overnight incubation at 4°C with primary
antibody. Primary antibody information is listed in Table 1. After 1-h
incubation at room temperature with a 1:10,000 dilution of horserad-
ish peroxidase-conjugated anti-mouse or anti-rabbit IgG F(ab)2 (GE
Healthcare Life Sciences, Piscataway, NJ), blots were developed
using ECL Plus Western Blotting Detection Reagents (GE Healthcare
Life Sciences, Piscataway, NJ). Membranes were digitally analyzed
(Bio-Rad, Hercules, CA) using Image Lab 6.0 software. Background
intensity adjustment, if performed, was always adjusted for the entire
membrane. For the preparation of figures, membranes were cut hor-
izontally.

Statistical analysis. Data are expressed as means � SE (66). For all
analyses, differences between groups (�3 groups) were compared by
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one-way ANOVA. When a significant F value was obtained, means
were compared using the Student-Newman-Keuls test of multiple
comparisons. Differences between two groups were compared by
unpaired Student’s t-test (SigmaStat 3.5; Systat, Richmond, CA).
Statistical significance was defined as a value of P � 0.05.

RESULTS

Inhibition of calpain decreases cardiac injury in buffer-
perfused hearts during ISC-REP. There were no differences in
left ventricular developed pressure (LVDP; mmHg) or left
ventricular end-diastolic pressure (LVEDP; mmHg) before ISC
between the time control (TC) and ISC-REP groups (Fig. 1, A
and B). MDL treatment led to a slightly decreased LVDP and
LVEDP compared with TC or ISC-REP before ISC (Fig. 1, A
and B), suggesting that MDL (10 uM) had a slight inhibition of
cardiac function before ISC. This mild inhibition of cardiac
function by MDL before ISC might contribute to decreased
cardiac injury during REP. ISC-REP impaired cardiac func-
tion, as shown by the decreased LVDP and the increased
LVEDP during 30 min of REP. Compared with untreated
ISC-REP hearts, MDL treatment improved cardiac function
with better recovery of LVDP and LVEDP during REP (Fig. 1,
A and B). Compared with time control, the cardiac injury in the
untreated hearts was associated with increased LDH release
into coronary effluent in untreated hearts following ISC-REP.
The LDH content was significantly decreased in MDL-treated
hearts (Fig. 1C). These results clearly support that inhibition of
calpain decreases cardiac injury in rat hearts following ISC-
REP.

Table 1. Antibodies used in the current manuscript

Antibody Name Company Catalog No. Concentration

AIF Cell Signaling Technology 4642 1:1,000
Beclin 1 Cell Signaling Technology 3495 1:1,000
Calpain 1 ThermoFisher Scientific MA3-940 1:1,000
Complex IV

(subunit 4) Cell Signaling Technology 4844 1:1,000
Complex V ThermoFisher Scientific A-21351 1:2,500
Cytochrome c ThermoFisher Scientific 710627 1:2,500
GAPDH Cell Signaling Technology 5174 1:1,000
LC3A/B Cell Signaling Technology 4108 1:1,000
LC3B Cell Signaling Technology 2775 1:1,000
NDUFS7 ThermoFisher Scientific PA5-19343 1:500
PDH�1 Cell Signaling Technology C54G1 1:1,000
Spectrin Santa Cruz Biotechnology csc-46696 1:100
VDAC Abcam 14715 1:2,500

AIF, apoptotic inducing factor; LC3A/B, microtubule-associated protein
3A/B; NDUFS7, NADH:ubiquinone oxidoreductase core subunit S7; PDH�1,
pyruvate dehydrogenase-�1; VDAC, voltage-dependent anion channel.
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the MTR, respectively. EQ, equilibration; IR, ischemia-reperfusion; LDH, lactate dehydrogenase; MW, molecular weight.
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Localization of calpain1 within mitochondria. Calpain 1 in-
cludes an isoform-specific, 80 kDa large subunit and a com-
mon, 28 kDa small regulatory subunit (also known as calpain
4). The large subunit of CPN1 (mit-CPN1; arrow in Fig. 1D)
was found in the mitochondrial intermembrane space (IMS)
and the matrix (MTR). The mit-CPN1 was not found in the
outer membrane (OMM) or inner membrane (IMM) (Fig. 1D).
VDAC (voltage-dependent anion channel) was used as an
OMM marker. Some VDAC was also found in the IMM. This
may be due to the presence of contact sites where OMM and
IMM merge (29). Subunit-� of complex V was used as the
IMM maker that was detected only in the IMM. Cytochrome c
and PDH were used as markers of the IMS and MTR, respec-
tively (7).

MDL treatment protects mitochondrial function during ISC-
REP. ISC-REP markedly decreased the rate of oxidative phos-
phorylation in both SSM and IFM with glutamate as complex
I substrate (Fig. 2, A and D), succinate as complex II substrate
(Fig. 2, B and E), and TMPD-ascorbate as complex IV (Fig. 2,
C and F) compared with time control. MDL treatment attenu-
ated injury to mitochondria reflected in improved oxidative
phosphorylation in both SSM and IFM with complexes I, II,
and IV substrates (Fig. 2).

The activities of complex I and citrate synthase were mea-
sured in detergent-solubilized mitochondria. The complex I
activity in both SSM and IFM was significantly decreased in
mitochondria following ISC-REP compared with time control
(Fig. 3, A and B). However, citrate synthase activity was not
altered in SSM and IFM following ISC-REP (Fig. 3, C and D),
indicating that the decreased complex I activity is not due to
loss of mitochondrial content. MDL treatment dramatically
protected complex I activity in both SSM and IFM compared
with untreated hearts following ISC-REP (Fig. 3, A and B).

Administration of MDL decreases the MPTP opening during
ISC-REP. Succinate was used to energize mitochondria in that
complex II is relatively resistant to exogenous calcium-induced
damage (45, 46). In the time control group, the CRC in IFM
was greater than that in SSM, supporting that IFM can tolerate
more calcium loading in the baseline state (56). Compared with

time control, ISC-REP significantly decreased the CRC in both
SSM and IFM (Fig. 3, E and F). MDL treatment significantly
improved the CRC compared with untreated hearts following
ISC-REP (Fig. 3, E and F). These results suggest that activa-
tion of calpains during ISC-REP sensitizes to MPTP opening in
both SSM and IFM.

Administration of MDL decreases cytosolic and mitochon-
drial calpain activation during ISC-REP. ISC-REP activates
cytosolic calpains in a number of animal models (31). The
cleaved product of spectrin is commonly used as a marker of
cytosolic calpain activation. Although ISC-REP did not alter
full-length spectrin content compared with time control, it
increased the formation of the cleaved spectrin compared with
time control (Fig. 4, A–C). MDL treatment decreased the
formation of the cleaved spectrin in hearts following ISC-REP
(Fig. 4, A and C).

Activation of mitochondrial calpain 1 cleaves AIF to trun-
cated AIF that is released into the cytosol. Thus, a decrease in
mitochondrial AIF content is used as a marker of the mit-CPN1
activation. Compared with time control, ISC-REP led to de-
creased AIF content in both SSM and IFM (Fig. 4, A, D and E).
MDL treatment tended to improve AIF content in SSM (P �
0.058). MDL treatment did improve the AIF content in IFM
compared with untreated hearts (Fig. 4, A and E). These results
indicate that MDL treatment decreases the activation of both
cytosolic and mitochondrial calpain activation during ISC-
REP. Protein contents of the cytosolic and mitochondrial
CPN1 and CPN2 were not altered in hearts following ISC-REP
(data not shown).

Administration of MDL prevents the cleavage of a complex
I subunit during ISC-REP. NDUFS7 is one of the iron/sulfur-
containing protein subunits within complex I and a catalytic
center that participates in electron flow through the complex
(47). Compared with time control, ISC-REP decreased the
content of the NDUFS7 subunit in both SSM (Fig. 5, A and C)
and IFM (Fig. 5, B and D). MDL treatment protected the
NDUFS7 subunit in both SSM and IFM following ISC-REP
(Fig. 5). These results suggest that the calpain-mediated deple-
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tion of this complex I subunit contributes to the complex I
impairment and decrease in activity during ISC-REP.

Administration of MDL preserves the capacity for mitophagy
during ISC-REP. Activation of autophagy converts cytosolic
microtubule-associated protein 1A/1B light chain 3 [LC3-A
(I)] to a lipidated and membrane-bound form [LC3-B (II)].
Thus, an increased ratio of LC3-B/A is used as an indicatorof
autophagy activation (23, 24). Beclin-1 is a key component
required to form the autophagosome, and the decrease in
beclin1 content is used as an indicator of impaired autophagy
in liver (33, 34).

Compared with time control, ISC-REP markedly decreased
the beclin-1 content in cytosol (Fig. 6, A and B). The ratio of
LC3B/A was also decreased in cytosol following ISC-REP
compared with time control (Fig. 6, A and C). These results
indicated that the autophagy process was impaired in rat hearts
following global ISC-REP. MDL treatment protected the be-
clin-1 content in hearts following ISC-REP (Fig. 6, A and B).
MDL tended to increase the ratio of LC3B/A compared with
untreated hearts following ISC-REP (Fig. 6, A and C). These
results suggest that activation of CPN1 and -2 contributes to
impairment of autophagy during ISC-REP via depletion of key
proteins in the autophagy pathway.

LC3B is a lipidated protein that is conjugated with the
membrane through interaction with phosphatidylethanolamine
(23). LC3B is a key component of the phagophore that engulfs
the dysfunctional mitochondria (23). Thus, LC3B plays a key
role in the transport of the impaired mitochondria to the
lysosome for degradation. LC3B content was determined in
isolated SSM and IFM with or without ISC-REP. LC3B was
found in both SSM and IFM from time control hearts (Fig. 6D).
Compared with time control, LC3B content was markedly
decreased in both SSM (Fig. 6, D and E) and IFM (Fig. 6, D
and F) following ISC-REP. MDL treatment maintained the
LC3B content in SSM and improved its content in IFM
compared with untreated hearts. These results show that acti-
vation of the cytosolic CPN1/2 contributes to decreased LC3B
content in mitochondria following ISC-REP.

DISCUSSION

Activation of cytosolic CPN1 and CPN2 increases cardiac
injury during ISC-REP by cleaving cytosolic and membrane
proteins (5, 11, 70). In the present study, we found that
activation of the cytosolic CPN1 and CPN2 likely impaired the
capacity for mitophagy in hearts following ISC-REP. Activa-
tion of mit-CPN1 and CPN2 contributes to mitochondrial
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impairment during ISC-REP (5, 11, 64, 70). In the current
study, we found that MDL treatment improved the CRC in
both SSM and IFM following ISC-REP, supporting that acti-
vation of mitochondrial calpains sensitizes to MPTP opening.

Compared with untreated ISC-REP hearts, MDL treatment
improves oxidative phosphorylation using substrates selective
for complexes I, II, and IV, supporting that inhibition of
mitochondrial calpains protects the ETC. In addition, we found
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that activation of the mit-CPN1/2 led to decreased complex I
activity in both SSM and IFM accompanied by cleavage of the
NDUFS7 subunit. Our study shows that activation of mit-
CPN1/2 directly impairs the respiratory chain, whereas activa-
tion of the cytosolic CPN1/2 augments accumulation of dam-
aged mitochondria by potentially impairing the removal of
dysfunctional mitochondria. Pharmacologic inhibition of cal-
pain can be an intriguing strategy to protect complex I during
ISC-REP (Fig. 7).

ISC-REP leads to activation of cytosolic (31) and mitochon-
drial calpains (11). An increase in cytosolic cleaved spectrin
content is used as an index of cytosolic CPN1 and CPN2
activation (31). In the present study, ISC-REP increased the
formation of the cleaved spectrin, whereas MDL treatment
decreased the cleaved spectrin content in isolated hearts. These
results support that MDL is sufficient to prevent the activation
of CPN1 and CPN2 during ISC-REP.

The mit-CPN1 is identified in the mitochondrial intermem-
brane space (52) and matrix (7). Our study confirms that
mit-CPN1 is located in rat heart mitochondrial intermembrane
space and matrix (Fig. 1D). Activation of mit-CPN1 within the
mitochondrial intermembrane space augments cardiac injury
during reperfusion by inducing a translocation of the truncated
AIF from mitochondria to cytosol and nucleus (11). Therefore,
a reduced AIF content or an increased truncated AIF content is
an indicator of mit-CPN1 activation (11, 52), at least in the
intermembrane space compartment. ISC-REP leads to a de-
creased AIF content in both SSM and IFM, whereas MDL
treatment protects the AIF content in SSM and IFM following
ISC-REP. These results show that ISC-REP activates the
mit-CPN1 located in the intermembrane space compartment
and that MDL treatment efficiently prevents the mit-CPN1
activation at this site.

Complex I activity is decreased in heart mitochondria fol-
lowing ex vivo and in vivo ISC-REP (18, 39, 61). In buffer-
perfused rat hearts, ISC leads to a decrease in complex I
activity (9). NADH dehydrogenase is the first component of
complex I in the sequence of electron flow and is located in the
matrix arm of the complex (Fig. 7) (50, 60). Ischemia does not
decrease NADH dehydrogenase activity in either SSM or IFM
in buffer-perfused rat hearts, indicating that the defect is
located in sites distal to the NADH dehydrogenase portion of
complex I (8, 9). The mechanisms of complex I impairment
during ISC include subunit damage (60) and posttranslational
modifications, including S-nitrosylation (2, 15, 48, 65), phos-
phorylation (13), intercellular acidification (74), and alteration
of chaperone proteins (68). Complex I activity is also de-
creased by a conformational change leading to a transition
from its “active” form to the “deactive” form (19). Tightly
bound lipids, including cardiolipin, also play a role in stabiliz-
ing interactions between the subunits (16). Alteration of car-
diolipin content during ISC-REP also decreases complex I
activity in cardiac mitochondria (57). In isolated guinea pig
hearts, ISC led to decreased complex I activity accompanied by
decreased cardiolipin content (17). Interestingly, REP led to
slightly recovered complex I activity compared with ISC alone.
However, cardiolipin content was decreased further in mito-
chondria following REP (17). Thus, the decreased complex I
activity is not solely dependent on cardiolipin content. The
decreased complex I subunit (NDUFA9) may contribute to
decreased complex I activity in this study (17). In the rabbit
heart, ISC decreased cardiolipin content in mitochondria that
was not associated with a decrease in complex I activity (41,
42). The complex I defect remains present in detergent-solu-
bilized mitochondria in the presence of exogenous asolectin, a
mimic of mitochondrial phospholipids. This result suggests
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that the decreased complex I activity is less likely due to the
decreased cardiolipin content (42). Thus, although decreases in
cardiolipin content clearly occur (17, 41, 57), other mecha-
nisms likely account for the decrease in complex I activity.
In the current study, we found that ISC-REP led to decreased
complex I activity accompanied by decreased subunit NDUFS7
content in both SSM and IFM.

NDUFS7 is one of the iron/sulfur clusters within complex I
oriented toward the mitochondrial matrix. The matrix-localized
mit-CPN1 has the potential to access the NDUFS7 subunit
located in the peripheral arm oriented into the matrix (Fig. 7).
Inhibition of mit-CPN1 protected complex I activity and the
NDUFS7 subunit content. These results provide evidence that
activation of mit-CPN1 leads to complex I damage by cleaving
NSDUFS7. In addition to SSM, these alterations were ob-
served in IFM. IFM was isolated using protease treatment that
removes potential cytosolic calpain contamination. Thus, the
cleaved NDUFS7 is not due to the presence of cytosolic
calpain contamination on the outer mitochondrial membrane.
These results support that activation of the matrix-localized
mit-CPN1 contributes to complex I damage in heart mitochon-
dria. Although MDL-28170 inhibits mainly calpain 1, it also
decreases calpain 2 activity (7). In addition, both calpain 1 and
calpain 2 are found In heart mitochondria (64, 70). Thus, the
potential role of the mit-CPN2 activation in complex I damage
to NDUFS7 cannot be excluded. The use of a selective calpain
1 inhibitor or genetic deletion of calpain 1 will help to further
clarify the role of the mit-CPN1 in complex I damage.

Complex I activity is also decreased by a conformational
change (shifting from the normal “active” A-form to the
“deactive” dormant D-form) during ISC (19, 20, 22). The A to
D transition is potentially reversible, and its mechanism is a
sulfhydryl oxidation of a key cysteine in complex I subunit 9
(19). Activation of the mit-CPN1 may alter complex I activity
by facilitating A to D transition during ISC-REP. The effect of
the posttranslational modification or A to D form transition on
complex I activity is reversible. However, complex I activity is
decreased during ISC and persists during REP. These results
indicate that ISC-REP leads to persistent impairment to a
proportion of the complex I that is beyond merely the A to D
transition (9, 38). The current study shows that ISC-REP leads
to decreased complex I activity through degradation of at least
the NDUFS7 subunit. The proteolytic degradation of a com-
plex I subunit may explain that ISC-REP leads to persistent
impairment to complex I. The potential interrelationship be-
tween enhanced exposure of the NDUFS7 subunit to mit-CPN1
as a result of the conformational change in complex I to the
deactive form will require further study.

MPTP opening is a key factor to trigger the cell death process
during ISC-REP (25, 26, 73). Inhibition of MPTP opening
using physiologic (1, 69) or pharmacologic approaches (27, 28,
69) decreased cardiac injury during ISC-REP. Genetic ablation
of complex I subunits sensitizes to MPTP opening in cardiac
mitochondria following myocardial pressure overload, sug-
gesting that the damaged complex I favors MPTP opening (21,
32). Our study shows that protection of complex I activity
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using a calpain inhibitor leads to decreased MPTP opening.
Inhibition of mit-CPN2 also decreases MPTP opening in car-
diac mitochondria by protecting the complex I ND6 subunit
(64). These results suggest that activation of mitochondrial
calpains contributes to MPTP opening during ISC-REP by
decreasing complex I activity. In addition to the complex I
defect, impairment of mitophagy also sensitizes to MPTP
opening in hepatocytes during ISC-REP (33, 34). MDL treat-
ment preserves the capacity for improved mitophagy and
inhibits the MPTP opening during ISC-REP.

Dysfunctional mitochondria are a key source of cardiac
injury during ISC-REP. Timely removal of damaged mito-
chondria through mitophagy deceases cardiac injury during
ISC-REP (58). ISC-REP leads to an increasingly depolarized
inner mitochondrial membrane potential (10) that recruits
PINK1, Parkin, and p62 to mitochondria (30). LC3B relocates
to damaged mitochondria by interacting with p62 proteins (14,
23, 24). Relocation of LC3B to damaged mitochondria is an
early step in the formation of the autophagosome that is
transported to lysosome for degradation (23). An increase in
LC3B association with mitochondria by expression of p66SHC
stimulates mitophagy (51). Prevention of LC3B translocation
to mitochondria impairs mitophagy during sepsis (Fig. 7) (67).
These results indicate that translocation of LC3B to mitochon-
dria is critical for mitophagy to occur. Beclin-1 contributes a
key role in regulating mitophagy. ISC-REP leads to decreased
mitophagy in hepatocytes by cleavage of beclin-1 through
activation of the cytosolic CPN2. Stimulation of autophagy
using carbamazepine decreases liver injury by increasing be-
clin-1 content via inhibition of calpains (34). Overexpression
of beclin-1 increases mitophagy in cardiac myocytes (67, 72).
In the current study, we find that ISC-REP leads to decreased
cytosolic beclin-1 content, whereas inhibition of calpains using
MDL restores beclin-1 content. A decreased LC3B content in
dysfunctional mitochondria impairs mitophagy (67). LC3B

content is decreased in both SSM and IFM following ISC-REP.
The presence of LC3B in IFM indicates that LC3B is tightly
bound with the mitochondrial membrane. A loosely associated
LC3B will be removed during IFM isolation with trypsin
treatment. Inhibition of calpain activation using MDL restores
the LC3B content in cytosol and mitochondria, suggesting that
inhibition of calpains promotes autophagy by increasing LC3B
translocation to mitochondria.

Beclin-1 is important for LC3B translocation to mitochon-
dria. Depletion of beclin-1 in cytosol prevents LC3B translo-
cation to mitochondria, whereas overexpression of beclin-1
increases LC3B translocation to mitochondria (67). Our study
shows that ISC-REP leads to decreased LC3B content by
activating cytosolic calpains. Our results suggest that ISC-REP
impairs mitophagy in part by decreasing LC3B translocation to
mitochondria through depletion of cytosolic beclin-1 content.
Inhibition of CPN1/2 may decrease cardiac injury by improv-
ing the mitophagy during ISC-REP.

There are limitations in the current study. Cytosolic LC3B
content is decreased in rat hearts following ISC-REP (4). Our
study also shows that ISC-REP decreases cytosolic LC3B
content. However, we need to be very cautious regarding the
explanation of these data. LC3B is degraded in the lysosome
with acidification and the cathepsin B protease (58). Lysosome
dysfunction can affect LC3B content. Since we did not use a
lysosome inhibitor such as chloroquine to block autophagy flux
(34), we cannot conclude that the ISC-REP decreases au-
tophagy based on the alteration of cytosolic LC3B content.
MDL is a classic inhibitor of calpains 1 and 2. However, MDL
also has off-target effects, including inhibition of cathepsin B
(7, 44). Thus, a genetic approach is needed to clarify the role
of calpain activation in decreased mitophagy during ISC-REP
in a future study.

Reversible inhibition of complex I decreases cardiac injury
during ISC-REP (38), indicating that the manipulation of
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complex I activity is a valuable approach to decrease cardiac
injury. However, persistent complex I damage increases car-
diac injury during REP by impairing energy production, favor-
ing ROS production, and increasing the probability of MPTP
opening (38) that favors the activation of cell death programs.
Inhibition of cytosolic and mitochondrial calpains decreases
cardiac injury during ISC-REP by preserving mitochondrial
function through protection of mitochondrial respiratory chain
reinforced by preservation of the capability for mitophagy to
remove those mitochondria that do sustain damage.
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