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Abstract: Neuropathy development is a major dose-limiting side effect of anticancer treatments
that significantly reduces patient’s quality of life. The inadequate pharmacological approaches for
neuropathic pain management warrant the identification of novel therapeutic targets. Mitochondrial
dysfunctions that lead to reactive oxygen species (ROS) increase, cytosolic Ca2+ imbalance, and
lactate acidosis are implicated in neuropathic pain pathogenesis. It has been observed that in these
deregulations, a pivotal role is played by the mitochondrial carbonic anhydrases (CA) VA and VB
isoforms. Hence, preclinical studies should be conducted to assess the efficacy of two novel selenides
bearing benzenesulfonamide moieties, named 5b and 5d, and able to inhibit CA VA and VB against
paclitaxel-induced neurotoxicity in mice. Acute treatment with 5b and 5d (30–100 mg/kg, per os –
p.o.) determined a dose-dependent and long-lasting anti-hyperalgesic effect in the Cold plate test.
Further, repeated daily treatment for 15 days with 100 mg/kg of both compounds (starting the first
day of paclitaxel injection) significantly prevented neuropathic pain development without the onset
of tolerance to the anti-hyperalgesic effect. In both experiments, acetazolamide (AAZ, 100 mg/kg,
p.o.) used as the reference drug was partially active. Moreover, ex vivo analysis demonstrated
the efficacy of 5b and 5d repeated treatments in reducing the maladaptive plasticity that occurs
to glia cells in the lumbar portion of the spinal cord and in improving mitochondrial functions in
the brain and spinal cord that were strongly impaired by paclitaxel-repeated treatment. In this
regard, 5b and 5d ameliorated the metabolic activity, as observed by the increase in citrate synthase
activity, and preserved an optimal mitochondrial membrane potential (∆Ψ) value, which appeared
depolarized in brains from paclitaxel-treated animals. In conclusion, 5b and 5d have therapeutic and
protective effects against paclitaxel-induced neuropathy without tolerance development. Moreover,
5b and 5d reduced glial cell activation and mitochondrial dysfunction in the central nervous system,
being a promising candidate for the management of neuropathic pain and neurotoxicity evoked by
chemotherapeutic drugs.
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1. Introduction

Paclitaxel is a chemotherapeutic agent derived from the bark of Taxus brevifolia and is
frequently used against a broad spectrum of tumors [1].

Unfortunately, according to the dose intensity [2,3], paclitaxel frequently induces
neuropathic pain that severely impair the patient’s quality of life, leading to treatment
discontinuation [4]. Most frequently, the clinical picture is dominated by severe symptoms
such as tingling, numbness, spontaneous pain, and referred pain to mechanical and thermal
stimuli in the hands and feet of treated patients [5,6].

Neuropathic pain treatment has two distinct targets, the prevention of the development
of the disease and the management of the established pathology. To date, the effective
management of neuropathic pain is a clinical need still unmet and challenging since existing
approaches are far from suitable due to their limited effectiveness and adverse side effects
profiles [7].

Recent discoveries, aimed to identify and characterize new therapeutic strategies,
have highlighted the inhibition of carbonic anhydrase (CA) as a new valid approach
for pain management [8]. Carbonic anhydrase inhibitors (CAIs) have been shown to
possess pain-relieving properties against inflammatory pain resembling human rheumatoid
arthritis [9–11] against persistent visceral pain, in which the CA IV isoform is particularly
involved, [12] as well as against oxaliplatin-induced pain threshold alterations [13,14].
CAs are a ubiquitous superfamily of enzymes that catalyze a reaction fundamental for
life: the hydration of CO2 to bicarbonate and protons. These enzymes regulate a wide
range of physiological processes in a variety of tissues and cell compartments while an
overexpression of CA is frequently linked to pathological illnesses such as glaucoma [15],
obesity [16], tumorigenesis [17–19], and epilepsy [20].

Among the eight unique CA families known, the α-family is the most widely studied
and comprises 16 members, each characterized for tissue-specific expression and cellular
and sub-cellular localization. Under neuropathic pain conditions, the mitochondrial CA
VA and CA VB isoforms are of particular interest. It has been shown that mitochondrial
CA VA/VB regulate the respiration rate as well as reactive oxygen species (ROS) produc-
tion, oxidative stress, and apoptosis [21], and mitochondrial dysfunction is implicated
in chemotherapy-induced neuropathic pain [22]. Indeed, mitochondria are involved in
many essential functions, including ATP production through oxidative phosphorylation,
apoptosis regulation, intracellular calcium homeostasis, and ROS production. Given their
pivotal role, any alteration to mitochondrial integrity and functionality can impact cellular
functionality, leading to disorders. Many factors are involved in the maintenance of mi-
tochondrial activity, and during the last decade, a large body of evidence indicates that
chemotherapeutic drugs determine mitochondrial injury characterized by loss of mito-
chondrial morphology and disruption of oxidative phosphorylation and mitochondrial
membrane potential. All of these events determine a reduction in ATP production and
increase of the reliance on glycolysis, causing a decrease in the cellular bio-energetic ca-
pacity [22]. Moreover, an uncontrolled release of ROS and reactive nitrogen species (RNS)
evoked by antioxidant enzyme deregulation may cause oxidative stress and nitrosyla-
tive and nitrative reactions with proteins and nucleic acids, and these phenomena can
be strongly involved in the onset of neuropathic pain induced by chemotherapy [23–26].
Furthermore, very recently, altered levels of mitochondrial DNA and complex I activity
have been proposed as potential blood biomarkers for chemotherapy-induced neuropathic
pain [27]. The mitochondrial CA V isoform is expressed in the nervous tissue and in partic-
ular in astrocytes and neurons, suggesting a cell-specific, physiological role. In astrocytes,
CA V acts as an important player in gluconeogenesis while in neurons is involved in the
regulation of the intramitochondrial calcium level, contributing to the stability of the cells.
Moreover, CA V also regulates the bicarbonate homeostasis in neurons, contributing to
explain some neurotrophic effects of CAIs [28]. In addition, CA V regulates the rate of ROS
production, and its inhibition has been shown to rescue the mouse brain from glucose-
induced pericyte loss [29]. Therefore, although other CA isoforms have been proved to be
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closely involved in neuropathic pain management, in this work, we explored the efficacy
of two selected CAIs particularly active against the CA VA and VB isoforms, named 5b
and 5d and reported in Scheme 1, in a mouse model of paclitaxel-induced neuropathic
pain. In particular, the anti-hypersensitivity effects of acute and sub-chronic treatment
were evaluated; moreover, ex vivo analysis of the central nervous system was assessed
to determine the effects of the two selected molecules on the mitochondrial membrane
potential (∆Ψ) value and on the citrate synthase activity. Moreover, the glial cell profile in
the dorsal horn of the lumbar spinal cord was determined.
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2. Results and Discussion

Presently, no valid pharmacological strategies are available once patients develop
chemotherapy-induced neuropathy. The symptomatic approach recommends the use of off-
label drugs such as amitryptyline [30] with, unfortunately, not satisfying effectiveness [31].
In this context, the possibility to effectively manage or prevent neurotoxicity by the oral
administration of “rescue drugs” could have a great clinical impact leading to significantly
increase the patient’ quality of life that usually is strongly affected.

In recent years, carbonic anhydrase (CA) has gained growing attention since CA iso-
forms are displaced in many tissues and organs and are involved in different physiological
and pathological processes [32].

Previous works have highlighted the active role of several carbonic anhydrase in-
hibitors (CAIs) in reducing different pain states in preclinical settings. CAIs’ efficacy
against rheumatoid arthritis has emerged [9–11] as well as against visceral pain, and in
this experiment, the CAI IV isoform has been revealed as the main actor to counteract the
development of colitis in rats [12]. Moving to neuropathies induced by chemotherapeutic
drugs, CAIs have been observed to possess anti-neuropathic properties in particular against
oxaliplatin-induced neurotoxicity [13,14,33]. Nevertheless, no information is available re-
garding the pain relieving properties of CAIs against paclitaxel-induced neurotoxicity. In
the present work we tested the effectiveness of two CAIs in a mouse model of paclitaxel-
induced neuropathic pain. 5b and 5d are two selenides with a benzenesulfonamide moiety
that have been shown to have the best profile in the prevention of diabetic cerebrovascular
pathology [34], showing a relevant inhibition of six human (h) CA isoforms, hCA I, II, VII,
IX, and particularly the mitochondrial ones VA and VB [34]. Moreover, the combination of
the sulfonamide moiety with an organo-selenium scaffold is particularly interesting to bring
antioxidant properties to the molecules [35,36] and it may represent a further benefit since
oxidative stress and mitochondrial dysfunctions are strongly related to paclitaxel-induced
neurotoxicity [37,38].

We first evaluated the potential therapeutic properties of 5b and 5d in a mouse model
of paclitaxel-induced neuropathic pain. For this purpose, compounds were per os (p.o.)
administered on day 10, when neuropathy was well established. Four paclitaxel injec-
tions significantly decreased the animal’s licking latency to 9.8 ± 0.2 s in comparison to
18.2 ± 0.4 s of the control group (vehicle + vehicle). The acute treatments with 5b reduced
the thermal allodynia in a dose-dependent manner; the dose of 100 mg/kg completely
abrogated paclitaxel-induced hypersensitivity at 30 min with the anti-hyperalgesic effect
that lasted up to 90 min. The dose of 30 mg/kg was still active even if the effect generated
was lower with respect to that achieved with the dose of 100 mg/kg but was still statistically
significant (Figure 1). 5d showed a similar anti-allodynic profile to that evoked by 5b with
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the peculiarity of the onset of the efficacy that was delayed by 15 min (Figure 1). AAZ,
used as the reference drug, was administered in a single dose of 100 mg/kg. The effect
exerted was lower in comparison to the other two CAIs, reaching statistical significance
only 15 min after treatment (Figure 1). Of note, the toxicity of compound 5d was tested in
our previous work in which we demonstrated that RBE4 cell viability was not altered by
24-h incubation with the compound [34]. The same results were obtained with the molecule
5b and have been reported in the Supplementary Table S1.
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Figure 1. Effect of single CAI treatment on pain behavior induced by paclitaxel. Sensitivity to a
non-noxious thermal stimulus was measured by the Cold plate test. Paclitaxel (2.0 mg/kg, i.p.) was
administered on four days (1, 3, 5, and 8). On day 10, 5b and 5d were acutely per os administered
at doses of 30 mg/kg and 100 mg/kg. AAZ 100 mg kg−1 was used as a reference compound.
Assessment of cold allodynia was performed before and 15, 30, 45, 60, 75, 90, and 120 min after
treatments. Results are expressed as the mean ± S.E.M. of eight mice analyzed in two different
experimental sets. ˆˆ p < 0.01 vs. vehicle + vehicle; * p < 0.05 and ** p < 0.01 vs. paclitaxel + vehicle.

Thereafter, to assess the protective effect of 5b and 5d in the same neuropathic pain
model, both compounds were subjected to a repeated treatment at 100 mg/kg over a 15-day
period. Molecules were per os daily administered starting the same day of paclitaxel
injection until the end of the experiment (day 15). AAZ 100 mg/kg was still used as the
reference drug. The response to a thermal non-noxious stimulus (Cold plate test) was
measured on days 4, 7, 11, and 15, 24 h after the last treatment. Paclitaxel injections
evoked a painful condition that was maximum on day 15 in comparison to the control
animals (9.0 ± 0.3 s vs. 18.6 ± 0.4 s, respectively). Both molecules were active after one
week of repeated treatment, evoking an anti-allodynic effect when the Cold plate test was
performed on day 7 from the beginning of the experiment. On the same day, AAZ was
inactive (Figure 2). During the second week of treatment, 5b showed the best protective
profile, increasing the mouse licking latency up to 16 s on day 11. The anti-allodynic effect
remained stable until the end of the experiment (day 15). 5d exerted a lower antalgic profile
in comparison to 5b but was still significant (Figure 2).
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a non-noxious thermal stimulus was measured by the Cold plate test. Paclitaxel (2.0 mg/kg, i.p.)
was administered on four days, 1, 3, 5, and 8, circled in red in the figure. Starting from the first day
of paclitaxel injection and until the end of the experiment, 5b and 5d and AAZ were daily per os
administered at 100 mg/kg. Assessment of cold allodynia was performed on days 4, 7, 11, and 15,
24 h after the last treatment. Results are expressed as the mean± S.E.M. of eight mice analyzed in
two different experimental sets. ˆˆ p < 0.01 vs. vehicle + vehicle; * p < 0.05 and ** p < 0.01 vs. paclitaxel
+ vehicle.

To exclude that the sub-chronic treatment with compounds did not lead to tolerance
development to the antinociceptive effect exerted in paclitaxel-treated mice, on day 15,
the molecules were administered for the last time, and their acute effects were evaluated
over the next two hours (Figure 3). The new daily treatments with 5b and 5d significantly
improved the mouse pain threshold, indicating an additive anti-allodynic effect of the
compounds that lasted up to 60 and 75 min, respectively (Figure 3). Conversely, AAZ was
ineffective (Figure 3).
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Paclitaxel (2.0 mg/kg, i.p.) was administered on four days (1, 3, 5, and 8). Starting from the first day
of paclitaxel injection and until the end of the experiment, 5b and 5d and AAZ were daily per os
administered at 100 mg/kg. On day 15, the assessment of cold allodynia was performed over time
after the new daily administration of compounds. Results are expressed as the mean ± S.E.M. of
eight mice analyzed in two different experimental sets. ˆˆ p < 0.01 vs. vehicle + vehicle; * p < 0.05
and ** p < 0.01 vs. paclitaxel + vehicle; ◦ p < 0.05 and ◦◦ p < 0.01 vs. time 0 of the same group.

Clinically speaking, these are very significant results since other antinociceptive or
analgesic drugs widely used, such as morphine, tramadol or oxycodone, present several
limitations and side effects such as tolerance after repeated administration both in naïve
animals [39–41] and in mice and rats treated with paclitaxel [42,43]. To support the active
role of CAIs against chemotherapeutic side effects, in a recent work, CAIs for the IX isoform
were introduced into platinum prodrugs to boost cisplatin and oxaliplatin antitumor
activity, but it has also been observed that the systemic side effects of platinum drugs were
consistently reduced [44].

Deepening the mechanisms that lead to paclitaxel-induced neuropathy, it is well
accepted the phenomena of ganglionopathy and axonopathy in the peripheral nervous
system [45] but less is known about the central mechanisms involved. Our previous work
reported a complex maladaptive plasticity of astrocytes and microglia in the spinal cord as
well as in the cerebral area involved in pain control [46]. These data are in line with evidence
reported in other studies that highlight the pivotal role of glial cells in pain development
and chronicization [47,48]. The active role of glial cells in pain development has been
confirmed by treatments able to prevent glial activation that lead to pain reduction [49,50].

To evaluate the capability of 5b and 5d to intervene against the maladaptive plasticity
that occurs in the nervous system during paclitaxel treatment, at the end of the repeated
treatment with compounds (day 15), animals were sacrificed and the lumbar spinal cord
was collected. In Figure 4, the immunohistochemistry of the lumbar spinal cord using
the antibody against GFAP to label astrocytes is shown. The chemotherapeutic treatment
significantly increased the number of GFAP-positive cells and the GFAP fluorescence
intensity. 5d and AAZ restored both of these parameters, while 5b significantly decreased
only the number of GFAP-positive cells (Figure 4).

Microglia were also altered by paclitaxel injections; all compounds tested counteracted
the increase in Iba1-positive cells and of Iba1 fluorescence intensity (Figure 5). Immuno-
histochemical studies demonstrated that the mitochondrial isoform CA V is expressed
in neurons and astrocytes but not in oligodentrocytes of several areas and tissues of the
nervous system such as the sciatic nerve, spinal cord, cerebral cortex, hippocampus, and
cerebellum. This distribution suggests that CA V is fundamental in physiological con-
ditions regulating the intramitochondrial calcium level, gluconeogenesis, and neuronal
transmission facilitating the bicarbonate ion-induced GABA responses in neurons [28].
The CA IV was the second isozyme found in the nervous system, and despite that its role
in the nervous system is not yet understood, it is important to mention that being the
CA IV mostly expressed on the capillary of endothelial cells, particularly on the luminal
surface [51], it has a unique position at the blood–brain barrier that has been known to be
subject to damage during chemotherapies [52].

Growing evidence over the last two decades indicates that many chemotherapeu-
tic agents cause mitochondrial injury in the peripheral sensory nerves by disrupting the
mitochondrial structure and bioenergetics, increasing oxidative stress, and altering mito-
chondrial transport systems. These structural and functional alterations are recognized to
be at the basis of chemotherapy-induced neuropathies [22,53].
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Immunohistochemical studies demonstrated that the mitochondrial isoform CA V is ex-
pressed in neurons and astrocytes but not in oligodentrocytes of several areas and tissues 
of the nervous system such as the sciatic nerve, spinal cord, cerebral cortex, hippocam-
pus, and cerebellum. This distribution suggests that CA V is fundamental in physiologi-
cal conditions regulating the intramitochondrial calcium level, gluconeogenesis, and 
neuronal transmission facilitating the bicarbonate ion-induced GABA responses in neu-
rons [28]. The CA IV was the second isozyme found in the nervous system, and despite 
that its role in the nervous system is not yet understood, it is important to mention that 
being the CA IV mostly expressed on the capillary of endothelial cells, particularly on the 
luminal surface [51], it has a unique position at the blood–brain barrier that has been 
known to be subject to damage during chemotherapies [52]. 

Figure 4. Effect of repeated CAI treatment on paclitaxel-induced astrocyte activation. Paclitaxel
(2.0 mg/kg, i.p.) was administered on four days (1, 3, 5, and 8). Starting from the first day of paclitaxel
injection and until the end of the experiment, 5b and 5d and AAZ were daily per os administered at
100 mg/kg. On day 15, at the end of the behavioral experiments, animals were sacrificed and the
lumbar spinal cord was collected. The number of GFAP-positive cells was measured in the dorsal
horn of the L4–L5 spinal cord. Transverse sections of the spinal cord imaged with a ×20 objective
(scale bar = 50 µm). Histograms show the quantitative analysis of GFAP fluorescence intensity and the
number of GFAP-positive cells/optic field. Data are expressed as the mean ± S.E.M. of values from
eight mice analyzed in two different experimental sets. ˆˆ p < 0.01 vs. vehicle + vehicle; ** p < 0.01 vs.
paclitaxel + vehicle.

In this regard, mitochondrial dysfunction has been reported in vitro models of paclitaxel-
induced damage [54]. Mitochondrial calcium accumulation, accompanied by ATP depletion
and oxidative stress, can promote the opening of the mitochondrial permeability transition
pore (mPTP), a multi-protein complex located between the inner membrane and outside
one, responsible for the loss of ∆Ψ and finally mitochondrial swelling. As a confirmation of
the functional damage of peripheral nerve mitochondria in rats treated with paclitaxel, the
appearance of pain was associated with a significant increase in the number of vacuolated
and swollen mitochondria.

Conversely, some studies demonstrated that the majority of mitochondria in the spinal
cord are not affected in paclitaxel-induced pain in rat models, but in this regard, evidence
is contradictory [55].
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Figure 5. Effect of repeated CAI treatment on paclitaxel-induced microglia activation. Paclitaxel
(2.0 mg/kg, i.p.) was administered on four days (1, 3, 5, and 8). Starting from the first day of paclitaxel
injection and until the end of the experiment, 5b and 5d and AAZ were daily per os administered
at 100 mg/kg. On day 15, at the end of the behavioral experiments, animals were sacrificed and
the lumbar spinal cord was collected. The number of Iba1-positive cells was measured in the dorsal
horn of the L4–L5 spinal cord. Transverse sections of the spinal cord imaged with a ×20 objective
(scale bar = 50 µm). Histograms show the quantitative analysis of Iba1 fluorescence intensity and the
number of GFAP-positive cells/optic field. Data are expressed as the mean ± S.E.M. of values from
eight mice analyzed in two different experimental sets. ˆˆ p < 0.01 vs. vehicle + vehicle; * p < 0.05 and
** p < 0.01 vs. paclitaxel + vehicle.

In this context, ∆Ψ is considered a reliable measurement of the mitochondrial function,
and, under our experimental conditions, mitochondria isolated from cerebral tissue of
animals submitted to treatment with paclitaxel showed, in agreement with the literature, a
dysfunction; their ∆Ψ value was significantly depolarized compared with the vehicle group
(189 ± 2 mV). In particular, ∆Ψ was −175 ± 1 mV, a value indicative of coupled organelles
but more vulnerable against several types of injury, such as exposure to chemotherapy
drugs. Mitochondria isolated from animals treated with paclitaxel and CAIs, AAZ as
well as the new compounds (5b and 5d), showed a ∆Ψ value more negative compared
with the paclitaxel group (−183 ± 3, −182 ± 2, and −180 ± 2, respectively), suggesting
that exposure to CAIs may improve mitochondrial function. In this regard, 5b, similar to
AAZ, significantly improved the membrane potential. A similar profile was observed in
mitochondria isolated from spinal cords of the same animals, although the data seem to be
more dispersed. These results lead us to hypothesize that paclitaxel-induced mitochondrial
oxidative stress may be crucial, and that the contribution of CAIs may be useful (Figure 6).
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Figure 6. Histograms showing the mitochondrial membrane potential (∆Ψ, mV) value measured in
mitochondria isolated from the brain (a) and spinal cord (b) of animals submitted to pharmacological
treatments. Data are expressed as the mean ± S.E.M. of values from five brain and five spinal cord
tissue samples per group. ˆˆ p <0.01 vs. vehicle + vehicle; * p < 0.05 vs. paclitaxel + vehicle.

CS activity is considered a marker of cell metabolism, but being the first enzyme of
the Krebs cycle, it is widely used as marker of mitochondrial function. According to the
mitochondrial damage induced by treatment with paclitaxel, we observed a significant
reduction in CS activity, in organelles isolated from the brain and spinal cords. On the other
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hand, treatment with CAIs, in particular 5b, produced a significant improvement in CS
activity, confirming the positive effects offered by this agent (Figure 7).
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3. Materials and Methods
3.1. Chemistry

Compounds 5b and 5d were reported earlier by our group [34].

3.2. Cell Culture and Treatment

Rat brain endothelial cells RBE4 were obtained from the American Type Culture
Collection (Rockville, MD, USA) and were cultured in MEM Alpha/NutriHam F-10 in 1:1
ratio (Thermo Fisher Scientific, Milan, Italy), supplemented with 10% fetal bovine serum,
0.1% basic fibroblast growth factor, 100 IU mL−1 penicillin, and 100 µg mL−1 streptomycin
(Sigma, Milan, Italy) at 37 ◦C in a humidified, 5% CO2 atmosphere; 4 × 104 cells per well
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were plated in 96-well plates and treated for cytotoxicity assay (cells were incubated with
the tested compound for 24 h).

3.3. Cell Viability Assay

Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay. Following treatments, cells were washed and incubated with MTT
solution (1 mg/mL) at 37 ◦C for 30 min in a humidified, 5% CO2 atmosphere. After
washing, the formazan crystals were solubilized in 200 µL DMSO, and absorbance was
measured at 550 nm.

3.4. Animals

CD-1 mice (Envigo, Varese, Italy) weighing approximately 20–25 g at the beginning of
the experimental procedure were used. Animals were housed in the Centro Stabulazione
Animali da Laboratorio (Ce.SAL; University of Florence, Florence, Italy) and used at least
one week after their arrival. Ten mice were housed per cage (size 26 cm × 41 cm); animals
were fed with a standard laboratory diet and tap water ad libitum, kept at 23 ± 1 ◦C, with
a 12-h light/dark cycle (light at 7 A.M.).

3.5. Paclitaxel Mouse Model of Neuropathy

Two mg/kg paclitaxel (Carbosynth, Pangbourne, UK) was dissolved in a mixture of
10% saline solution and Chremophor EL, a derivative of castor oil and ethylene oxide that
is clinically used as a paclitaxel vehicle. The drug was injected intraperitoneally (i.p.) on
days 1, 3, 5, and 8 [56,57]. Control animals received an equivalent volume of the vehicle.

3.6. Treatments

When neuropathy was fully established (day 10), 5b and 5d were suspended in 1%
solution of carboxymethylcellulose sodium salt (CMC) and per os (p.o.) acutely adminis-
tered at doses of 30 and 100 mg kg−1 to evaluate their symptomatic effect. The synthesis of
the compounds was previously reported in [34]. The measurement of thermal allodynia
was performed before and 15, 30, 45, 60, 75, 90, 105, and 120 min after treatments. Ac-
etazolamide (AAZ; 100 mg/kg, p.o.) was used as the CAI reference drug. Afterwards,
to highlight a protective effect, repeated per os administrations of 100 mg/kg of 5b and
5d were carried out daily from the beginning of paclitaxel administration (day 1) to the
end of the experiment (day 15). The measurement of thermal allodynia was performed on
days 4, 7, 11, and 15 from the beginning of the experiments, 24 h after daily treatments.
Moreover, on day 15, the Cold plate test was also performed after the new daily treatment
with compounds at 30, 45, 60, 75, and 90 min. Control animals were treated with the vehicle
(CMC 1%).

3.7. Cold Plate

Thermal allodynia was assessed using the Cold plate test. With minimal animal–
handler interaction, mice were taken from home-cages and placed onto the surface of the
Cold-plate (Ugo Basile, Varese, Italy) maintained at a constant temperature of 4 ◦C ± 1 ◦C.
Ambulation was restricted by a cylindrical Plexiglas chamber (diameter: 10 cm, height:
15 cm) with an open top. A timer controlled by a foot pedal began timing response latency
from the moment the mouse was placed on the cold surface. Pain-related behavior (licking
of the hind paw) was observed, and the time (seconds) of the first sign was recorded. The
cut-off time of the latency of paw lifting or licking was set at 30 s [58,59].

3.8. Immunohistochemistry

On day 15 of treatment performed to evaluate the protective effect of compounds,
after the behavioral pain measurements, mice were sacrificed and the lumbar spinal cord
segments were removed, post-fixed in 4% paraformaldehyde, and then cryoprotected in
30% sucrose solution at 4 ◦C. Slide-mounted cryostat sections (5 µm) were processed for
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indirect immunofluorescence histochemistry. Formalin-fixed cryostat sections (5 µm) were
incubated for 1 h in blocking solution (Bio-Optica, Milan, Italy) at room temperature and
were then incubated for 24 h at 4 ◦C in PBST containing rabbit primary antisera diluted
1:1000 and 5% normal donkey serum. The primary antibody was directed against Iba1
(rabbit, 1:1000; Wako Chemicals, Richmond, VA, USA) for microglial staining and against
glial fibrillary acidic protein (GFAP; mouse, 1:5000; Chemicon, Temecula, CA, USA) for
astrocyte staining. After rinsing in PBST, sections were incubated in donkey anti-rabbit IgG
secondary antibody labelled with Alexa Fluor 568 (1:1000, Invitrogen, Carlsbad, CA, USA)
for microglia and Alexa Fluor 488 (1:500, Invitrogen, Carlsbad, CA, USA) for astrocytes at
room temperature for 1 h. Negative control sections (no exposure to the primary antisera)
were processed concurrently with the other sections for all immunohistochemical studies.
We obtained a single optical density value for the dorsal horns by averaging the two sides
in each rat, and these values were compared to the homologous average values from the
vehicle-treated animals. Images were acquired by a motorized Leica DM6000B microscope
equipped with a DFC350FX camera (Leica, Mannheim, Germany). Quantitative analysis of
GFAP and Iba1-positive cells was performed by collecting at least three independent fields
through a 20× 0.5NA objective. GFAP-positive cells were counted using the “cell counter”
plugin of ImageJ, while Iba1-positive cells were quantified by means of the automatic
thresholding and segmentation features of ImageJ. The GFAP signal in immunostained
sections was quantified using FIJI software (distributed by ImageJ, NIH, Bethesda, MD,
USA) by automatic thresholding images with the aid of the “Moments” algorithm, which
we found to provide the most consistent pattern recognition across all acquired images.
Results (not shown), given as the area fraction (%) occupied by the thresholded GFAP
signal, revealed a common trend between GFAP expression and astrocyte cell number.
Five spinal cord sections were analyzed for each animal.

3.9. Statistical Analysis

Behavioral measurements were performed on ten mice for each treatment carried out
in two different experimental sets. All assessments were made by researchers blinded to
animal treatments. Results are expressed as the mean ± (S.E.M.) with one-way analysis of
variance. A Bonferroni’s significant difference procedure was used as a post hoc comparison;
p-values < 0.05 or <0.01 were considered significant. Data were analyzed using Origin
9 software (OriginLab, Northampton, MA, USA).

3.10. Citrate Synthase (CS) Activity

Brain and spinal cord fragments from animals treated with paclitaxel, in the presence
or absence of CAIs, were homogenized in isolation buffer (composition: sucrose 250 mM,
Tris 5 mM, EGTA 1 mM, Triton X-100 0,02%; pH 7.4) using a GentleMACS dissociator
(Miltenyi Biotec, Bologna, Italy). The homogenates obtained were centrifuged at 12,000× g
for 15 min at 4 ◦C (Sigma 3-18KS, Osterode am Harz, Germany). The supernatant was used
to measure the activity of CS. The protein concentration in the supernatant was determined
spectrophotometrically (EnSpire, PerkinElmer, Waltham, MA, USA) by the Bradford assay.
The enzymatic reaction was performed in 10 µg/mL of protein (Trizma base 100 mM,
5,5′-dithiobis-(2-nitrobenzoic) acid 100 µM, acetylcoenzyme A 100 µM, and oxaloacetic acid
500 µM) as previously described [60]. The kinetics were evaluated spectrophotometrically
at 412 nm every 30 s for 15 min. The isolated enzyme (Sigma–Aldrich, St. Louis, MO, USA)
was used for the calibration line.

Data analysis. CS activity was evaluated on five brain and five spinal cord tissue
samples per group. Enzymatic activity was expressed in mU/mL. Data analysis was
performed using GraphPad Prism 7.0 software. Student’s t-test was used for the statistical
analysis (p < 0.05 was considered as the limit of statistical significance).
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3.11. Mitochondrial Membrane Potential

Brain tissue or spinal cord fragments, from animals treated with paclitaxel, in the
presence or absence of CAIs, were placed in MSE (composition: mannitol 225 mM, sucrose
75 mM, HEPES 5 mM, EGTA 1 mM, BSA 1 mg/mL) and finely cut. The tissue was manually
homogenized in 5 mL of MSE, preventing air formation, and centrifuged at 1000× g for
3 min at 4 ◦C. The supernatant was stored on ice. The pellet was resuspended in 5 mL of
MSE and centrifuged again under the same conditions. Each supernatant was centrifuged
at 10,000× g for 10 min at 4 ◦C. The pellets were recovered and resuspended in 5 mL of MS
(composition: MSE without EGTA) plus 0.01% w/v digitonin. The suspension obtained was
centrifuged again at 10,000× g for 10 min at 4 ◦C. The pellet was resuspended in 400 µL of
MS. Bradford assay was used to determine the protein concentration in the suspension. The
analysis of the mitochondrial membrane potential (∆Ψ) was carried out on the obtained
mitochondrial suspension. Mitochondria were incubated with rhodamine (5 nM) in 96-well
black plates. This test was performed in triplicate at a mitochondrial concentration of
50 µg/mL. The analysis was performed under fluorescence and followed every 30 s for
5 min (10 total readings). The ∆Ψ was calculated with the Nernst equation:

∆Ψ = 60× log
[X]in
[X]out

Data analysis. ∆Ψ was evaluated on five brain and five spinal cord tissue samples per
group. GraphPad Prism 7.0 software was used for the analysis. Student’s t-test was used
for the statistical analysis (p < 0.05 was considered as the limit of statistical significance).

4. Conclusions

In conclusion, we reported the effectiveness of two selenides bearing benzenesul-
fonamide moieties, named 5b and 5d, against a paclitaxel mouse model of neuropathy.
In particular, the therapeutic and protective properties were highlighted after acute and
sub-chronic treatments, respectively. Moreover, 5b and 5d were able to counteract the
maladaptive plasticity of glial cells and to reduce the mitochondrial dysfunction affecting
the central nervous system. These results support the use of CAIs as a therapeutic option
for the management of neuropathic pain; in particular, these data lay the foundation for
deepening the role of the isoforms VA and VB in the development of chemotherapy-induced
neuropathic pain. Future studies should therefore be carried out with even more selective
molecules in inhibiting the CA mitochondrial isoforms to understand the real therapeutic
potential against neuropathic pain.
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