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Abstract. Streptococcus mutans (S. mutans) bacterium is the 

most well recognized pathogen involved in pathogenesis of 

dental caries. Its virulence arises from its ability to produce 

a biofilm and acidogenicity, causing tooth decay. Discovery of 
natural products capable to inhibit biofilm formation is of high 
importance for developing health care products. To the best of 

our knowledge, in all previous scientific reports, a colorimetric 
assay was applied to test the effect of sumac and methyl gallate 

(MG) on S. mutans adherence. Quantitative assessment of the 

developed biofilm should be further performed by applying an 
optical profilometry assay, and by testing the effect on both 
surface roughness and thickness parameters of the biofilm. To 
the best of our knowledge, this is the first study to report the 
effect of sumac extract and its constituent MG on biofilm forma-

tion using an optical profilometry assay. Testing antibacterial 

activity of the sumac extract and its fractions revealed that MG 

is the most bioactive component against S. mutans bacteria. It 

reduced S. mutans biofilm biomass on the polystyrene surface 
by 68-93%, whereas 1 mg/ml MG was able to decrease the 

biofilm roughness and thickness on the glass surface by 99%. 
MG also prevented a decrease in pH level by 97%. These bioac-

tivities of MG occurred in a dose-dependent manner and were 

significant vs. untreated bacteria. The findings are important 
for the development of novel pharmaceuticals and formulations 

of natural products and extracts that possess anti‑biofilm activi-
ties with primary applications for oral health, and in a broader 

context, for the treatment of various bacterial infections.

Introduction

Streptococcus mutans (S. mutans) is the most well recognized 

causative agent implicated in the pathogenesis of dental caries 

(tooth decay), which is an infectious disease of human denti-

tion still exhibiting high global prevalence (1-3). Virulence of 

this bacterium arises from its ability to form a biofilm on teeth 
and produce organic acids (acidogenicity) from dietary sucrose 

within the biofilm, causing tooth decay (4,5). The structural 

matrix of the biofilm consists of water-insoluble glucans 

synthesized from sucrose by several isoforms of the glucos-

yltransferase (Gtf) enzyme present in S. mutans bacteria (5). 

In this respect, S. mutans produces water-insoluble and partly 

water-soluble glucans using GtfB and GtfC enzymes encoded 

by gtfB and gtfC genes, respectively. The synthesized insoluble 

glucans possess a capacity to concentrate protons generated 

by the proton-extruding F-type ATPase (F-ATPase), thereby 

retaining acidogenicity of S. mutans biofilm (6). In addi-

tion, it has been reported that biofilm bacteria have up to a 
1,000-fold more tolerance to antimicrobials than planktonic 

bacteria (7,8). Therefore, it is important to develop novel phar-

maceuticals in order to inhibit S. mutans biofilm formation 
and its acidogenicity.

Inhibitory capacity of Rhus coriaria L. extract and 

its major component methyl gallate on Streptococcus 

mutans biofilm formation by optical profilometry: 
Potential applications for oral health

TOMAS KACERGIUS
1*

,  SALEH ABU-LAFI
2*

,  AGNE KIRKLIAUSKIENE
1
,   

VIKA GABE
1
,  AZMI ADAWI

3
,  MAHMOUD RAYAN

3
,  MUTAZ QUTOB

4
,   

RIMANTAS STUKAS
5
,  ALGIRDAS UTKUS

6
,  MOUHAMMAD ZEIDAN

7
  and  ANWAR RAYAN

3,7

1
Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Faculty of Medicine, 

Vilnius University, Vilnius 03101, Lithuania;  
2
Faculty of Pharmacy, Al-Quds University, Abu-Dies 144, Palestine;   

3
Institute of Applied Research-Galilee Society, Shefa-Amr 20200, Israel;  

4
Department of Earth and Environmental Studies, 

Al-Quds University, Abu-Dies 144, Palestine;  
5
Institute of Public Health; 

6
Department of Human and Medical Genetics, 

Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania;  
7
Drug Discovery Informatics Lab, 

QRC-Qasemi Research Center, Al-Qasemi Academic College, Baka El-Garbiah 30100, Israel

Received February 10, 2017;  Accepted April 7, 2017

DOI: 10.3892/mmr.2017.6674

Correspondence to: Professor Anwar Rayan, Drug Discovery 

Informatics Lab, QRC-Qasemi Research Center, Al-Qasemi 

Academic College, 1 Qasemi Street, Baka El-Garbiah 30100, Israel

E-mail: a_rayan@qsm.ac.il

*Contributed equally

Abbreviations: S. mutans, Streptococcus mutans; MSE, methanolic 

sumac extract; MG, methyl gallate; HPLC, high-performance liquid 

chromatography

Key words: Rhus coriaria L., sumac, methyl gallate, Streptococcus 

mutans, biofilm, acidogenicity, natural product



KACERGIUS et al:  BIOLOGICAL EFFECTS OF METHYL GALLATE ON Streptococcus MUTANS BIOFILM950

Natural products have been optimized to interact 

with biological systems through a long natural selection 

process (9), and because of this, nature is considered the best 

concocter of medicines and has been a source of medicines 

for millennia (10-13). During the last two decades, various 

plants have been tested for their antimicrobial activity and 

many of them exhibit significant antibacterial activity against 
Streptococcus species (14). In this context, Rhus coriaria L. 

(sumac) fruits contain many of the bioactive compounds that 

were characterized in detail by using high-performance 

liquid chromatography-diode array detector-hyphenated 

with tandem mass spectrometry (HPLC-DAD-ESI-MS/MS) 

in the investigation performed by Abu-Reidah et al (15). 

Among these bioactive components, methyl gallate (MG) has 

antibacterial and anti‑biofilm effects for S. mutans bacteria, 

as reported by Kang et al (16). However, currently avail-

able studies did not provide sufficient data whether MG can 
suppress the development of S. mutans biofilm on polystyrene 
and glass surfaces as well as inhibit acidogenicity. In the 

scientific report of Kang et al (16), colorimetric assay was 

applied for testing the effect of MG on S. mutans adherence. 

Colorimetric assay is considered a well-established method for 

quantification of the biofilm biomass (17,18). It could be used 

as a pre‑test for checking potential existence of the biofilm. 
Quantitative assessment of the developed biofilm should be 
further performed applying an optical profilometry assay, by 
testing the effect on both surface roughness and thickness 

parameters of the biofilm. To our best of knowledge, this is the 
first article reporting the effect of sumac methanolic extract 
and its constituent MG (bioactive phytochemical that was 

isolated from the crude extract and quantitated by HPLC) on 

biofilm formation by using an optical profilometry assay.

Materials and methods

Materials. Rhus coriaria L. was purchased from Al Alim 

Ltd. (Medicinal Herb Center, Zippori, Israel), and the fruits 

were ground to yield a reddish-purple powder. MG (analytical 

standard) was purchased from Sigma-Aldrich; Merck KGaA 

(Darmstadt, Germany).

Plant extraction. The air-dried, powdered fruit of sumac plant 

(25 g) was packed in an Erlenmeyer flask and extracted with 
250 ml methanol (MeOH), sonicated for 2 h at 45˚C, then left 
in a dark glass bottle at room temperature for 24 h for complete 

extraction. The methanolic extract was filtered and evaporated 
to dryness with a rotary vacuum evaporator.

Instruments. A Waters Alliance e2695 separations module, 

2998 photo diode array (PDA) and Empower version 3 soft-

ware was used (Waters, Eschborn, Germany). The preparative 

HPLC system consisted of a 3535-quaternary gradient module 

and a 996 PDA detector.
1H-NMR and 13C-NMR measurements of isolated MG 

from sumac was carried out on a Bruker Avance II 500 spec-

trometer, which was equipped with a 5 mm indirect detection 

probe with Z gradient.

The UHPLC system (Accela; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) was equipped with an XBridge 

ODS-column (150x2.1 mm i.d.), 3.5-µm particle size 

(Waters, Milford, MA, USA) and a mobile phase containing 

0.1% formic acid (FA) as (eluent A) and MeOH containing 

0.1% FA as (eluent B). Linear gradient elution was used 

starting with 95% A and continuously increased to 100% B 

in 20 min. The UHPLC system was coupled to LTQ Orbitrap 

XL system (Thermo Fisher Scientific, Inc.) equipped with an 
electrospray ionization (ESI) source. The positive ionization 

mode was used at a scan range of m/z 100-1000.

Chromatographic conditions. MG quantitation was run on 

a Waters HPLC ODS Column (XBridge, 4.6 ID x150 mm, 

5 µm) with a guard column (Xbridge ODS, 20x4.6 mm ID, 

5 µm). The mobile phase consisted of water (labeled A) and 

acetonitrile (labeled B) solvent mixture. The gradient was as 

follows: 95% A and 5% B at 0 min, held there for 2 min, then 

raised to 50% A and 50% B over 13 min, then to 10% A and 

90% B over 1 min, held there for 3 min, and finally returned 
to 95% A, 5% B over 1 min. All of the samples were filtered 
with a 0.45 µm micro‑porous filter. The PDA wavelengths 
ranged from 210 to 500 nm, and the monitoring wavelength 

of MG was 272 nm. The flow rate was 1 ml/min. The injection 

volume was 10 µl, and the column temperature was at room 

temperature.

The UHPLC was equipped with an XBridge ODS-column 

(150x2.1 mm i.d.), 3.5 µm particle size (Waters) and a mobile 

phase containing 0.1% formic acid (FA) as (eluent A) and 

MeOH containing 0.1% FA as (eluent B). Linear gradient 

elution was used starting with 95% A and continuously 

increased to 100% B in 20 min.

The prep-HPLC experiments were run on an ODS column 

(Agilent PrepHT C18, 22.2x250 mm, 10 µm). The linear 

gradient started at 98% A, where it stayed for 3 min; it was 

then raised to 5% A over 15 min, where it remained for another 

4 min and was then returned to 98% A over 2 min. The flow 
rate used was 15 ml/min, the injection volume was 1,000 µl.

Methyl gallate standards preparation. Five different concen-

tration levels of standards for MG were prepared: 10, 50, 100, 

250 and 500 ppm in methanol diluents. These standards were 

used to construct a calibration curve to quantitate MG in 

sumac.

Sumac sample preparation for the preparative HPLC 

injections. Crude sumac was prepared by dissolving ~3,000 mg 

in 15 ml of methanol, sonicated for 3 min and then filtered via 
a 0.45 µm membrane filter before injection. The concentration 
of the final red solution was 200 mg/ml. This solution (1 ml) 

was injected into the preparative HPLC Chromatograph and 

six fractions were collected.

Bacterial strain and culture conditions. Streptococcus 

mutans UA159 (700610; American Type Culture Collection, 

Manassas, VA, USA) was selected for this study because 

it preferably colonizes humans. Stocks of this strain were 

maintained in 10% skimmed milk (Difco; BD BioSciences, 

Franklin Lakes, NJ, USA) at ‑70˚C until use. Prior to experi-
ments, S. mutans was cultured in Bacto™ Todd Hewitt broth 

(THB; BD BioSciences) under anaerobic conditions (95% N2 

and 5% CO2) at 37˚C for 18 h. Purity of the culture was 
checked on Mitis Salivarius agar (Difco; BD BioSciences) 
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and Columbia agar with 7% sheep blood (E&O Laboratories, 

Bonnybridge, Scotland).

Biofilm formation and treatments. To evaluate the effect 

of treatments, S. mutans biofilm formation was performed 
on polystyrene and glass surfaces in separate experiments. 

Prior to each experiment, the optical density (OD) of the 

bacterial culture was adjusted to 0.2 at 630 nm, using a 

microplate‑reader spectrophotometer. For biofilm formation 
on the polysterene surface, 24‑well, flat‑bottomed, polysty-

rene cell culture plates (Sarstedt, Nümbrecht, Germany) were 

filled with THB containing 1% sucrose, and then solutions of 
methanolic sumac extract (MSE), prepared in sterile distilled 

water (Milli-Q water), were added to appropriate wells in the 

plates at final concentrations of 4, 5 and 6 mg/ml. Solutions 

of MG, also prepared in Milli-Q water, were added to appro-

priate wells in the plates at final concentrations of 0.55, 0.7, 

0.85 and 1 mg/ml. Afterwards, S. mutans bacteria was added 

to the wells at a final dilution of 1:100, and all of the plates 
were incubated anaerobically at 37˚C for 24 h. Quantification 
of the formed biofilm (biomass) was performed using a 

colorimetric assay. The same experimental procedures were 

used for biofilm formation on the glass surface, except that 
sterile glass slides of 1-mm thickness, cut from standard 

microscope slides (76x26 mm; Thermo Fisher Scientific, 

Inc.), were inserted vertically into wells containing only MG 

at the above indicated concentrations prior to inoculation of 

bacteria. Quantitative assessment of the developed biofilm 
was further performed applying an optical profilometry assay. 
In these experiments, plate wells without bacterial cells were 

used as blank controls, and the untreated bacteria served as 

experimental controls.

Colorimetric assay. After 24 h of incubation, THB was 

discarded from plates, wells were rinsed with distilled water 

to remove loosely bound bacterial cells, and then adherent 

bacteria were fixed with 95% ethanol. For quantification of 
biofilm biomass, the fixed and air‑dried S. mutans biofilm in 
plate wells was stained with 1 ml/well of 0.01% crystal violet 

solution (Merck KGaA) for 15 min, and then the bound dye 

was extracted using 1 ml/well of 33% acetic acid solution 

(Merck KGaA) for 30 min. Afterwards, 200 µl extracted dye 

solution from each well was transferred to appropriate wells in 

an optically clear, flat‑bottomed 96‑well microplate. The OD 
of the samples was measured at a wavelength of 595 nm with 

a microplate-reader spectrophotometer. Background staining 

was corrected for by subtracting amount of the staining in 

blank wells.

Optical profilometry assay. Following 24 h of incubation, glass 

slides with adherent S. mutans biofilm were removed from 
plate wells, air-dried and further analyzed using a non-contact 

optical imaging profilometer Sensofar PLµ 2300 system 

(Terrassa, Spain), using a x50 confocal objective with a view 

field of 253x190 µm. Primarily, six regions of the glass slide 
were scanned seeking to evaluate surface roughness per slide 

Figure 1. Streptococcus mutans biofilm biomass formed on the polystyrene 
surface after 24 h of incubation in THB containing 1% sucrose and different 

concentrations of MSE. Data are presented as the mean ± standard error from 

three independent experiments (n=4-11). *P<0.05 vs. control group. MSE, 

methanolic sumac extract.

Figure 2. A typical preparative high performance liquid chromatography 

chromatogram of a crude methanol mixture of sumac-1,000 µl was injected 

at a flow rate of 15 ml/min. The monitoring wavelength was 272 nm. 

The intervals of the fractions were as follows: I (1-8 min), II (8-9.1 min), 

III (9.1-9.9 min), IV (9.9-12.6 min), V (12.6-16 min), and VI (16-22 min). 

Fraction III is methyl gallate.

Figure 3. Overlay of ultraviolet-visible spectra of the eluted peaks of the 

crude methanolic extract of sumac in the range of 210-500 nm.
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halfway from bottom to top of visible biofilm. Afterwards, a 
vertical scratch was artificially made down the glass surface 
by a scalpel in the middle of every slide covered with biofilm, 
and then five regions of the glass slide were scanned to assess 
the biofilm thickness per slide halfway from the bottom to the 
top of the visible biofilm. The bottom of the scratch served 
as a reference point for accurate measurement of the biofilm 
thickness. All images were captured in a vertical scanning 

mode, and data of the collected images were further processed 

using Gwyddion software (version 2.40; http://gwyddion.

net) to calculate the surface roughness and biofilm thickness 
parameters. A median filter (10 pixels or 3 µm) was selected 
to remove the errors of form and waviness. Root mean square 

roughness (Rq), as the most critical parameter, was calculated 

to evaluate quantitatively the slide surface roughness, which 

indicated adherence of bacteria. The Rq parameter is an 

average of the measured height deviations taken within the 

evaluation length and measured from the mean line. Indeed, 

Rq represents standard deviation of the surface profile heights, 
and it is calculated according to ISO 4287/1-1997 standard by 

the following formula:

Where N is the number of points within a sampling length, 

and rj is the height value at point j. To measure the biofilm 
thickness, which indicated the maturity of biofilm, the height 
of the artificially produced vertical scratch on each slide with 
adherent bacteria was used. Calculation of the biofilm thick-

ness involved generation of the height distribution graph curve 

from the entire area of the scanned region containing the 

scratch, followed by Gaussian function fitting as defined here:

f(x)=y0+a exp[-(x-x0)
2/b2]

Where y0 is the peak height, a is the amplitude (height) 

distribution, x0 is the peak position, and b is the standard devia-

tion. Background for the parameters of surface roughness and 

biofilm thickness was corrected for by subtracting the Rq and 

thickness values of a blank glass slide.

Biofilm acidogenicity. S. mutans biofilm formation and treat-
ments were performed using the same procedures as described 

above. After 24 h of incubation, the biofilm growth medium 
(THB) was collected from the wells of all plates and transferred 

to 1.5 ml microcentrifuge tubes. The pH of S. mutans biofilm 
growth medium collected in 1.5 ml microcentrifuge tubes was 

measured with a microelectrode connected to a benchtop pH 

meter (Knick 766 Calimatic) at room temperature. The micro-

electrode was calibrated using standard pH buffers (pH 4.01 

and 7.00) prior to and following each measurement.

Statistical analysis. Data were analyzed using SPSS 

version 23.0 (IBM Corp., Armonk, NY, USA). Differences 

between the control (untreated) and treatment groups were 

evaluated applying one-way analysis of variance followed by a 

post hoc least significant difference test for multiple compari-
sons. Data are presented as the mean ± standard error. P<0.05 

was considered to indicate a statistically significant difference.

Results

Effect of the MSE on S. mutans biofilm formation on polysty-

rene surface. The primary assessment of crude MSE efficiency 
for the inhibition of S. mutans biofilm formation showed its 

Figure 5. Numbered carbon atoms in methyl gallate for nuclear magnetic 

resonance spectroscopy analysis.

Figure 4. Chromatogram of the reinjected fraction III on analytical high performance liquid chromatography, which contained relatively pure methyl gallate 

at 7.88 min, with its corresponding ultraviolet‑visible spectrum (210‑500 nm), presented in the right corner of the figure.
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capacity to reduce significantly the biofilm biomass on the 
polystyrene surface in a dose-dependent manner (Fig. 1). The 

greatest inhibitory effect of crude extract was achieved using a 

concentration of 6 mg/ml, which decreased S. mutans biofilm 
formation by 77%, compared to the formation of untreated 

bacteria (P<0.05) cultured in THB with 1% sucrose.

Analysis of methanol extract of sumac and isolation of the 

bioactive phytochemical. Sumac is very rich in phenolic and 

anthocyanin compounds. These classes of compounds are 

known to exhibit a range of biological activities. In the attempt 

to isolate the active ingredients from sumac, several analytical 

HPLC runs were performed using different mobile phases. 

Upon scaling up using preparative HPLC, separations were 

carried out by collecting six fractions, which were subjected 

to antibacterial assays. A typical preparative HPLC chromato-

gram of the crude methanol mixture and its corresponding 

overlaid UV-Vis spectra, in the range of 210-500 nm, are 

presented in Figs. 2 and 3, respectively.

The ultraviolet-visible spectra demonstrated many pheno-

lics that possess typical absorption maximums between 

268.8 and 277.1 nm. There was also a very strong absorp-

tion maximum at 519.5 nm, which is a typical anthocyanin 

compound that is responsible for the red pigment in sumac 

(Fig. 3).

Fraction III (Fig. 2) contains pure compound, which, upon 

reinjection using analytical HPLC-PDA, reached a peak at 

7.88 min with a maximum wavelength of 272 nm (Fig. 4).

Accurate high-resolution mass spectroscopy (HR-MS) and 
1H-NMR and 13C-NMR disclosed the identity of the peak at 

7.88 min to be MG (Fig. 5). The HR-QTOF-MS using the ESI 

in the positive mode gave a protonated molecular ion of [M+H]+ 

at m/z 185.0452 Da (calculated for C8H9O5
+, m/z 185.0450 Da). 

1H-NMR (CD3OD) gave peaks at δ: 3.8 (3H s, -OCH3), 7.05 

(2H s, H-2/ H-6). 13C-NMR (CD3OD) gave peaks at δ: 52 

(C-8), 109 (C-2/C-6), 120.5 (C-1), 139 (C-4), 145.3 (C-3/C-5), 

168 (C-7).

Analytical HPLC was used to construct a calibration curve 

of MG at 5 levels (10, 25, 50, 100, 250 and 500 ppm) with a 

coefficient of determination (R2) of >0.999. The concentration 

of MG in the methanol extract was identified to be 4.85 ppm. 
Many other peaks that have a more lipophilic character were 

eluted between 18 and 22 mins (Fig. 6).

Effect of MG on S. mutans biofilm formation on polystyrene and 
glass surfaces. In an effort to evaluate anti‑biofilm activity, the 
isolated MG (fraction III) was further tested on S. mutans strain 

UA159 because of its well‑defined features to form biofilms 
on various solid surfaces (19,20). As presented in Fig. 7, all 

of the concentrations of MG significantly reduced S. mutans 

biofilm biomass on the polystyrene surface, compared with 
untreated bacteria (P<0.05) in THB containing 1% sucrose. 

The anti‑biofilm activity of MG occurred in a dose‑dependent 
manner, exhibiting its highest effect at concentrations of 0.7, 

0.85 and 1 mg/ml, with biofilm inhibition at 68, 89 and 93%, 
respectively. These results confirmed the findings reported 
by Kang et al (16), where the researchers demonstrated using 

beaker-wire tests that 1 mg/ml MG significantly reduced the 
wet weight of S. mutans (strain Ingbritt) biofilm biomass in 
comparison with untreated bacteria, after 24 h of incubation in 

medium containing 5% sucrose.

Figure 6. Chromatogram showing the methyl gallate peak in the methanol extract, with its corresponding ultraviolet-visible spectrum (210-500 nm).

Figure 7. Streptococcus mutans biofilm biomass formed on the polystyrene 
surface after 24 h of incubation in THB containing 1% sucrose and different 

concentrations of MG. Data are presented as the mean ± standard error from 

three independent experiments (n=10-11). *P<0.05 vs. control group. MG, 

methyl gallate.
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Figure 9. Quantities of Streptococcus mutans biofilm formed on the glass slide surface after 24 h of incubation in THB containing 1% sucrose and different 
concentrations of MG. (A) the surface roughness parameter Rq of the biofilm on glass slides and (B) the biofilm thickness. Data are presented as the mean ± stan-

dard error from three independent experiments (n=18, biofilm roughness; n=15, biofilm thickness). *P<0.05 vs. control group.

Figure 8. Optical profile of the glass slides with Streptococcus mutans culture biofilm after 24 h of incubation in the presence of different concentrations of 
MG. Glass slide surface of bacteria incubated (A) without MG, in the absence of sucrose, (B) without MG, in the presence of 1% sucrose, and treated with 

(C) 0.55, (D) 0.70, (E) 0.85 and (F) 1.00 mg/ml MG. Magnification, x50. MG, methyl gallate.
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The optical profilometry technique, applied in analysis 

of the surfaces of glass slides with S. mutans biofilm, was 

used to confirm the results of the colorimetric assay. Firstly, 
compared with bacteria incubated without MG and sucrose 

(Fig. 8A), where the Rq and thickness parameters for the 

untreated bacteria grown without sucrose were 0.04±0.01 and 

0.02±0.01 µm, respectively, presence of 1% sucrose in THB 

induced adherence of the bacteria to glass slides and subse-

quent maturation of the biofilm (Fig. 8B). Secondly, in the THB 

with 1% sucrose, exposure of S. mutans to 0.55, 0.7, 0.85 and 

1 mg/ml MG (Figs. 8C-F, respectively) decreased formation 

of the biofilm on glass surface in a dose‑dependent manner. 
Quantification revealed that surface roughness parameter Rq 

of the biofilm (Fig. 9A) and biofilm thickness (Fig. 9B) were 

increased in control bacteria (Fig. 9); however, MG treatment 

inhibited this effect in a dose-dependent manner (P<0.05; 

Fig 9). In this respect, MG concentrations of 0.85 and 1 mg/ml 

exhibited the greatest effects for reducing the surface roughness 

parameter Rq of biofilm, by 94 and 99%, respectively (Fig. 9A). 

Furthermore, these concentrations of MG decreased S. mutans 

biofilm thickness by 97 and 99%, respectively (Fig. 9B).

Effect of MG on S. mutans biofilm acidogenicity. The pH 

measurements of the collected S. mutans biofilm growth 

medium demonstrated that bacteria grown in THB with 

1% sucrose produced organic acids from fermentation of 

this carbohydrate, leading to an ~1.8-fold decrease in pH, 

compared with the blank group (Tables I and II). This substan-

tial decrease of pH indicated increased acidogenicity in the  

S. mutans biofilm. However, exposure of the bacteria to 

crude MSE led to augmentation of pH in a dose-dependent 

manner, though not up to the pH levels of the blank group 

(Table I). In contrast, treatment of S. mutans bacteria with 

the isolated MG significantly prevented a decrease in the 

pH level, compared with untreated bacteria grown in THB 

with 1% sucrose (P<0.05), by increasing the pH almost up to 

the pH levels of the blank group (Table II). This preventive 

effect of MG occurred in a dose-dependent manner, and MG 

concentrations from 0.7 to 1 mg/ml increased pH by 96-97%. 

Therefore, similarly to reduction of the biofilm biomass, crude 
MSE was unable to fully suppress the pH decrease in the 

S. mutans biofilm due to reduced concentration of the biologi-
cally active compound within it. However, the isolated MG 

was able to almost completely inhibit the acidogenicity of the 

S. mutans biofilm.

Discussion

The present study demonstrated that the dominant and most 

antibacterial active compound of Rhus coriaria L. is MG. 

Using an in vitro system with S. mutans bacteria, it was demon-

strated that MG inhibits growth of bacteria, suppresses the 

biofilm development on different solid surfaces (polystyrene, 
glass) and prevents the pH decrease in biofilm. Notably, these 
actions of MG occurred in a dose-dependent manner. It should 

be noted that Vahid-Dastjerdi et al (21) demonstrated the 

significant effect of Rhus coriaria L. water extract in reducing 

the expression of S. mutans gtfB, gtfC and gtfD genes. Another 

study performed by Thimothe et al (22) demonstrated that 

red wine grape phenolic extracts, containing high amounts of 

gallic acid, may inhibit the activity of GtfB and C enzymes at 

70-85% (22). Furthermore, in the same study, these phenolic 

extracts also suppressed S. mutans F-ATPase activity by 

30‑65%. In addition, the findings reported by Choi et al (23) 

indicated that MG isolated from Galla Rhois may attenuate the 

action of proton-driven ATPases in Salmonella spp. bacteria. 

Finally, it is noteworthy that, in the presence of sucrose,  

S. mutans adhesion to glass surface and subsequent formation 

of the biofilm is mainly dependent on the activity of Gtfs, 
especially those synthesizing water-insoluble glucans (24). 

Taking into consideration the results of the present study and 

the studies outlined herein, it may be reasonable to hypoth-

esize that the anti‑biofilm effect of MG occurred because of 
the downregulation of glucosyltransferases, and the decrease 

of acidogenicity was due to inhibition of F-ATPases in  

S. mutans bacteria. However, the exact mechanisms for these 

biological effects of MG require elucidation through further 

studies.

In conclusion, the present study demonstrated that  

Rhus coriaria L. (sumac) contains the biologically active 

antibacterial natural compound MG. Additionally, MG was 

revealed to inhibit S. mutans biofilm formation on polystyrene 
and glass surfaces, and suppress the acidogenicity of the  

S. mutans biofilm. Taken together, these findings are important 
for the development of novel pharmaceuticals and formula-

tions of natural products and extracts that possess anti‑biofilm 

Table II. pH levels of the Streptococcus mutans biofilm growth 
medium after 24 h of incubation in the presence of 1% sucrose 

and different concentrations of methyl gallate.

Experimental group  pH

Blank 7.47±0.02a

Control 4.28±0.02

MG (0.55 mg/ml) 6.14±0.17a

MG (0.7 mg/ml) 7.17±0.03a

MG (0.85 mg/ml) 7.27±0.01a

MG (1 mg/ml) 7.28±0.02a

Data are presented as the mean ± standard error from four indepen-± standard error from four indepen- from four indepen-

dent experiments (n=10-11). aP<0.05 vs. control group.

Table I. pH levels of the Streptococcus mutans biofilm growth 
medium after 24 h of incubation in the presence of 1% sucrose 

and different concentrations of methanolic sumac extract.

Experimental group pH

Blank 7.20±0.04a

Control 4.07±0.03

MSE (4 mg/ml) 4.77±0.09a

MSE (5 mg/ml) 5.21±0.11a

MSE (6 mg/ml) 5.30±0.07a

Data are presented as the mean ± standard error from three independent 

experiments (n=4-11). aP<0.05 vs. control group.
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activities with primary applications for oral health, and in 

a broader context, for the treatment of various bacterial 

infections.
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