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ABSTRACT 

Due to continuously high production rates of rhodopsin (RHO) and high metabolic 

activity, photoreceptor neurons are especially vulnerable to defects in proteostasis. A 

proline to histidine substitution at position 23 (P23H) leads to production of structurally 

misfolded RHO, causing the most common form of autosomal dominant Retinitis 

Pigmentosa (adRP) in North America. The AAA-ATPase valosin-containing protein 

(VCP) extracts misfolded proteins from the ER membrane for cytosolic degradation. 

Here, we provide the first evidence that inhibition of VCP activity rescues degenerating 

P23H rod cells and improves their functional properties in P23H transgenic rat and 

P23H knock-in mouse retinae, both in vitro and in vivo. This improvement correlates 

with the restoration of the physiological RHO localization to rod outer segments (OS) 

and properly-assembled OS disks. As a single intravitreal injection suffices to deliver 

a long-lasting benefit in vivo, we suggest VCP inhibition as a potential therapeutic 

strategy for adRP patients carrying mutations in the RHO gene. 
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INTRODUCTION 

Retinitis pigmentosa (RP) is a group of inherited vision disorders causing progressive 

and irreversible degeneration of retinal photoreceptor cells. More than 3,000 mutations 

in over 70 different genes are known to cause non-syndromic RP, and the autosomal 

dominant form (adRP) accounts for approximately 15–25% of cases (1). In turn, over 

150 different mutations in the rhodopsin (RHO) gene have been identified, and 

collectively, they are the most common cause of adRP (2, 3). This gene encodes for 

rhodopsin (RHO) that is expressed by rod photoreceptors and makes up > 80 % of all 

proteins in the disk membranes of the rod photoreceptor outer segments (OS) (4-6). 

The variant RHOP23H is the most common cause of adRP in the United States and is 

the most extensively studied RHO mutation leading to misfolding (7). Structurally 

misfolded RHOP23H is retained within the ER of the inner segment (IS) of rod 

photoreceptor cells, where RHO is synthesized and degraded by ER-associated 

degradation (ERAD) (8).  

ERAD removes misfolded proteins that fail to achieve their native state (9) and thereby 

contributes to proteostasis. In the retina, balanced proteostasis is critical for cell 

survival, and its imbalances for prolonged periods can result in cell death (2). The 

RHOP23H mutation can lead to an accumulation of misfolded mutant protein in the ER 

of photoreceptors and to activation of the unfolded protein response (10), potentially 

with insufficient or imbalanced unfolded protein response output (11). In the long run, 

the presence of RHOP23H results in a metabolic imbalance, mitochondrial failure, and 

ultimately selective photoreceptor cell degeneration (12).  

Transgenic, knock-out, and knock-in (KI) animal models allow scientific investigation 

of retinal degeneration in RP. P23H transgenic rats carry multiple copies of the variant 

RHOP23H allele and are widely used as an animal model for adRP (13). The P23H KI 

mouse model closely reflects the genetic load found in adRP patients. In both animal 

models, the retinae display progressive rod photoreceptor degeneration followed by 

secondary cone degeneration, a phenotype consistent with the clinical findings in 

patients carrying the RHOP23H mutation (14-17).  

The ATPase valosin-containing protein (VCP) is one of the most abundant cytosolic 

proteins. It is mainly localized in the cytosol, with a significant fraction associated with 

organelle membranes, such as the ER and the Golgi (18). In photoreceptors, VCP, 

also known as p97, specifically acts as a quality control checkpoint for membrane 
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proteins (12). VCP is an AAA+ATPase with two ATPase domains (D1 and D2) and is 

equipped with an N-terminal domain that recruits cofactor/substrate specificity factors. 

VCP forms a functional hexamer that acts as an ATP-dependent molecular machine 

(19, 20). It extracts proteins from macromolecular complexes or membranes resulting 

in downstream activity, unfolds ubiquitylated proteins for proteasomal degradation, and 

also functions as an interaction hub, with more than 30 cofactors able to modulate 

VCP-mediated processes (21-24). The ATP hydrolyzing activity of VCP is 

indispensable for its function, and ATP consumption is required to extract incorrectly 

folded proteins from the membranes of the ER or mitochondria (25). 

VCP mutations have been associated with several diseases. Point mutations have 

been linked to multisystem proteinopathy (MSP), also known as IBMPFD (Inclusion 

Body Myopathy associated with Paget's disease of the bone and Frontotemporal 

Dementia) and amyotrophic lateral sclerosis (ALS) (21, 26-30). In these conditions, the 

dysfunction of VCP is considered to result in the deregulation of the proteostasis 

network (26, 31). Conversely, excessive ATPase activity of VCP is also pathogenic 

(32), resulting in mitochondrial fragmentation, cell death in neurons (33), and 

photoreceptor cell degeneration (34).  

In an earlier study, we showed that VCP binds to both normal RHO as well as RHOP23H 

before its release from the ER when expressed in HEK-293 cells (35). Moreover, 

genetic inactivation of VCP in Drosophila carrying the mutant RHOP37H allele (Rh1P37H) 

suppressed retinal pathology (36). Here, we examined whether modulation of the ER-

associated degradation machinery by VCP inhibition could have a therapeutic impact 

on mammalian photoreceptors expressing RHOP23H in two rodent models for adRP.  
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RESULTS 

VCP unfolds and extracts misfolded proteins from the ER membrane in an ATP-

dependent manner. To investigate the effect of inhibition of this highly energy-

consuming step in mammalian photoreceptors, we treated retinae from P23H 

transgenic rats and P23H KI mice with VCP inhibitors. We selected three chemically 

unrelated small-molecule VCP inhibitors, ML240, Eeyarestatin I (EerI), and NMS-873. 

ML240 acts as a selective and reversible ATP-competitive inhibitor of VCP, targeting 

its D2-domain (20, 37, 38). EerI acts as an irreversible inhibitor binding the D1 domain 

of VCP. EerI influences deubiquitinating processes mediated by VCP-associated 

enzymes, but does not inhibit the ATPase activity of purified VCP (38-40). NMS-873 is 

an allosteric ATP- non-competitive VCP inhibitor that binds at the D1–D2 interdomain 

linker and stabilizes the D2-ADP-bound form, highly potent and with high selectivity. 

(19, 31). 

VCP inhibition rescues rod photoreceptors in P23H transgenic rat explanted 

retinae 

We first tested two VCP inhibitors (ML240 and EerI) in a serum-free organotypic culture 

system that preserves the retinal pigment epithelium (RPE) attached to the distal part 

of the OS (41). Organotypic retinal cultures allowed us to test both VCP inhibitors at 

different doses in vitro under standardized conditions. In previous studies, we have 

shown that photoreceptor degeneration in P23H-1 rats starts around postnatal day 

(PN) 9 and peaks at PN15 (14, 42), see Fig. S1. Accordingly, P23H retinae were 

isolated from PN9 and cultivated for six days (Fig. S1). Within this time, photoreceptor 

cell death and regression of the outer nuclear layer (ONL) resembled the process of 

retinal degeneration in vivo. Organotypic cultures were treated every second day with 

ML240 or EerI at different doses in order to select the most effective concentration, 

based on cell survival in the ONL (data not shown). Since both compounds (ML240 

and EerI) require DMSO as vehicle, we selected the lowest amount of DMSO that 

allowed complete solubilization of each compound; thus, corresponding vehicle-control 

groups were treated with 1 % or 0.5 % DMSO, respectively. 

To identify photoreceptors undergoing cell death, we used the TUNEL assay (Fig. 1A), 

which allowed us to determine the percentage of TUNEL-positive dying cells compared 

to the total number of ONL cell nuclei. Both ML240 and EerI significantly reduced the 

percentage of photoreceptor cell death in P23H cultured retinae compared to the 
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respective controls (Vehicle: 6.27 % ± 1.91; ML240: 2.23 % ± 0.36 p<0.0001; Vehicle: 

5.08 % ± 0.41; EerI: 1.70 % ± 0.39 p=0.0004 (Fig. 1B)). This reduction in cell death 

was reflected in an increased number of remaining cell rows in the ONL. Thus, we 

found that the ONL of ML240 and EerI treated P23H retinae contained significantly 

more rows of nuclei compared to the respective controls (Vehicle: 7.75 rows ± 0.76; 

ML240: 9.49 rows ± 0.93 p=0.0026; Vehicle: 8.08 rows ± 0.54; EerI: 9.48 rows ± 0.21 

p=0.0344 (Fig. 1C)). 

Single intravitreal injection of VCP inhibitors to P23H transgenic rats protects 

degenerating rod photoreceptors in vivo 

Next, we evaluated the effect of VCP inhibition in P23H transgenic rats in vivo. To 

avoid potential unwanted systemic effects of VCP inhibition and to be as close as 

possible to clinically approved drug delivery procedures into the eye, we administered 

both compounds (ML240 and EerI) by intravitreal injection. We selected PN10 as the 

injection day and PN15 as our first evaluation time-point, where the peak of 

degeneration in P23H transgenic rats has been observed (Fig. S1). This group was 

designated the short-term (ST) group. Similar to our observations in vitro, five days 

after the injection of VCP inhibitors in the ST group, the TUNEL assay indicated a 

significant decrease in the percentage of dying photoreceptor cells with either ML240 

or EerI (Vehicle: 2.76 % ± 1.30; ML240: 1.20 % ± 0.66 p=0.001; Vehicle: 2.68 % ± 

0.64; EerI: 0.47 % ± 0.27 p<0.0001 (Fig. 2A and B)). Concomitantly, we observed a 

statistically significant increase in the number of remaining cell rows in the ONL in the 

EerI treated retinae during this short period (Vehicle: 9.56 rows ± 0.59; ML240: 9.75 

rows ± 0.54 p>0.99; Vehicle: 10.28 rows ± 0.51; EerI: 11.57 rows ± 0.72 p=0.0003 (Fig. 

2C).  

To estimate the duration of the protective effect, we examined a long-term (LT) group 

that was injected at PN10 and euthanized at PN30 (Fig. S1). We selected this age 

because rat retinae and their photoreceptors reach a mature development level around 

the first postnatal month. We evaluated the number of remaining photoreceptor cell 

rows in the ONL at six locations across both the retina's inferior and superior 

hemispheres. This is because the P23H transgenic rat retinae at P30 show a higher 

degree of photoreceptor degeneration in the superior hemisphere than in the inferior 

hemisphere (15) (Fig. 2D-F). Even 20 days after a single injection, we could detect a 
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significant neuroprotective effect of both ML240 and EerI (Fig. 2E and F, and Table 

S1). This sustained effect was stronger and more pronounced in the superior retina.  

To estimate the intravitreal clearance (CLivt) of the two VCP inhibitors, we performed 

model calculations based on the Quantitative Structure-Property Relationships 

(QSPR) model, that uses comprehensive rabbit data from intravitreal pharmacokinetic 

experiments (43). Assuming similar permeabilities in rat and rabbit RPE, the CLivt (CL 

= P x S, where P is the permeability and S is the RPE's surface area) in the rat would 

be 0.04 ml/h. By using the equation: t1/2 = ln2 Vd/CLivt (t1/2  is the half-life, Vd: is the 

volume of distribution estimated to be similar to the anatomical volume of the vitreous 

(44), of young rats, 25 µl (45)), we calculated the expected half-life in the vitreous to 

be approximately 25 minutes for both compounds. The simulated concentration 

profiles of the in vivo treatment with ML240 and EerI in the rat vitreous are presented 

in Fig. 3, showing more than 98 % of the dose is expected to be eliminated within the 

first 3 hours post-injection. Nevertheless, both VCP inhibitors were still protective at 

PN30, 20 days after injection. This sustained protective effect suggests that the 

mechanisms promoting photoreceptor cell survival started by VCP inhibition remain 

active even after most, if not all, of the VCP inhibitor, has already been eliminated from 

the vitreous. 

VCP inhibition restores RHO localization and increases the OS length in P23H 

transgenic rat retinae in vitro and in vivo 

Some of the features of P23H photoreceptor degeneration are an increase in RHO 

staining in the ONL and IS and the perturbation of the OS structure (17, 46, 47). 

Therefore, we analyzed the effect of VCP inhibition on RHO expression and 

localization by immunofluorescence staining assessing three different parameters: (1) 

distribution of RHO immunostaining in the retina, (2) mean peak of fluorescence 

intensity in the somata (ONL), and (3) length of the OS.  

We used WT rat retinae at PN15 and PN30 as controls. Here, and as previously 

described (48), RHO immunostaining localizes mainly at the OS (Fig. 4A and C, PN15, 

and P30, respectively). In contrast, RHO was abnormally distributed in P23H rod 

photoreceptor cells, similar to observations made in other animal models for RP (49-

51). Here, RHO accumulated in both the ONL and IS of the photoreceptor cells with a 

reduced distribution to the OS (Fig. 4A and C, PN15, and PN30, respectively).  
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To test whether VCP inhibition can correct the decrease of RHO in OS, we evaluated 

RHO immunostaining of P23H retinae treated with either ML240 or EerI in retinal organ 

cultures (in vitro) or the intact eye after intravitreal injections (in vivo). In both sets of 

experiments (in vitro and in vivo), the RHO staining in vehicle-control P23H retinae was 

mislocalized, similar to the untreated retinae (Fig. 4B and C).  

In contrast, VCP inhibition in P23H retinae (in vitro or in vivo) almost completely 

restored RHO's distribution to that of the normal WT phenotype, with staining 

predominantly in the OS. (Fig. 4B, and C). This WT-like distribution suggests that either 

RHO was successfully trafficked from the ER to OS disks or there was enhanced 

removal of the mutant protein and reduction in any dominant-negative effects, unlike 

in the untreated P23H retinae. To measure RHO distribution, we quantified the mean 

peak of fluorescence intensity in the ONL (Fig. 4D). To do so, we selected the ONL 

area in images taken under identical conditions and calculated the fluorescence 

intensity and standard deviation (SD). The observed significant decrease of the mean 

peak of RHO fluorescence intensity in the treated retinae for both in vitro (Vehicle: 

386.70 ± 74.65; ML240: 163.60 ± 56.18 p=0.0048; Vehicle: 405.9 ± 142.4; EerI: 121.10 

± 53.86; p=0.0005; Fig. 4D) and in vivo (Vehicle: 359.80 ± 72.09; ML240: 144.50 ± 

21.68; p=0.0064; Vehicle: 336.50 ± 19.31; EerI: 150.70 ± 27.60; p=0.0191 (Fig. 4D)), 

confirmed the reduced retention of RHO in the ER. Also, measurements of OS length 

supported the hypothesis that there was improved traffic to the OS (Fig. 4E). OS of 

retinae treated with ML240 or EerI were significantly longer, both in vitro (Vehicle: 7.45 

µm ± 0.95; ML240: 15.42 µm ± 0.11; p=0.0007; Vehicle: 7.85 µm ± 0.06; EerI: 14.10 

µm ± 1.59; p=0.0063; Fig. 4E) and in vivo (Vehicle: 14.38 µm ± 0.65; ML240: 33.56 ± 

4.47; p<0.0001; Vehicle: 14.31 µm ± 0.96; EerI: 33.64 µm ± 2.79; p<0.0001; Fig. 4E). 

As RHO composes the vast majority of the total OS integral membrane protein (6), the 

reduction of RHO staining in the ONL accompanied by an increase of the OS length 

strongly suggest that RHO is no longer retained in the IS once VCP is inactivated, 

allowing proper membrane localization and translocation to the OS. 

At this point, we found similar protective characteristics between ML240 and EerI. To 

more efficiently use laboratory animals and following the 3Rs - reducing, refining, and 

replacing animal use (52), we decided to select only one of the compounds for further 

experiments. Inhibition with EerI is irreversible and unspecific (inhibition of other 

cellular components, including ataxin 3 and Sec61), and it has been suggested that 
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EerI needs to be metabolized into an active compound to exert its inhibitory effect (31, 

39, 53). In contrast, VCP inhibition by ML240 works by a defined mechanism of action, 

is reversible, and ML240 has low off-target activity compared to EerI. Within the context 

of the Ubiquitin/Proteasome System, ML240 is specific for VCP, is far-better 

characterized in terms of VCP-dependent processes, and selectively inhibits the D2 

ATPase domain of VCP (19, 20, 38). For these reasons, we focused on VCP inhibition 

by ML240 for the ultrastructure analysis and the retinal function evaluation in the P23H 

rat model of RP. 

VCP inhibition corrects P23H destabilization in rod disk membranes in P23H rats 

We used electron microscopy (EM) to analyze how the improvement in the RHO 

localization and cell survival due to VCP inhibition affected OS's ultrastructural 

properties, especially concerning OS disk structure and organization. Again, we 

included both in vitro and in vivo paradigms. For in vitro assessment, P23H retinae 

were explanted at PN20 and treated with ML240 for two days to evaluate the acute 

effect of VCP inhibition. For in vivo assessment, we intravitreally injected ML240 at 

PN10 and analyzed the eyes at PN21 (Fig. S1). We selected this time-point as the 

photoreceptor structure has fully matured after PN20 (54). Reynold's lead citrate-

stained semi-thin sections of the treated explants showed longer and morphologically 

more homogeneously structured OS than vehicle controls (Fig. 5A and B).  

EM examination in WT rat retinae displayed OS discs consisting of a double lamellar 

membrane connected by a rim region (5) (Fig. 5C and E). In vitro or in vivo control 

P23H retinae (untreated or treated with vehicle) revealed abnormal OS disk 

membranes displaying multiple vesicotubular structures similar to those described in 

rhoP23H-EGFP transgenic Xenopus and RhoP23H transgenic mice (55), accompanied by 

broken disk bilayers (Fig. 5C – F). Retinae treated with ML240 showed strongly 

reduced vesiculation and less ruptured discs in organotypic culture as well as in 

intravitreally treated eyes (Fig. 5C and F). We calculated the percentage of OS 

displaying a correct-structured lamellation in ML240 treated retinae compared to 

vehicle-treated controls. We observed an almost 3-fold increase in vitro (Vehicle: 21.88 

% ± 1.78; ML240: 59.44 % ± 7.92; p=0.0010) and a significant increase also in vivo 

(Vehicle: 52.42 % ± 11.68; ML240: 84.66 % ± 7.91; p=0.0025; Fig. 6) after treatment. 
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ML240 treatment results in an improvement of retinal function in P23H rats 

To investigate whether the observed preservation of photoreceptor cell viability and 

structure and improved RHO distribution in P23H retinae after VCP inhibition resulted 

in improved retinal function, we assessed the retina's light responsiveness in vitro and 

in vivo. 

Using a Multi-electrode array (MEA) system, we evaluated the response to light 

stimulation of PN20 retinae explanted and kept in vitro for two days. These organotypic 

cultures were treated with ML240 and compared to vehicle-treated controls. We 

positioned the explants on the MEA, excited them using blue light flashes, and 

recorded the resulting retinal activity (Fig. 7A). Light responsiveness of ML240 treated 

retinae was significantly increased when compared to vehicle-treated controls. In 

ML240 treated explants, the percentage of electrodes detecting light-induced activity 

was approximately six times higher for the ganglion cell activity (Spikes: Vehicle: 9.69 

± 5.33; ML240: 59.75 ± 22.33; p<0.001 (Fig. 7B)) with an activated ganglion cell type 

distribution of 51.48 % ON, 11.33 % OFF and 37.20 % ON-OFF (Fig. 7C). Along with 

this, the micro electroretinogram (mERG) indicated a response of more than 80 % of 

the electrodes in treated retinae and an almost absent response in the control group 

(mERG: Vehicle: 0.97 ± 1.65; ML240: 84.02 ± 11.32; p<0.0001; Fig. 7B). We also 

evaluated the retinal explants' light responsiveness to 20 repetitive light flashes and 

found that treated explants showed a more than three-fold increased average light 

response per recording electrode (Vehicle: 2.51 ± 1.96; ML240: 9.28 ± 5.65; p<0.0001; 

Fig. 7D). 

To assess the effect of VCP inhibition on retinal function in vivo, P23H rats received a 

single intravitreal injection of ML240 at PN10, and retinal function was assessed by 

full-field scotopic electroretinogram (ERG) in dark-adapted rats between PN19 and 

PN21. Light exposure correlates with an increased a-wave corresponding to 

photoreceptor hyperpolarization, followed by a b-wave response to light corresponding 

to depolarization of retinal cells post-synaptic to the photoreceptors. In ML240 treated 

retinae, we observed an increased response to light, as evidenced by higher ERG 

responses. Both scotopic a-wave and b-wave amplitudes were increased compared to 

those of vehicle-treated eyes (e.g., 0 log 10 cd s−1 m−2, a-wave: Vehicle: 46.41 ± 4.63 

V; ML240: 63.11 ± 6.72 V; p= 0.0102. b-wave: Vehicle: 221.50 ± 20.15 V ; ML240: 

281.10 ± 29.40 V; p= 0.0412 (Fig. 8A)). Putting these data together, the overall effect 
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of ML240 on visual function, determined by scotopic ERGs, indicates an increased 

light response compared to the vehicle-treated retinae (a-wave: F=10.83, p=0.0013; b-

wave: F=7.96; p= 0.0055 (Fig. 8B and C, and Table S2)). 

In conclusion, VCP inhibition by ML240 resulted in improved retinal function correlating 

with increased cell survival, preserved photoreceptor morphology, and RHO's 

corrected distribution. 

The allosteric VCP inhibitor NMS-873 improves the photoreceptor survival and 

the retinal function in the P23H KI mouse model 

Besides competitive VCP inhibitors like ML240, other VCP inhibitors act in an allosteric 

manner. One of them is the NMS-873, one of the most potent and specific VCP 

inhibitors described to date, which shows high stability, specificity, and potency (31, 

56-59). NMS-873 inhibits both ATPase domains of VCP, whereas ML240 is specific 

for D2 (19). In order to double-check if the obtained effects are due to VCP inhibition, 

and following the same experimental rationale, we tested the NMS-873 in a serum-free 

organotypic culture system, and then we performed in vivo intravitreal injections in the 

heterozygous P23H KI mouse model. P23H KI retinae were isolated from PN14 and 

cultivated for six days (Fig. 9). Tissues were treated every second day with 5 µM NMS-

873, and the vehicle-controls were treated with DMSO.  

The percentage of TUNEL-positive cells compared to the total number of ONL cell 

nuclei was significantly reduced by NMS-873 treatment (Vehicle: 4.53 % ± 1.94; NMS-

873: 2.06 % ± 0.94 p=0.04 (Fig. 9B)). Thus, the increased survival was reflected in the 

increased number of remaining cell rows in the ONL (Vehicle: 6.04 rows ± 2.06; NMS-

873: 8.63 rows ± 1.12 p=0.026 (Fig. 9C)). 

Next, we evaluated the effect of VCP inhibition by NMS-873 in P23H KI mice in vivo 

by intravitreal injection. We selected PN11 as the injection day and PN21 as our 

evaluation time-point. Similar to our observations in vitro and in vivo the previous 

results with ML240 and EerI, we found a significant decrease in the percentage of 

TUNEL-positive photoreceptor cells after VCP inhibition (Vehicle: 1.47 % ± 0.46; NMS-

873: 0.51 % ± 0.12 where p=0.043 (Fig. 9E)), as well as a statistically significant 

increase in the number of remaining cell rows in the ONL (Fig. 9 F, and Table S3). As 

seen in ML240 and EerI in the P23H rats, NMS-873 also restored RHO distribution in 

P23H KI mice in vitro and in vivo.  
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Photoreceptor function was assessed by full-field scotopic ERG in dark-adapted P23H 

KI mice at PN21. Both scotopic a-wave and b-wave amplitudes were increased 

compared to those of vehicle-treated eyes (a-wave: F=4.22, p=0.0447; b-wave: 

F=8.69; p= 0.0047 (Fig. 9G and H, respectively, and Table S4).  

These results confirm the protective effect of VCP inhibition by three different types of 

inhibitors and even in two different RP animal models, P23H transgenic rats and P23H 

KI mice. 
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DISCUSSION 

VCP has been considered an anti-cancer target, with a VCP inhibitor CB-5083 

evaluated in phase 1 clinical trials, NCT02223598 and NCT02243917 (60). Therefore, 

the pro-survival and neuroprotective effect observed after inhibition of VCP appears 

counterintuitive at first glance. We report here that VCP inhibition attenuates adRP 

disease progression in the P23H mediated animal model of RP. In contrast to the effect 

on cancer cells (i.e., induction of apoptosis), in photoreceptors expressing mutant 

RHOP23H
,
 VCP inhibition significantly increases survival and functionality. VCP 

inhibition also corrects RHO's aberrant distribution and restores physiological 

localization similar to that of the WT phenotype.  

Previous studies have revealed that misfolded RHOP23H is retained in the ER and is 

removed by ERAD (61). VCP interacts with misfolded RHOP23H, promoting its retro-

translocation and proteasomal clearance (35). In the transgenic Drosophila Rh1P37H 

(the equivalent of mammalian RHOP23H), inhibition of VCP leads to structural and 

functional improvements of the insect eye (36). In agreement with these observations, 

ultrastructural analysis by EM confirmed the improvement of morphology within the OS 

of treated P23H rats. The typical mislocalization of RHO immunostaining observed in 

the P23H retinae was almost completely corrected to its physiological localization 

within OS. However, at this point, it remains unclear whether RHOP23H, RHOWT, or both 

are trafficked from the IS to the OS. In Drosophila, RHO mutants can recruit WT RHO 

into intracellular aggregates (62-64). In contrast to that, recent studies suggest that in 

mammalian cells, misfolded RHOP23H does not aggregate with properly folded RHOWT 

(65, 66), although other evidence does suggest there is a dominant-negative effect of 

RHOP23H on the WT protein (2, 67).  

We found elongated OS in all groups treated with VCP inhibitors. Since RHO is the 

most abundant integral membrane protein of OS, representing >90 % of all protein 

localized in this compartment (5, 6), the observed elongation is likely resulting from 

enhanced membrane traffic of RHO to the OS and its reduced retention in the ER. VCP 

inhibition might lead to recovered RHO distribution by several potential mechanisms: 

either a redistribution of RHOP23H, improvement RHOP23H folding or a decrease of 

RHOWT degradation. Since the two major intracellular protein degradation systems are 

proteasomal degradation and autophagy, another option is increased degradation of 
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RHOP23H via upregulated autophagy as compensation for the attenuated proteasomal 

degradation (68, 69). However, further studies are necessary to clarify this. 

Previous reports have established a destabilizing effect of misfolded RHO on the disk 

membranes of OS, potentially mediated by aggregation of the mutated unstable 

RHOP23H. Aggregates formed by RHOP23H could disrupt the correct membrane 

structure, resulting in vesiculotubular structures and disk breakdown (55, 70). With 

ML240 treatment, we observed a marked reduction of the vesiculotubular structures in 

the OS of the P23H rat model retinae. Following Haeri and Knox's hypothesis, this may 

result from a change in the RHOP23H/RHOWT ratio in the disk membrane. Thus, less 

RHOP23H and/or increased RHOWT would lead to fewer protein aggregates in the OS 

and a reduced formation of vesiculotubular structures. Two mechanisms could be 

involved in altering the balance between mutant and WT protein. As excessive protein 

retrotranslocation has been described in the Rh1P37H insect model (36, 68), VCP 

inhibition may impair this retrotranslocation and consequently increase the amount of 

RHOWT as well as Rh1P37H that reaches the OS disk membrane. Alternatively, as VCP 

is related to selective autophagy modulation (71, 72), rebalancing the autophagic 

pathway may reduce retinal degeneration caused by protein misfolding (73). In fact, it 

has been suggested that in the retina of P23H mice, normalization of the autophagic 

flux relative to proteasome activity may support photoreceptor cell homeostasis, 

resulting in increased photoreceptor cell survival (74). 

The improvements in RHO localization and OS structure mediated by VCP inhibition 

were accompanied by significant photoreceptor function improvements, as determined 

by light responsiveness in the retinal explants and ERG responses in vivo. The 

improved photoreceptor function is likely to reflect a combination of enhanced 

photoreceptor survival and improved photoreceptor homeostasis. At the time points 

studied, short and medium-term in explants and in vivo, the functional improvements 

observed were greater than the effects on survival, suggesting that photoreceptor 

homeostasis restoration could be a significant factor contributing to the enhanced light 

responses. This effect could occur due to a combination of a reduction in an inhibitory 

effect of misfolded RHOP23H on RHO activation or regeneration and restoration of the 

OS structure, enabling improved phototransduction. The enhanced photoresponses 

further illustrate the potential benefit of VCP inhibition as a potential therapy.  
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Our previous work revealed altered energetic patterns and metabolic failure prior to 

retinal degeneration in the Drosophila Rh1P37H model (12). When analyzing the 

proteome of young Rh1P37H retinas, we observed a coordinated upregulation of energy-

producing pathways and an attenuation of energy-consuming pathways involving the 

target of rapamycin (TOR) signaling, which was reversed in older retinas at the onset 

of photoreceptor degeneration. With a combination of pharmacological and genetic 

approaches, we demonstrated that chronic suppression of TOR signaling (using the 

inhibitor rapamycin) strongly mitigated photoreceptor degeneration, indicating TOR 

signaling activation by chronic Rh1P37H proteotoxic stress is detrimental for 

photoreceptors. Genetic inactivation of the ER stress-induced JNK/TRAF1 axis and 

the APAF-1/caspase-9 axis, activated by damaged mitochondria, dramatically 

suppressed Rh1P37H-induced photoreceptor degeneration, identifying the mitochondria 

as mediators of Rh1P37H toxicity. Thus, the distortion of photoreceptors' energetic 

profile leading to a prolonged metabolic imbalance accompanied by the mitochondrial 

failure may be a driving force for photoreceptor degeneration associated with a 

RHOP23H mutation. Therapies normalizing metabolic function could be used to alleviate 

the imbalance associated with excessive energy wasting in photoreceptor cells. In line 

with this consideration, it has been shown that inhibition of the ATPase activity of VCP 

can exert neuroprotection of photoreceptors in an animal model of recessive RP (75, 

76), ganglion cell death in a glaucoma model (77), as well as ameliorate retinal 

ischemia (78). Thus, we hypothesize that the high energy cost necessary for removing 

misfolded RHOP23H (79) is mitigated by targeting VCP ATPase domains, resulting in 

stemmed loss of photoreceptors and better retinal functionality.  

It is worth noting the sustained protective effect after a single injection of both VCP 

inhibitors. The usual half-life range for small molecules is between 1–10 hours since 

small lipophilic compounds are cleared rapidly across the blood-ocular barriers to the 

systemic bloodstream (80-82). We calculated the expected vitreal half-life for both 

ML240 and EerI to be approximately 25 minutes, with 98 % being eliminated within 3 

hours. Despite this estimated short half-life, both VCP inhibitors remain protective until 

PN30, 20 days after the single injection. The sustained effect suggests a prolonged 

mode of action pertaining to photoreceptor cell survival or a mechanism of selective 

drug retention. In fact, the vitreous and iris can serve as a reservoir for drugs and as a 

temporary storage depot for metabolites (83, 84). Drug protein binding likely increases 

retention, given that proteins have a much higher half-life in the vitreous than small 
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molecules (82). EerI acts as an irreversible inhibitor of VCP (38, 85), a fact that could, 

at least partially, explain a long-lasting effect. However, NMS-873 and ML240 are 

reversible VCP inhibitors (19, 38), and their sustained protective effect is evident. Thus, 

it remains unexplained how exactly the drug to target binding or an off-target binding 

of these compounds contributes to the observed prolonged effect.  

We were able to reproduce the neuroprotective achievements using a different kind of 

inhibitor, NMS-873, and in a second animal model, the P23H KI mice, which more 

accurately models the human genotypic and phenotypic RHOP23H. 

Taken together, this study demonstrates a pre-clinical proof of concept that VCP 

inhibition can effectively attenuate retinal degeneration caused by protein misfolding in 

mammalian photoreceptors. In humans, retinal degeneration, due to a RHOP23H 

mutation, takes on average three decades before legal blindness is reached. This 

finding opens a decent therapeutic window for a potential clinical application of VCP 

inhibition, far longer than in the rodent model. Future studies, however, are necessary 

to assess drug administration's safety as a primary endpoint, followed by clinical 

studies to improve visual outcome in retinal degeneration caused by the RHOP23H 

mutation in humans. 
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METHODS  

Animals 

Homozygous P23H transgenic rats (produced by Chrysalis DNX Transgenic Sciences, 

Princeton, NJ) of the line SD-Tg(P23H)1Lav (P23H-1) were kindly provided by Dr. M. 

M. LaVail (University of California, San Francisco, CA) or by the Rat Resource and 

Research Center (RRRC) at the University of Missouri. Animals were housed in the 

animal facilities of both the Institute for Ophthalmic Research and the University 

College London, under standard white cyclic lighting, with access to food and water ad 

libitum. To reflect the genetic background of adRP, we employed heterozygous P23H 

rats obtained by crossing with WT rats (CDH IGS Rat; Charles River, Germany). 

RhoP23H/P23H (P23H KI) mice were kindly provided by Dr. K. Palczewski (University of 

California, Irvine, CA) or purchased from Jackson Laboratory (B6.129S6(Cg)-

Rhotm1.1Kpal/J, Stock No 017628). The RhoP23H/P23H mice were crossed with WT 

C57BL/6J mice to produce P23H heterozygous mice to reflect the genetic background 

of adRP. 

Organotypic Retinal Explant Cultures of P23H transgenic rats and P23H KI mice 

Retinae were isolated with the RPE attached as described previously (41, 86). Briefly, 

PN9 and PN20 P23H transgenic rats were sacrificed; the eyes were enucleated in an 

aseptic environment and pretreated with 12 % proteinase K (MP Biomedicals, 

0219350490) for 15 minutes at 37 °C in R16 serum-free culture medium (Invitrogen 

Life Technologies, 07490743A). The enzymatic digestion was stopped by the addition 

of 20 % FBS (Sigma-Aldrich, F7524). Retina and RPE were dissected, and four radial 

cuts were made to flatten it. Tissue was transferred to a 0.4 µm polycarbonate 

membrane (Corning Life Sciences, CLS3412), having the RPE side touching the 

membrane. The inserts were placed into six-well culture plates and incubated in 

supplemented R16 nutrient medium at 36.5 °C. The eyes were then randomly assigned 

to either untreated, vehicle, or VCP inhibitor groups. The VCP inhibitor cultures were 

treated with either ML240 (20 µM, TOCRIS, Bio-Techne GmbH, 5153) or Eeyarestatin 

I (10 µM, TOCRIS, Bio-Techne GmbH, 3922). Both compounds were pre-diluted in 

DMSO (Sigma-Aldrich D2650). DMSO (1% and 0.5%, respectively) was diluted in the 

culture medium to generate the corresponding vehicle controls. The medium was 

changed every second day. The PN9 cultures were fixed at DIV6, which correspond to 
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PN15, the peak of degeneration in vivo age-matched mutants. The PN20 cultures were 

fixed at DIV2.  

P23H KI heterozygous mice were sacrificed at PN14, and the eyes were enucleated 

in an aseptic environment. Retinal explants were randomly assigned to either vehicle 

or 5µM NMS-873 (Xcessbio, M60165-b) treatment. The medium was changed every 

second day, and retinae cultures were fixed at DIV6, which correspond to PN20, the 

peak of degeneration in vivo age-matched heterozygous P23H KI mice. 

In vivo treatment 

We divided the transgenic rats into three experimental groups: short-term (ST), retinae 

analyzed at PN15, medium-term (MT), retinae analyzed at PN21, and long-term (LT), 

retinae analyzed at PN30. A single intravitreal injection of ML240 or EerI to all P23H 

rats previously anesthetized (ST and LT: Diethyl ether, Merck Millipore, 100931, or MT: 

intraperitoneal injection of ketamine (30 mg/kg) and medetomidine (5 mg/kg)) took 

place at PN10 at the level of the temporal or nasal peripheral retina. Assuming an 

average rat eye volume of ~25 µl at PN10-30 (45), and an even compound distribution, 

and in order to achieve the same concentration as in the organotypic cultures (20 µM 

of ML240 and 10 µM of EerI), the animals received intravitreally 1 µl of 0.4 mM ML240 

or 0.5 µl of 0.4 mM EerI on the right eye. The left eye was sham injected with the same 

volume of vehicle solution and served as contralateral control.  

A single intravitreal injection of NMS-873 was performed at PN11 in previously 

anesthetized (ketamine/medetomidine at 0.08 ml/10 g administered via an IP injection) 

P23H KI mice in the temporal peripheral retina. Assuming an average mice eye 

volume, at PN11, is ~5µl (87) and in order to achieve the same concentration as in the 

organotypic cultures, 5 µM NMS-873, the animals received intravitreally 0.5 µl of 0.05 

mM NMS-873 on the one eye while another eye was sham injected with the same 

volume of vehicle (DMSO) solution. Animals were monitored daily for any adverse 

effects and for body weight gain. At PN21, mice were subjected to ERG before they 

were humanely killed by cervical dislocation.  

Assessing the intravitreal clearance of ML240 and EerI 

The CLivt of ML240 and EerI were calculated in silico using the QSPR model (43). 

However, one should notice that ML240 and EerI are found to be more lipophilic than 
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the compounds used in building the model, and thus, the model predictions may not 

be accurate, but anyway, give an approximation for vitreal drug elimination. The CLivt 

value of ML240 and EerI was calculated using the QSPR equation: 

LogCLivt = −0.25269–0.53747 (LogHD) + 0.05189 (LogD7.4), where HD is the number 

of hydrogen bond donor atoms and LogD7.4 is the calculated logarithm of the octanol-

water coefficient at pH 7.4 of ML240 and EerI. Since small lipophilic compounds are 

cleared from the vitreous mainly through the RPE (44), the CLivt obtained in rabbit eyes 

was scaled down to rat eyes. Based on the equation CLivt = P × S, (P: drug permeability 

in the RPE, S: surface area of the RPE), the CLivt of small lipophilic compounds in rats 

was expected to be ~13 times smaller than in rabbits. The RPE surface areas in rats 

and rabbits are 39 mm2 (88) and 520 mm2 (89), respectively. Assuming similar 

permeability of rat and rabbit RPE, the CLivt in the rat would be 0.04 ml/h (rabbit value: 

0.58 ml/h for ML240, and 0.55 ml/h for Eerl). The volume of distribution (Vd) after 

intravitreal injection is similar to the anatomical volume of the vitreous (43), so that 25 

µL for the rats used in the current project (PN10-30) (45). The expected half-life in the 

vitreous was calculated using the equation: t1/2 = ln2 Vd/CLivt. 

Histology 

Tissues were immersed in 4 % paraformaldehyde in 0.1 M phosphate buffer (PB; pH 

7.4) for 45 minutes at 4 °C, followed by cryoprotection in graded sucrose solutions (10 

%, 20 %, 30 %) and embedded in cryomatrix (Tissue-Tek® O.C.T. Compound, 

Sakura® Finetek, VWR, 4583). Radial sections (14 µm thick) were collected, air-dried, 

and stored at -20 °C. 

TUNEL assay: TUNEL assay (90) was performed using an in situ cell death detection 

kit conjugated with fluorescein isothiocyanate (Roche, 11684795910). DAPI 

(Vectashield Antifade Mounting Medium with DAPI; Vector Laboratories, H-1200) was 

used as a nuclear counterstain.  

Immunofluorescence staining and image analysis: Sections were incubated overnight 

at 4 °C with RHO mAb (Sigma-Aldrich, MAB5316). Fluorescence 

immunocytochemistry was performed using Alexa Fluor® 568 conjugated secondary 

antibody (Invitrogen, A- 11031). Negative controls were carried out by omitting the 

primary antibody. The RHO staining's immunofluorescence intensity was calculated, 

scoring the mean maximum intensity for a selected central ROI of the ONL of each 

image within 12 images from three animals per treatment using the Zen 2.3 software. 
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The OS mean length was obtained using the Zen 2.3 software for three selected 

positions for each image, measuring the OS's length within 15 (in vitro) or 12 images 

(in vivo) from three animals per treatment.  

Transmission Electron Microscopy 

Retinal samples were fixed in 2.5% glutaraldehyde, 2 % paraformaldehyde, 0.1 M 

sodium cacodylate buffer (pH 7.4, Electron Microscopy Sciences, Germany) overnight 

at 4°C. After rinsing, samples were postfixed in 1 % OsO4 for 1.5 hours at room 

temperature (Electron Microscopy Sciences, Germany), washed in cacodylate buffer, 

and dehydrated with 50 % ethanol. Tissues were counterstained with 6 % uranyl 

acetate dissolved in 70 % ethanol (Serva, Heidelberg, Germany) followed by graded 

ethanol concentrations up to 100 %, followed by Propylenoxide. The dehydrated 

samples were incubated in a 2:1, 1:1, and 1:2 mixture of propylene oxide and Epon 

resin (Serva, Germany) for 1 hour each. Finally, samples were infiltrated with pure 

Epon for 2 hours. Samples were embedded in fresh resin in block molds and cured 3 

days at 60°C. Ultrathin sections (50 nm) were cut on a Reichert Ultracut S (Leica, 

Germany), collected on copper grids, and counterstained with Reynold's lead citrate. 

Sections were analyzed with a Zeiss EM 900 transmission electron microscope (Zeiss, 

Jena, Germany) equipped with a 2k x 2k CCD camera. 

Ex-vivo light stimulation and activity recordings  

P23H rat retinal explants (PN20 DIV2) were taken under dim red light condition (boxed) 

from the incubator, divided into half across the center, and placed immediately on the 

recording electrode field of the recording multi-electrode array (MEA) chamber. The 

recording was performed within the culturing medium, and the recording chamber 

temperature was set to 37 °C.  

Retinal activity recording: The MEA system USB-MEA60-Up-BC-System-E (Multi 

Channel Systems) equipped with HexaMEA 40/10iR-ITO-pr was utilized to record the 

retinal activity based on 59 recording electrodes. The recordings were performed at 

25000 Hz sampling rate collecting unfiltered raw data. The trigger synchronized 

operation of the light stimulation (LEDD1B T-Cube, Thorlabs) and MEA-recording were 

controlled by the recording protocol set within the MCRack software (v 4.6.2, MCS) 

and the digital I/O – box (MCS). 
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Light stimulation: The light stimulation (470 nm LED M470D2, Thorlabs) was applied 

from beneath the transparent glass MEA guided by optic fiber and optics. A 

spectrometer USB4000-UV-VIS-ES (Ocean Optics) was employed to determine the 

intensity of the applied light stimuli (35 cd/m²), pre-recordings. 

Electroretinogram 

PN19-21 P23H rats or PN21 P23H KI mice were kept overnight in a ventilated light-

tight box for dark-adaption. Subsequent procedures were performed under dim red 

light conditions. Animals were anesthetized, and pupils were dilated using 1.0% 

tropicamide (Bausch&Lomb). Scotopic ERG was performed using the Celeris-

Diagnosys system and Espion software (Diagnosys, LLC, MA). Bilateral electrodes 

were positioned on rat's eyes using a liquid gel (Viscotears, Novartis, AG); to produce 

increasing simultaneous flash stimuli and record retinal activity. For the full-field 

scotopic ERG, a 7-step protocol was used with the following intensities: 0.0001 (1.03 

Hz), 0.001 (1.03 Hz), 0.01 (0.5 Hz), 0.1 (0.1 Hz), 1 (0.05 Hz), 10 (0.04 Hz), 30 (0.04 

Hz) cd s−1 m−2; with short dark-adaption pause in between. For each step, 3 to 10 

recordings were displayed and averaged. 

Microscopy and cell counting 

All samples were analyzed using a Zeiss Axio Imager Z1 ApoTome microscope, 

AxioCam MRm camera, and Zeiss Zen 2.3 software in Z-stack at 20x magnification. 

For quantitative analysis, positive cells in the ONL of at least three sections per group 

were manually counted. The percentage of positive cells was calculated, dividing the 

number of positive cells by the total number of ONL cells. Photoreceptor cell rows were 

assessed by counting the individual nuclei rows in one ONL and averaging the counts.  

Graphs were prepared in GraphPad Prism 7.05 for Windows; Adobe Photoshop CS5 

and Corel DRAW X5 were used for image processing. 

Statistics  

All data, unless otherwise indicated, were analyzed and graphed using GraphPad 

Prism 7.05 for Windows. P < 0.05 was considered significant. 

TUNEL counts, photoreceptor row counts, RHO immunofluorescence intensity, and 

OS length: The evaluation was performed using one-way ANOVA testing, followed by 

Bonferroni multiple comparisons test. For multiple comparisons in the inferior and 
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superior retinae in the LT group in vivo, two-way ANOVA testing, followed by 

Bonferroni multiple comparisons test, was conducted. 

MEA-recording: For the electrophysiology data analysis, custom-developed scripts 

(MATLAB, The MathWorks) were used, if not indicated otherwise. MEA-recording files 

were filtered employing the Butterworth 2nd order (MC-Rack, Multi-channel systems) 

to extract the ganglion cell spikes (high pass 200 Hz) and field potentials (bandpass  

2 – 40 Hz). The field potentials recorded by the MEA system corresponds to the human 

ERG as described mERG by (91). The filtered data were converted to *.hdf files by MC 

DataManager (v1.6.1.0) for further data processing in MATLAB (spike detection and 

cell-type determination (ON, OFF, and ON-OFF)) as previously described (92, 93). The 

Man-Whitney-U test was employed to estimate statistical significance. 

ERG data analysis. For one-to-one comparisons (vehicle-treated vs. treated), a paired 

Student's t-test was implemented. For multiple comparisons, two-way ANOVA testing, 

followed by Bonferonni multiple comparisons test, was conducted for a- and b-wave 

ERG amplitudes for all stimulus intensities to compare the effect of ML240 or NMS-

873 on retinal function.  

Study approval 

Procedures were approved by the Tuebingen University committee on animal 

protection (§4 registrations from 24.04.2013 and AK 15/18 M, and animal permit 

AK1/13 for P23H transgenic rats, §4 registrations from 12.08.2019 AK 05/19 M for 

P23H KI mice) and by the UCL Institute of Ophthalmology, London, UK, ethics 

committee according to the Home Office (UK) regulations, under the Animals 

(Scientific Procedures) Act of 1986, and performed in compliance with the Association 

for Research in Vision and Ophthalmology ARVO Statement on animal use in 

ophthalmic and vision research. All efforts were made to minimize the number of 

animals used and their suffering. 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.11.17.384669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.384669
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

Authors contributions 

B.A.-G. designed experiments, carried out and treated organotypic cultures, performed 

intravitreal injections, prepared, stained, and imaged histological samples, analyzed 

the experimental data, and wrote the manuscript. M.S. carried out and treated 

organotypic cultures, prepared, stained, and imaged histological samples. M.S. and 

W.H. planned and carried out the ex-vivo light stimulation and activity recordings of the 

retinal explants. M.S. and E.M.A. performed the in silico calculations. R.G., K.H, K.Z., 

H.P., R.A., and. M.C. performed intravitreal injections and corresponding ERG and 

contributed to study planning therein. S.B. performed the EM and prepared histological 

samples. T.-F.C., R.D., A.U. participated in planning the study, and M.Ue. designed 

and coordinated the project, participated in designing the experiments, wrote the 

manuscript, and acquired funding for the studies. All authors have provided feedback 

on the results, read and approved the final manuscript. 

B.A.-G. and M.S. are co-first authors. B.A.-G. is listed first because she contributed 

more to the conception of the project and the writing of the manuscript. 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.11.17.384669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.384669
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

Acknowledgments 

This study was supported by funds (to M.Ue. and B.A-G) from FFB (Grant PPA-0717-

0719-RAD), Kerstan Foundation, European Union's Horizon 2020 research and 

innovation programme under the Marie Skłodowska-Curie (Grant agreement No. 

722717 – project OCUTHER) and ProRetina Foundation. The personnel of the animal 

husbandry at the Universitätsklinikums Tübingen and Norman Rieger are 

acknowledged for the animal care. Christine Henes is acknowledged for her skilled 

technical assistance with the experiments. Ellen Kilger and Sally Williamson are 

gratefully acknowledged for language editing and proofreading.  

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.11.17.384669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.384669
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

 

REFERENCES 

1. Tsang SH, and Sharma T. Autosomal Dominant Retinitis Pigmentosa. Advances in experimental medicine and 

biology. 2018;1085(69-77. 

2. Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ, and Cheetham ME. The molecular and cellular 

basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res. 2018;62(1-23. 

3. Sullivan LS, Bowne SJ, Birch DG, Hughbanks-Wheaton D, Heckenlively JR, Lewis RA, Garcia CA, Ruiz RS, Blanton SH, 

Northrup H, et al. Prevalence of disease-causing mutations in families with autosomal dominant retinitis 

pigmentosa: a screen of known genes in 200 families. Invest OphthalmolVisSci. 2006;47(7):3052-64. 

4. Hargrave PA. Rhodopsin structure, function, and topography the Friedenwald lecture. Invest OphthalmolVisSci. 

2001;42(1):3-9. 

5. Rakshit T, Senapati S, Parmar VM, Sahu B, Maeda A, and Park PS. Adaptations in rod outer segment disc 

membranes in response to environmental lighting conditions. Biochim Biophys Acta Mol Cell Res. 

2017;1864(10):1691-702. 

6. Goldberg AF, Moritz OL, and Williams DS. Molecular basis for photoreceptor outer segment architecture. Prog 

Retin Eye Res. 2016;55(52-81. 

7. Sohocki MM, Daiger SP, Bowne SJ, Rodriquez JA, Northrup H, Heckenlively JR, Birch DG, Mintz-Hittner H, Ruiz RS, 

Lewis RA, et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. 

HumMutat. 2001;17(1):42-51. 

8. Athanasiou D, Kosmaoglou M, Kanuga N, Novoselov SS, Paton AW, Paton JC, Chapple JP, and Cheetham ME. BiP 

prevents rod opsin aggregation. Molecular biology of the cell. 2012;23(18):3522-31. 

9. Meusser B, Hirsch C, Jarosch E, and Sommer T. ERAD: the long road to destruction. Nature cell biology. 

2005;7(8):766-72. 

10. Chiang WC, Messah C, and Lin JH. IRE1 directs proteasomal and lysosomal degradation of misfolded rhodopsin. 

Molecular biology of the cell. 2012;23(5):758-70. 

11. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, LaVail MM, and Walter P. IRE1 signaling 

affects cell fate during the unfolded protein response. Science. 2007;318(5852):944-9. 

12. Griciuc A, Roux M, Merl J, Giangrande A, Hauck SM, Aron L, and Ueffing M. Proteomic Survey Reveals Altered 

Energetic Patterns and Metabolic Failure Prior to Retinal Degeneration. J Neurosci. 2014;in press( 

13. Steinberg RH, Flannery JG, Naash M, Oh P, Matthes MT, Yasumura D, LauVillacorta C, Chen J, and LaVail MM. 

Transgenic rat models of inherited retinal degeneration caused by mutant opsin genes. Investigative 

Ophthalmology & Visual Science. 1996;37(3):3190-. 

14. Kaur J, Mencl S, Sahaboglu A, Farinelli P, van Veen T, Zrenner E, Ekstrom P, Paquet-Durand F, and Arango-

Gonzalez B. Calpain and PARP activation during photoreceptor cell death in P23H and S334ter rhodopsin mutant 

rats. Plos One. 2011;6(7):e22181. 

15. LaVail MM, Nishikawa S, Steinberg RH, Naash MI, Duncan JL, Trautmann N, Matthes MT, Yasumura D, Lau-

Villacorta C, Chen J, et al. Phenotypic characterization of P23H and S334ter rhodopsin transgenic rat models of 

inherited retinal degeneration. Experimental eye research. 2018;167(56-90. 

16. Orhan E, Dalkara D, Neuille M, Lechauve C, Michiels C, Picaud S, Leveillard T, Sahel JA, Naash MI, Lavail MM, et al. 

Genotypic and phenotypic characterization of P23H line 1 rat model. Plos One. 2015;10(5):e0127319. 

17. Sakami S, Maeda T, Bereta G, Okano K, Golczak M, Sumaroka A, Roman AJ, Cideciyan AV, Jacobson SG, and 

Palczewski K. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of 

autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J Biol Chem. 2011;286(12):10551-67. 

18. Ye Y. Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase. Journal of 

structural biology. 2006;156(1):29-40. 

19. Chou TF, Bulfer SL, Weihl CC, Li K, Lis LG, Walters MA, Schoenen FJ, Lin HJ, Deshaies RJ, and Arkin MR. Specific 

inhibition of p97/VCP ATPase and kinetic analysis demonstrate interaction between D1 and D2 ATPase domains. 

Journal of molecular biology. 2014;426(15):2886-99. 

20. Chou TF, Li K, Frankowski KJ, Schoenen FJ, and Deshaies RJ. Structure-activity relationship study reveals ML240 

and ML241 as potent and selective inhibitors of p97 ATPase. ChemMedChem. 2013;8(2):297-312. 

21. Meyer H, and Weihl CC. The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J 

Cell Sci. 2014;127(Pt 18):3877-83. 

22. Meyer H, Bug M, and Bremer S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nature 

cell biology. 2012;14(2):117-23. 

23. Meyer H. p97 complexes as signal integration hubs. BMC Biol. 2012;10(48. 

24. van den Boom J, and Meyer H. VCP/p97-Mediated Unfolding as a Principle in Protein Homeostasis and Signaling. 

Mol Cell. 2018;69(2):182-94. 

25. Wang Q, Song C, and Li CC. Molecular perspectives on p97-VCP: progress in understanding its structure and 

diverse biological functions. Journal of structural biology. 2004;146(1-2):44-57. 

26. Ye Y, Tang WK, Zhang T, and Xia D. A Mighty "Protein Extractor" of the Cell: Structure and Function of the 

p97/CDC48 ATPase. Front Mol Biosci. 2017;4(39. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.11.17.384669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.384669
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

27. Tang WK, and Xia D. Mutations in the Human AAA(+) Chaperone p97 and Related Diseases. Front Mol Biosci. 

2016;3(79. 

28. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP, and Kimonis VE. Inclusion 

body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-

containing protein. Nature genetics. 2004;36(4):377-81. 

29. Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, Gibbs JR, Brunetti M, Gronka S, 

Wuu J, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68(5):857-64. 

30. De Ridder W, Azmi A, Clemen CS, Eichinger L, Hofmann A, Schroder R, Johnson K, Topf A, Straub V, De Jonghe P, et 

al. Multisystem proteinopathy due to a homozygous p.Arg159His VCP mutation: A tale of the unexpected. 

Neurology. 2020;94(8):e785-e96. 

31. Huryn DM, Kornfilt DJP, and Wipf P. p97: An Emerging Target for Cancer, Neurodegenerative Diseases, and Viral 

Infections. Journal of medicinal chemistry. 2020;63(5):1892-907. 

32. Manno A, Noguchi M, Fukushi J, Motohashi Y, and Kakizuka A. Enhanced ATPase activities as a primary defect of 

mutant valosin-containing proteins that cause inclusion body myopathy associated with Paget disease of bone 

and frontotemporal dementia. Genes to cells : devoted to molecular & cellular mechanisms. 2010;15(8):911-22. 

33. Fang L, Hemion C, Pinho Ferreira Bento AC, Bippes CC, Flammer J, and Neutzner A. Mitochondrial function in 

neuronal cells depends on p97/VCP/Cdc48-mediated quality control. Front Cell Neurosci. 2015;9(16. 

34. Dexter PM, Lobanova ES, Finkelstein S, and Arshavsky VY. Probing Proteostatic Stress in Degenerating 

Photoreceptors Using Two Complementary <em>In Vivo</em> Reporters of Proteasomal Activity. eneuro. 

2020;7(1):ENEURO.0428-19.2019. 

35. Griciuc A, Aron L, Piccoli G, and Ueffing M. Clearance of Rhodopsin(P23H) aggregates requires the ERAD effector 

VCP. Biochimica et biophysica acta. 2010;1803(3):424-34. 

36. Griciuc A, Aron L, Roux MJ, Klein R, Giangrande A, and Ueffing M. Inactivation of VCP/ter94 suppresses retinal 

pathology caused by misfolded rhodopsin in Drosophila. PLoS genetics. 2010;6(8). 

37. Fang CJ, Gui L, Zhang X, Moen DR, Li K, Frankowski KJ, Lin HJ, Schoenen FJ, and Chou TF. Evaluating p97 inhibitor 

analogues for their domain selectivity and potency against the p97-p47 complex. ChemMedChem. 2015;10(1):52-

6. 

38. Chou TF, Li K, Nordin BE, Porubsky P, Frankowski K, Patricelli MP, Aube J, Schoenen FJ, and Deshaies R. Probe 

Reports from the NIH Molecular Libraries Program. Bethesda (MD); 2010. 

39. Wang Q, Li L, and Ye Y. Inhibition of p97-dependent protein degradation by Eeyarestatin I. The Journal of 

biological chemistry. 2008;283(12):7445-54. 

40. Wang Q, Shinkre BA, Lee JG, Weniger MA, Liu Y, Chen W, Wiestner A, Trenkle WC, and Ye Y. The ERAD inhibitor 

Eeyarestatin I is a bifunctional compound with a membrane-binding domain and a p97/VCP inhibitory group. Plos 

One. 2010;5(11):e15479. 

41. Arango-Gonzalez B, Szabo A, Pinzon-Duarte G, Lukats A, Guenther E, and Kohler K. In vivo and in vitro 

development of S- and M-cones in rat retina. Invest Ophthalmol Vis Sci. 2010;51(10):5320-7. 

42. Arango-Gonzalez B, Trifunovic D, Sahaboglu A, Kranz K, Michalakis S, Farinelli P, Koch S, Koch F, Cottet S, Janssen-

Bienhold U, et al. Identification of a common non-apoptotic cell death mechanism in hereditary retinal 

degeneration. Plos One. 2014;9(11):e112142. 

43. del Amo EM, Vellonen KS, Kidron H, and Urtti A. Intravitreal clearance and volume of distribution of compounds in 

rabbits: In silico prediction and pharmacokinetic simulations for drug development. European journal of 

pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische 

Verfahrenstechnik eV. 2015;95(Pt B):215-26. 

44. Del Amo EM, and Urtti A. Rabbit as an animal model for intravitreal pharmacokinetics: Clinical predictability and 

quality of the published data. Experimental eye research. 2015;137(111-24. 

45. Sha O, and Kwong WH. Postnatal Developmental Changes of Vitreous and Lens Volumes in Sprague-Dawley Rats. 

Neuroembryology and Aging. 2006;4(4):183-8. 

46. Vasireddy V, Chavali VR, Joseph VT, Kadam R, Lin JH, Jamison JA, Kompella UB, Reddy GB, and Ayyagari R. Rescue 

of photoreceptor degeneration by curcumin in transgenic rats with P23H rhodopsin mutation. Plos One. 

2011;6(6):e21193. 

47. Sakami S, Kolesnikov AV, Kefalov VJ, and Palczewski K. P23H opsin knock-in mice reveal a novel step in retinal rod 

disc morphogenesis. Human molecular genetics. 2014;23(7):1723-41. 

48. Di Pierdomenico J, Garcia-Ayuso D, Pinilla I, Cuenca N, Vidal-Sanz M, Agudo-Barriuso M, and Villegas-Perez MP. 

Early Events in Retinal Degeneration Caused by Rhodopsin Mutation or Pigment Epithelium Malfunction: 

Differences and Similarities. Front Neuroanat. 2017;11(14. 

49. Roof DJ, Adamian M, and Hayes A. Rhodopsin accumulation at abnormal sites in retinas of mice with a human 

P23H rhodopsin transgene. Invest OphthalmolVisSci. 1994;35(12):4049-62. 

50. Sung CH, Makino C, Baylor D, and Nathans J. A rhodopsin gene mutation responsible for autosomal dominant 

retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. 

JNeurosci. 1994;14(10):5818-33. 

51. Olsson JE, Gordon JW, Pawlyk BS, Roof D, Hayes A, Molday RS, Mukai S, Cowley GS, Berson EL, and Dryja TP. 

Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis 

pigmentosa. Neuron. 1992;9(5):815-30. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.11.17.384669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.384669
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

52. National Research Council (US) Committee to Update Science M, and Animals. Continuing Efforts to More 

Efficiently Use Laboratory Animals. Washington (DC): National Academies Press (US); 2004. 

53. Cross BC, McKibbin C, Callan AC, Roboti P, Piacenti M, Rabu C, Wilson CM, Whitehead R, Flitsch SL, Pool MR, et al. 

Eeyarestatin I inhibits Sec61-mediated protein translocation at the endoplasmic reticulum. J Cell Sci. 2009;122(Pt 

23):4393-400. 

54. Liu C, Li Y, Peng M, Laties AM, and Wen R. Activation of caspase-3 in the retina of transgenic rats with the 

rhodopsin mutation s334ter during photoreceptor degeneration. JNeurosci. 1999;19(12):4778-85. 

55. Haeri M, and Knox BE. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes. Plos One. 

2012;7(1):e30101. 

56. Magnaghi P, D'Alessio R, Valsasina B, Avanzi N, Rizzi S, Asa D, Gasparri F, Cozzi L, Cucchi U, Orrenius C, et al. 

Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat Chem Biol. 2013;9(9):548-

56. 

57. Vekaria PH, Home T, Weir S, Schoenen FJ, and Rao R. Targeting p97 to Disrupt Protein Homeostasis in Cancer. 

Front Oncol. 2016;6(181. 

58. Segura-Cabrera A, Tripathi R, Zhang X, Gui L, Chou TF, and Komurov K. A structure- and chemical genomics-based 

approach for repositioning of drugs against VCP/p97 ATPase. Scientific reports. 2017;7(44912. 

59. Wang F, Li S, Gan T, Stott GM, Flint A, and Chou TF. Allosteric p97 Inhibitors Can Overcome Resistance to ATP-

Competitive p97 Inhibitors for Potential Anticancer Therapy. ChemMedChem. 2020;15(8):685-94. 

60. Zhou HJ, Wang J, Yao B, Wong S, Djakovic S, Kumar B, Rice J, Valle E, Soriano F, Menon MK, et al. Discovery of a 

First-in-Class, Potent, Selective, and Orally Bioavailable Inhibitor of the p97 AAA ATPase (CB-5083). Journal of 

medicinal chemistry. 2015;58(24):9480-97. 

61. Kroeger H, Messah C, Ahern K, Gee J, Joseph V, Matthes MT, Yasumura D, Gorbatyuk MS, Chiang W-C, LaVail MM, 

et al. Induction of Endoplasmic Reticulum Stress Genes, BiP and Chop, in Genetic and Environmental Models of 

Retinal Degeneration. Investigative Ophthalmology & Visual Science. 2012. 

62. Colley NJ, Cassill JA, Baker EK, and Zuker CS. Defective intracellular transport is the molecular basis of rhodopsin-

dependent dominant retinal degeneration. ProcNatlAcadSciUSA. 1995;92(7):3070-4. 

63. Kurada P, and O'Tousa JE. Retinal degeneration caused by dominant rhodopsin mutations in Drosophila. Neuron. 

1995;14(3):571-9. 

64. Kurada P, Tonini TD, Serikaku MA, Piccini JP, and O'Tousa JE. Rhodopsin maturation antagonized by dominant 

rhodopsin mutants. Vis Neurosci. 1998;15(4):693-700. 

65. Gragg M, and Park PS. Misfolded rhodopsin mutants display variable aggregation properties. Biochim Biophys 

Acta Mol Basis Dis. 2018;1864(9 Pt B):2938-48. 

66. Park PS. Rhodopsin Oligomerization and Aggregation. The Journal of membrane biology. 2019;252(4-5):413-23. 

67. Wilson JH, and Wensel TG. The nature of dominant mutations of rhodopsin and implications for gene therapy. 

MolNeurobiol. 2003;28(2):149-58. 

68. Griciuc A, Aron L, and Ueffing M. ER stress in retinal degeneration: a target for rational therapy? Trends in 

molecular medicine. 2011;17(8):442-51. 

69. Nedelsky NB, Todd PK, and Taylor JP. Autophagy and the ubiquitin-proteasome system: collaborators in 

neuroprotection. Biochimica et biophysica acta. 2008;1782(12):691-9. 

70. Athanasiou D, Aguila M, Opefi CA, South K, Bellingham J, Bevilacqua D, Munro PM, Kanuga N, Mackenzie FE, Dubis 

AM, et al. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor 

degeneration. Human molecular genetics. 2017;26(2):305-19. 

71. Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, and Weihl CC. Valosin-containing protein 

(VCP) is required for autophagy and is disrupted in VCP disease. The Journal of cell biology. 2009;187(6):875-88. 

72. Dargemont C, and Ossareh-Nazari B. Cdc48/p97, a key actor in the interplay between autophagy and 

ubiquitin/proteasome catabolic pathways. Biochimica et biophysica acta. 2012;1823(1):138-44. 

73. Yao J, Qiu Y, Frontera E, Jia L, Khan NW, Klionsky DJ, Ferguson TA, Thompson DA, and Zacks DN. Inhibiting 

autophagy reduces retinal degeneration caused by protein misfolding. Autophagy. 2018;14(7):1226-38. 

74. Qiu Y, Yao J, Jia L, Thompson DA, and Zacks DN. Shifting the balance of autophagy and proteasome activation 

reduces proteotoxic cell death: a novel therapeutic approach for restoring photoreceptor homeostasis. Cell death 

& disease. 2019;10(8):547. 

75. Ikeda HO, Sasaoka N, Koike M, Nakano N, Muraoka Y, Toda Y, Fuchigami T, Shudo T, Iwata A, Hori S, et al. Novel 

VCP modulators mitigate major pathologies of rd10, a mouse model of retinitis pigmentosa. Scientific reports. 

2014;4(5970. 

76. Hasegawa T, Muraoka Y, Ikeda HO, Tsuruyama T, Kondo M, Terasaki H, Kakizuka A, and Yoshimura N. 

Neuoroprotective efficacies by KUS121, a VCP modulator, on animal models of retinal degeneration. Scientific 

reports. 2016;6(31184. 

77. Nakano N, Ikeda HO, Hasegawa T, Muraoka Y, Iwai S, Tsuruyama T, Nakano M, Fuchigami T, Shudo T, Kakizuka A, 

et al. Neuroprotective effects of VCP modulators in mouse models of glaucoma. Heliyon. 2016;2(4):e00096. 

78. Hata M, Ikeda HO, Kikkawa C, Iwai S, Muraoka Y, Hasegawa T, Kakizuka A, and Yoshimura N. KUS121, a VCP 

modulator, attenuates ischemic retinal cell death via suppressing endoplasmic reticulum stress. Scientific reports. 

2017;7(44873. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.11.17.384669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.384669
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

79. Marinko JT, Huang H, Penn WD, Capra JA, Schlebach JP, and Sanders CR. Folding and Misfolding of Human 

Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev. 

2019;119(9):5537-606. 

80. Jakubiak P, Cantrill C, Urtti A, and Alvarez-Sanchez R. Establishment of an In Vitro-In Vivo Correlation for Melanin 

Binding and the Extension of the Ocular Half-Life of Small-Molecule Drugs. Molecular pharmaceutics. 

2019;16(12):4890-901. 

81. Rimpela AK, Reunanen S, Hagstrom M, Kidron H, and Urtti A. Binding of Small Molecule Drugs to Porcine Vitreous 

Humor. Molecular pharmaceutics. 2018;15(6):2174-9. 

82. Del Amo EM, Rimpela AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, 

Richardson D, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57(134-85. 

83. Fiscella RG. Ophthalmic drug formulations. Elsevier Health Sciences; 2007. 

84. Bartlett JD. Ophthalmic Drug Delivery. Elsevier Health Sciences; 2007. 

85. Chou TF, Brown SJ, Minond D, Nordin BE, Li K, Jones AC, Chase P, Porubsky PR, Stoltz BM, Schoenen FJ, et al. 

Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. 

Proceedings of the National Academy of Sciences of the United States of America. 2011;108(12):4834-9. 

86. Caffe AR, Ahuja P, Holmqvist B, Azadi S, Forsell J, Holmqvist I, Soderpalm AK, and van VT. Mouse retina explants 

after long-term culture in serum free medium. JChemNeuroanat. 2001;22(4):263-73. 

87. Remtulla S, and Hallett PE. A schematic eye for the mouse, and comparisons with the rat. Vision Research. 

1985;25(1):21-31. 

88. Nadal-Nicolas FM, Vidal-Sanz M, and Agudo-Barriuso M. The aging rat retina: from function to anatomy. 

Neurobiology of aging. 2018;61(146-68. 

89. Reichenbach A, Ziegert M, Schnitzer J, Pritz-Hohmeier S, Schaaf P, Schober W, and Schneider H. Development of 

the rabbit retina. V. The question of 'columnar units'. Brain research Developmental brain research. 

1994;79(1):72-84. 

90. Gavrieli Y, Sherman Y, and Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of 

nuclear DNA fragmentation. JCell Biol. 1992;119(3):493-501. 

91. Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W, and Haemmerle H. Biological application of 

microelectrode arrays in drug discovery and basic research. Analytical and bioanalytical chemistry. 

2003;377(3):486-95. 

92. Haq W, Dietter J, Bolz S, and Zrenner E. Feasibility study for a glutamate driven subretinal prosthesis: local 

subretinal application of glutamate on blind retina evoke network-mediated responses in different types of 

ganglion cells. Journal of neural engineering. 2018;15(4):045004. 

93. Haq W, Dietter J, and Zrenner E. Electrical activation of degenerated photoreceptors in blind mouse retina elicited 

network-mediated responses in different types of ganglion cells. Scientific reports. 2018;8(1):16998. 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.11.17.384669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.384669
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

FIGURES 

 
 
Figure 1. Neuroprotective effect of VCP inhibition in organotypic cultures of P23H 

retinae. Retinae from P23H transgenic rats were explanted at postnatal day 9 (PN9), kept for 

6 days in vitro (DIV6), and treated every second day with either 20 µM ML240 or 10 µM 

Eeyarestatin (VCP inhibitors). ML240 and EerI were dissolved in the smallest practical volume 

of DMSO, and corresponding controls were treated using the same vehicle volume. (A) 

Explants were stained with TUNEL assay to differentiate photoreceptors undergoing cell death 

(green) using nuclei counterstaining with DAPI (blue). (B) Bar chart shows the percentage of 

TUNEL-positive cells in the ONL. A significant decrease in the percentage of dying cells was 

observed after treatment with either ML240 or EerI compared to the respective vehicle controls. 

(C) Comparison of the number of remaining cell rows in the ONL. Retinae treated with VCP 

inhibitors showed significant preservation of the number of photoreceptor cell rows. Values 

were quantified by scoring several images (open circles) from at least four retinae (closed 

circles, n=4) per treatment. Data plotted as mean ± SD. One-way ANOVA with Bonferroni 

multiple comparison test; ***p<0.001; **p<0.01, *p<0.05. RPE: retinal pigment epithelium; 

ONL: outer nuclear layer; INL: inner nuclear layer. Scale bar: 50µm. 
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Figure 2. Single intravitreal injection of VCP inhibitors to P23H transgenic rats protects 

degenerating rod photoreceptors in vivo. Intravitreal injections in P23H rats were performed 
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at postnatal day 10 (PN10). For the analysis, the animals were divided into short-term (retinae 

fixed at PN15, A-C) and long-term (retinae fixed at PN30 D-F). (A) Representative images of 

the stained retinae fixed at PN15 using the TUNEL assay to differentiate photoreceptors 

undergoing cell death (green) and nuclei counterstaining using DAPI (blue). (B) Bar chart 

shows the percentage of TUNEL-positive cells in the PN15 fixed retinae. In the short term 

treated group, both ML240 and EerI significantly reduced the number of dying cells compared 

to the respective vehicle control (contralateral retina) in the P23H mutant. (C) Quantification of 

the ONL cell rows for the PN15 fixed retinae. Only in the EerI treated group a significant 

increase in the number of remaining cell rows in the ONL 5 days after treatment was observed. 

(D) Representative images of the radial parasagittal sections showing inferior (I) and superior 

(S) hemispheres of the retinae stained with DAPI (blue) of vehicle, ML240, and EerI long-term 

treated groups. (E and F) Retinal spidergrams of the inferior and superior hemispheres along 

the vertical meridian revealed that treated retinae (E: ML240 in green, F: EerI in blue) contain 

more nuclei rows in the ONL than the contralateral vehicle-treated retinae. The neuroprotective 

effect is stronger in the superior retina. Values were quantified by scoring several images (open 

circles) from at least four retinae (closed circles, n=4) per treatment. Plotted data as mean ± 

SD. One-way ANOVA with Bonferroni multiple comparison test; (B-C) or Two-way ANOVA with 

Bonferroni multiple comparison test; (E-F). ***p<0.001; **p<0.01; *p<0.05. ONL: outer nuclear 

layer; INL: inner nuclear layer; ONH: optic nerve head. Scale bar: 50µm. 
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Figure 3. Simulated concentration profiles of ML240 and Eerl. After intravitreal injection of 

0.5 nmol and 0.25 nmol dose respectively in the rat vitreous, using the estimated rat 

pharmacokinetic parameters of intravitreal clearance 0.04 ml/h and volume of distribution 25 

µL for both analyzed groups, the expected half-life was calculated to be approximately 25 

minutes; thus, more than 98 % of both drugs is expected to be eliminated in the first 3 hours 

after injection. Since ML240 and EerI were still protective 20 days after the single injection, 

mechanisms promoting photoreceptor cell survival started by VCP inhibition presumably 

remain active even after most of the drug has already been eliminated from the vitreous. 
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Figure 4. VCP inhibition restores RHO localization and increases OS length in P23H 

transgenic retinae in vitro and in vivo. Immunofluorescence labeling in cryosections 

designates the location of RHO (red staining) in (A) Untreated WT and P23H control retinae 

at PN15; (B) organotypic cultures of P23H retinae, explanted at postnatal day 9 and cultivated 

for 6 days (PN9 DIV6), treated with vehicle, ML240, or EerI; and (C) PN30 in vivo retinae from 

untreated WT and P23H and treated P23H rats (after a single injection at PN10 of vehicle, 

ML240, or EerI). Untreated WT retinae at PN15 and PN30 as a point of reference, as staining 

in WT, was exclusively observed in the OS. In contrast, in P23H untreated retinae, RHO 

staining was observed in both the ONL and the OS, indicating an accumulation in the mutants' 

cell somata. In the vehicle control groups, in vitro, as well as in vivo, an abnormal RHO 

distribution was observed, with strong fluorescence staining in the ONL and very short rod OS. 

In retinae treated with VCP inhibitors - in vitro and in vivo - we found a reduction of the 

fluorescence in the ONL and better preserved and longer OS. VCP inhibitors were able to 

restore the distribution of RHO predominantly to the OS and increased OS length. (D) 

Quantification of RHO immunofluorescence intensity in the ONL in vitro and in vivo. A central 

region of each image was selected, and the mean maximum intensity was assessed using the 

Zen 2.3 software. In vitro, as well as in vivo, VCP inhibition reduced the FL intensity in the 

ONL. (E) The mean length of the OS was significantly higher in both in vitro and in vivo treated 

retinae when compared to the vehicle controls. Values were quantified by scoring several 

images (open circles) from three retinae (closed circles, n=3) per treatment. Data plotted as 

mean ± SD. One-way ANOVA with Bonferroni multiple comparison test; ***p<0.001; **p<0.01; 

*p<0.05. OS: outer segments; IS: inner segments; ONL: outer nuclear layer; AU: fluorescence 

arbitrary-units. Scale bar: 50µm. 
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Figure 5. VCP inhibition corrects P23H destabilization in rod disk membranes. 

Ultrastructure analysis of longitudinal sections of rod photoreceptor cells using transmission 

electron microscopy (EM) in WT and P23H rat retinae in vitro and in vivo. (A and B) Reynold's 

lead citrate-stained semithin sections of vehicle control and ML240 treated retinae (postnatal 

day 20 and cultivated for 2 days (P20DIV2)) show increased preservation of the outer retina 

and especially of the OS after VCP inhibition. (C) EM of OS from organotypic cultures (PN20 

DIV2) of WT and P23H retinae treated with vehicle or ML240. OS of vehicle-treated P23H 

cultures exhibited numerous vesicotubular structures similar to those described in Haeri and 

Knox, 2012 (55). (D) Schematic model for defective disk formation in OS in the P23H mutant 

(adapted from (55)). In this model and depending on a critical concentration, P23H mutant 

RHO (red dots) begins to self-associate and form aggregates in the membrane, excluding WT 

protein (grey dots). Thus, mutant protein concentrated in a localized area causes defects in 
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the membrane structure, leading to vesiculation followed by disk breakdown. (E) EM of OS 

from WT and P23H untreated retinae in vivo. Only mutant OS display vesicotubular structures. 

(F) EM of OS from P23H of vehicle or ML240- treated retinae in vivo via intravitreal injection. 

Intravitreal injections in P23H rats were performed at postnatal day 10 (PN10) and analysed 

at PN21 (medium-term, as described in Supplementary figure 1). RPE: retinal pigment 

epithelium; OS: rod outer segments; ONL: outer nuclear layer. Scale bar: 1µm. 
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Figure 6. VCP inhibition structurally corrects OS disks in P23H retinae. Graph showing 

the percentage of correctly structured OS of rod photoreceptor cells using transmission 

electron microscopy (EM) in P23H rat retinae in vitro (PN20 DIV2) and in vivo (injected at PN10 

and analyzed at PN21, medium-term, as described in Supplementary figure 1). After treatment, 

in both cultured and in vivo injected groups, the percentage of correctly structured OS in EM 

sections indicated that ML240 treatment significantly preserved the OS structure. Values were 

quantified by scoring several images (open circles) from at least four retinae (closed circles, 

n=3) per treatment. Data plotted as mean ± SD; One-way ANOVA with Bonferroni multiple 

comparison test; ***p<0.001; **p<0.01.  
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Figure 7. Increased light response of in vitro ML240-treated retina. (A) Retinal explants 

(postnatal day 20 and cultivated for 2 days (PN20 DIV2)) treated with ML240 or vehicle were 

excited using light flashes to distinguish the three ganglion cell types ON, OFF, and ON-OFF, 

by the light-triggered spike response patterns. On a multi-electrode array (MEA), retinal activity 

was assessed, recording the inner retinal cell activity (mERG) as well as ganglion cell activity 

(spikes). Light stimulation: 460 nm wavelength, 35 cd/m2 intensity, 3 seconds of light exposure 

time, and 15 seconds flash interval covering a recording area of 340 µm. (B) Light 

responsiveness of the ML240-treated and vehicle-treated retinal explants recording the 

number of spikes and mERG signals. The ordinate presents the percentage of electrodes per 

recording, detecting light-induced activity. (C) Percentage distribution of the activated ganglion 

cell types. (D) Light responsiveness of the retinal explants to repeated 20 light flashes (average 

light response per recording electrode). Data plotted as mean ± SD. Man-Whitney-U test for 

significance: ***p<0.0001. PR: photoreceptor; BC: bipolar cell; HC: horizontal cell; AC: 

amacrine cell; and GC: ganglion cell. 
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Figure 8. Increased light response of the in vivo ML240-treated retina. P23H rats were 

intravitreally injected at PN10, and scotopic ERG responses performed between PN19 and 

PN21 (medium-term). (A) A-wave amplitude at 0 log cd s−1 m−2, (B) Full-field scotopic a-wave; 

(C) b-wave amplitudes were significantly increased in the ML240 treated eyes. As flash 

intensities of light were increased, both a- and b- waves increased proportionately in P23H rats 

injected with ML240. In (A) data plotted as means ± minimum to maximum values, n=11, 

Paired two-sided Student's t-test. In (B) and (C) data plotted as means ± SEM, n=11, Two-way 

ANOVA with Bonferroni multiple comparison test; **p<0.01; *p<0.05. 
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Figure 9. Inhibition of VCP by NMS-873 protects degenerating rod photoreceptors in 

vitro and in vivo in P23H KI mice. (A) Retinae from P23H KI mice were explanted at postnatal 

day 14 (PN14) and kept for 6 days in vitro (DIV6), and treated every second day with either 

NMS-873 or DMSO. Explants were stained with TUNEL assay (green) and antibody against 

RHO (red). NMS-873 treatment restores RHO localization in P23H KI mice retinae explants. 

(B) Bar chart shows the significantly decreased percentage of TUNEL-positive cells in P23H 

KI retinae explants treated with NMS-873 compared to the respective DMSO vehicle control. 

(C) Significant increase in the quantification of the remaining ONL cell rows for the PN20 P23H 

KI fixed retinae treated with NMS-873 compared to the DMSO vehicle control. Single 

intravitreal injection in P23H KI mice was performed at postnatal day 11 (PN11) and analyzed 

at PN21. (D) Representative images of the stained retinae using the TUNEL assay to detect 

cell death (green) and RHO (red) in vivo. (E) Bar chart shows the decreased percentage of 
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TUNEL-positive cells and (F) increased the remaining cell rows in vivo (n=4). The full-field 

scotopic (G) a-wave and (H) b-wave amplitudes were significantly increased in the NMS-873 

treated eyes (n=5). Data plotted as mean ± SEM. (B, C) Unpaired t-test with Welch correction, 

n=4. (E) paired t-test, n=4. (F-H) Two-way ANOVA with Bonferroni multiple comparison test; 

**p<0.01; *p<0.05. RPE: retinal pigment epithelium; ONL: outer nuclear layer; INL, inner 

nuclear layer. Scale bar: 50µm. 
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