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Inhibitory leukocyte immunoglobulin-like receptors (LILRB1-5) signal through immunoreceptor tyrosine-based inhibitory mo-
tifs (ITIMs) in their intracellular domains and recruit phosphatases protein tyrosine phosphatase, non-receptor type 6 (PTPN6, 
SHP-1), protein tyrosine phosphatase, non-receptor type 6 (PTPN6, SHP-2), or Src homology 2 domain containing inositol 
phosphatase (SHIP) to negatively regulate immune cell activation. These receptors are known to play important regulatory 
roles in immune and neuronal functions. Recent studies demonstrated that several of these receptors are expressed by cancer 
cells. Importantly, they may directly regulate development, drug resistance, and relapse of cancer, and the activity of cancer 
stem cells. Although counterintuitive, these findings are consistent with the generally immune-suppressive and thus tu-
mor-promoting roles of the inhibitory receptors in the immune system. This review focuses on the ligands, expression pattern, 
signaling, and function of LILRB family in the context of cancer development. Because inhibition of the signaling of certain 
LILRBs directly blocks cancer growth and stimulates immunity that may suppress tumorigenesis, but does not disturb normal 
development, LILRB signaling pathways may represent ideal targets for treating hematological malignancies and perhaps other 
tumors. 

immunoreceptor tyrosine-based inhibitory motifs, immunoreceptor tyrosine-based activation motif, leukocyte immu-
noglobulin-like receptor subfamily B, immunoglobulin-like transcript, leukocyte immunoglobulin-like receptor, phos-
phatase, ITIM, ITAM, LILRB, CD85, ILT, LIR, SHP-1, SHP-2, SHIP, MHC, HLA, signal transduction, leukemia, 
cancer 

 

Citation:  Zhang FF, Zheng JK, Kang XL, Deng M, Lu ZG, Kim J, Zhang CC. Inhibitory leukocyte immunoglobulin-like receptors in cancer development. Sci 
China Life Sci, 2015, 58: 1216–1225, doi: 10.1007/s11427-015-4925-1 

 

 
 

1  Introduction to ITIM-containing receptors 
and LILRBs 

First described in 1995, the immunoreceptor tyrosine-based 

inhibitory motifs (ITIMs) are conserved 6 amino acid 
stretches (S/I/V/LxYxxI/V/L) found in the cytoplasmic tails 
of certain surface transmembrane receptors [1]. Ligand 
binding or interplay with other signaling receptors leads to a 
conformational change that is accompanied by the phos-
phorylation of tyrosines in the ITIM by Src kinases. This 
leads to the recruitment of SH2 domain-containing phos-
phatases. With the exception of IgG Fc receptor II-B 
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(FcRIIB), which is the ITIM-containing receptor that only 
recruits the inositol-phosphatase SHIP, these receptors all 
bind tyrosine phosphatases SHP-1 or SHP-2 [2–4]. An iso-
leucine at the first position of the ITIM (IxYxxL/V) favors 
binding to SHP-1, whereas a leucine in the same position 
(LxYxxL/V) favors SHIP binding [5]. These phosphatases 
are known to negatively regulate immune cell activation. 
For example, SHP-1 dephosphorylates the activated immu-
noreceptor tyrosine-based activation motif (ITAM), Src 
proto-oncogene non-receptor tyrosine kinase (Src), spleen 
tyrosine kinase (Syk), zeta-chain associated protein kinase 
70 kD (ZAP70), Lck/Yes-related novel protein tyrosine 
kinase (Lyn), phosphatidylinositol-4-phosphate 3-kinase 
(PI3K), phospholipase C gamma (PLC-), or Vav 1 guanine 
nucleotide exchange factor (Vav1) [6–9]. The consequences 
of signaling through ITIMs are not well defined. ITIMs may 
inhibit signaling from immune activating receptors, cyto-
kine receptors, and tyrosine kinase receptors. A proteo-
me-wide analysis performed a decade ago identified 109 
human ITIM-containing receptors [10]. 

ITIMs have antagonistic functions relative to immunore-
ceptor tyrosine-based activation motifs (ITAMs). ITAM is a 
conserved amino acid sequence of YxxL/Ix(6-8)YxxL/I in 
the cytoplasmic tails of membrane proteins. ITIM transmits 
signals from various membrane receptors including T cell 
receptors, B cell receptors, activating leukocyte Ig-like  
receptors (LILRs), certain activating natural killer (NK)  
cell receptors and Fc receptors, and other activating recep-
tors [11]. Like to ITIM-containing receptors, ligand en-
gagement at a relevant receptor results in the activation of 
Src kinases, leading to the phosphorylation of tyrosines 
within the ITAM. Subsequent recruitment and activation of 
Syk or ZAP-70 tyrosine kinases in myeloid cells and lym-
phoid cells, respectively, initiate further downstream sig-
naling events, usually resulting in immune activation [11].  

The leukocyte Ig-like receptor subfamily B (LILRB) is 
an important group of ITIM-containing receptors that were 
cloned in 1997 [12–15] (see schematic in Figure 1). These 
receptors, also known as cluster of differentiation 85 
(CD85), Ig-like transcripts (ILTs), or leukocyte Ig-like re-
ceptors (LIRs), are type I transmembrane glycoproteins 
containing extracellular ligand-binding Ig-like domains and 
intracellular ITIMs, and are thus classified as immune inhib-
itory receptors. The name LILRB was officially designated in 
2001 to classify a group of inhibitory receptors, whereas 
LILRA refer to activating receptors [16]. It is known that 
LILRBs, including LILRB1, LILRB2, LILRB3, LILRB4, 
and LILRB5, are expressed on myeloid cells and certain other 
hematopoietic cells and can exert immunomodulatory effects 
on a wide range of immune cells [17]. It is noteworthy that 
LILRB1-5 are primate and human specific, with paired 
immunoglobulin-like receptor B (PirB) [18] and leukocyte 
immunoglobulin-like receptor, subfamily B, member 4 
(Lilrb4, gp49B1) [19] as the only two mouse orthologs. The 
human genes encoding these receptors are found in a gene  

 

Figure 1 (color online)  Schematic of the ligands, extracellular Ig-domains 
(hexagons), and intracellular ITIMs (boxes) of human LILRBs. 

cluster known as the leukocyte receptor complex at chro-
mosomal region 19q13.4 [12,20].  

LILRBs are encoded by rapidly evolving genes, and it is 
thus difficult to study their function in animal models, so 
the biological function and clinical significance of these 
receptors have remained poorly understood. Recently, we 
demonstrated that LILRB2 and a mouse ortholog PirB are 
not only expressed by immune cells but are also expressed 
by hematopoietic stem cells [21]. Moreover, several LIL-
RBs, PirB, and LAIR1 (a close related ITIM-containing 
receptor) [22–25] are expressed by primitive and differenti-
ated acute leukemia cells that support leukemia develop-
ment [21,26]. A number of reports also showed that LIL-
RBs are expressed in hematopoietic and solid cancer cells 
and in most cases exert tumor-promoting functions [27–41]. 
Ligands and signaling pathways mediated through LILRBs 
have also been identified [21,26,38,39,41–44]. Although 
counterintuitive, the direct tumor-supportive roles of LIL-
RBs are consistent with the generally immune-suppressive 
and thus tumor-promoting functions of the inhibitory   
receptors in the immune system [45]. The roles of LILRBs 
in immune and neuronal diseases have been recently re-
viewed [2,4,46,47]. Here we will focus on the ligands, ex-
pression pattern, signaling, and the immune-modulatory and 
direct tumor-supportive roles of LILRBs in cancer devel-
opment.  

2  Ligands for ITIM-containing receptors 

Different types of molecules were identified as ligands for 
ITIM-containing receptors. These include integrated mem-
brane proteins (e.g., major histocompatibility complex 
(MHC) class I for LILRB1-2 [48,49]), extracellular matrix 
proteins (e.g., collagens for LAIR1 [22]), and soluble pro-
teins (e.g., antibodies for FcRIIB).  

Not all the ligands for LILRBs were identified. LILRB1- 
2 binds classical and non-classical MHC molecules [48–50]. 
LILRB5 was shown to bind to MHC- or human leukocyte 
antigen (HLA)-Class I heavy chains [44]. LILRB1 and 2 
were also shown to bind to non-HLA ligands, including 
S100A8 and S100A9 for LILRB1 [51], and CD1d [52], 
several angiopoietin-like proteins (Angptls) [21,42], oligo-
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meric -amyloid [43], and myelin inhibitors reticulon 4 
(RTN4, Nogo66), myelin associated glycoprotein (MAG), 
and oligodendrocyte myelin glycoprotein (OMgp) for 
LILRB2 [53]. We recently demonstrated that multimeric 
Angptls bind and activate LILRB2 more effectively than 
does HLA-G [42]. The ligands for LILRB3 and 4 have not 
been identified. Although integrin v3 was shown to bind to 
mouse gp49B1, a possible ortholog of human LILRB4 [54], 
this dimeric integrin does not bind to human LILRB4. 

3  Relevance to cancer 

We performed an in silico analysis of the relationship be-
tween gene expression and the overall survival of acute my-
eloid leukemia (AML) patients using the TCGA database of 
AML patients (https://tcga-data.nci.nih.gov/tcga/). The ex-
pression of two out of 58 ITIM-containing receptors is posi-
tively correlated with the overall survival of AML patients; 
20 of these receptors have negative correlation between 
expression and patient survival [26]. Importantly, we found 
that silencing of certain receptors individually lead to re-
duced cell growth [26]. These results suggest that some 
ITIM-containing receptors directly support human leukemia 
cell growth.  

The in silico analysis further indicated that the levels of 
expression of several closely related LILRB family mem-
bers, LILRB 1, 2, 3, and 4, and the related LAIR1 are high-
er in monocytic AML (M5 subtype) cells and inversely 
correlate with the overall survival of AML patients [26]. 
LAIR1 is a type I transmembrane glycoprotein that shares 
the same domain organization as LILRBs, containing one 
extracellular Ig-like domain that binds collagens or surfac-
tant protein D and two intracellular ITIMs that recruit 
SHP-1 and SHP-2 [22–25]. LAIR1 is expressed on various 
lineages of hematopoietic cells and hematopoietic progeni-
tor CD34+ cells [55]. The silencing of expression of 
LILRB2, 3, 4 or LAIR1 individually in human AML cell 
lines inhibits cell growth in vitro [26]. LILRB4 and LAIR1 
are more highly expressed on primary human AML cells 
than on normal counterparts [26,56]. Importantly, the 
LAIR1+ cells are enriched for the activity of AML stem 
cells (AML SCs). Inhibition of expression of LAIR1 in hu-
man AML cell lines almost completely abolished leukemia 
development in xenografted NOD/SCID/IL2Rnull (NSG) 
mice [26]. In contrast, the studies of individual knockout 
mouse lines of PirB and gp49B1 (the only mouse orthologs) 
and of the LAIR1-knockout mouse revealed no overt defects 
in normal hematopoiesis [21,57,58]. 

With the exception of LILRB1, LILRBs are not ex-
pressed at significant levels by adaptive immune T and B 
cells, although several LILR mRNAs are detected in subset 
of B cells. This pattern of cell expression suggests that 
LILRBs may primarily be involved in the innate immune 

response. Also, the expression of LILRBs in tumor cells 
implies possible cancer-related functions. Below we sum-
mary the cancer related roles of individual LILRBs. 

3.1  LILRB1 (CD85J, ILT2, LIR1, MIR7) 

LILRB1 contains four extracellular immunoglobulin do-
mains, a transmembrane domain, and four cytoplasmic 
ITIMs. Among the LILRBs, LILRB1 has the most extensive 
cellular distribution. It is expressed on primary NK cells, B 
cells, various populations of T cells, monocytes/macro- 
phages, eosinophils and basophils, dendritic cells [4], de-
cidual macrophages [59], and osteoclasts [17]. LILRB1, 2, 3, 
and 4 are expressed on progenitor mast cells but not on ma-
ture mast cells [60]. LILRB1 binds various HLA class I 
molecules, including HLA-A, HLA-B, HLA-C, HLA-E, 
and HLA-G, with μmol L1 affinities [48,50]. It also binds 
the cytomegalovirus UL18 protein, which is a HLA class I 
homolog [13]. In addition, LILRB1 was reported to bind 
two calcium-binding proteins S100A8 and S100A9 [51]. 
Dimerized HLA-G induces more efficient LILRB1 signal-
ing than the monomeric form [61]. LILRB1-mediated sig-
naling is thought to control inflammatory responses and 
cytotoxicity to focus the immune response and limit autore-
activity, and LILRB1 functions as an inhibitor of immunity 
of T cells, B cells, NK cells, and macrophages. HLA-G is 
upregulated in human breast tumors, and LILRB1-     
expressing immune cells infiltrate breast cancer tissues, 
which may contribute to tumor development [62]. Soluble 
anti-LILRB1 stimulates, but crosslinked antibody inhibits, T 
cell proliferation [63]. Tumor-cell-expressed HLA-G inter-
acts with LILRB1 on V9V2 T cells to inhibit cytotoxicity 
of these T cells [64]. Cross-linking of LILRB1 inhibits an-
tigen-induced B cell activation and suppresses antibody 
production [65]. Interaction of HLA-G with LILRB1 on NK 
and macrophages inhibits cytotoxicity and inflammation 
toward trophoblasts, circumventing undesired anti-fetus 
immune responses during pregnancy [66,67]. In addition, 
LILRB1, like LILRB3 and 4, inhibits differentiation of os-
teoclasts [17]. 

LILRB1 is also expressed on certain AML cells [26], es-
pecially in M5 monocytic AML cells, neoplastic B cells 
(including B-cell leukemia, B-cell lymphoma, and multiple 
myeloma cells [27,28]), and T cell leukemia and lymphoma 
cells [29]. LILRB1 expression on primary cutaneous CD8+ 
and CD56+ T cell lymphomas may protect these tumor cells 
from apoptosis [29]. LILRB1 is also expressed in human 
gastric cancer cells and may enhance tumor growth [30].   
In contrast, soluble or nanoparticle-aggregated HLA-G 
binds LILRB1 on neoplastic B cells and inhibits their pro-
liferation [27]. Antibody blocking of LILRB1 on myeloma 
or lymphoblastic cells in culture did not change NK 
cell-mediated cell lysis [31]. Therefore the roles of LILRB1 
in different contexts will need further investigations. 
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3.2  LILRB2 (CD85D, ILT4, LIR2, MIR10) 

LILRB2 contains four extracellular immunoglobulin do-
mains, a transmembrane domain, and three cytoplasmic 
ITIMs. The receptor is expressed on monocytes, macro-
phages, dendritic cells, hematopoietic stem cells, and    
the basophils of some individuals but not on lymphoid  
cells [21,49,68]. LILRB2 was also reported to be expressed 
by endothelial cells [69], decidual macrophages [59], and 
osteoclasts [17]. Progenitor mast cells express this receptor 
whereas mature mast cells do not [60]. LILRB2 binds    
to multiple types of ligands, including HLA class I mole-
cules [49], CD1d [52], myelin inhibitors (including Nogo66, 
MAG, and OMgp [53]), Angptls [21,42], and -amyloid [43]. 
In vitro cross-linking of LILRB2 with FcRI inhibits Fc 
receptor (FcR)-mediated signaling in monocytes [68] and 
serotonin release in LILRB2-transfected basophilic leukemia 
cells [49]. Upregulation of LILRB2 induces dendritic cell 
tolerance [70]. LILRB2 suppresses axonal regeneration [53] 
and promotes Alzheimer’s disease [43]. We showed that 
LILRB2 is required for ex vivo expansion of hematopoietic 
stem cells (HSCs) [21]. PirB, the mouse ortholog of human 
LILRB2 and LILRB3, suppresses myeloid-derived sup-
pressor cell differentiation into M1 macrophages that inhibit 
regulatory T cell activities and tumor development [45]. 
PirB expression increases upon myeloid and B cell differen-
tiation [71]. 

LILRB2 is expressed on various cancerous cells.   
AML cells, especially monocytic AML cells express 
LILRB2 [26]. The mouse ortholog PirB is also expressed on 
MLL-AF9 AML cells, including AML SCs [21]. LILRB2 
expression is induced by some chronic lymphoblastic leu-
kemia (CLL) cells [32]. LILRB2 expression is not limited to 
hematologic malignancies. LILRB2 is expressed in breast 
cancer cell lines and in 60.7% of primary ductal and lobular 
breast cancer tissues but is absent from normal breast tis-
sues [33]. The receptor is also expressed on human 
non-small cell lung cancer cells [34,39–41] and supports the 
their survival and cancer development [39].  

3.3  LILRB3 (CD85A, ILT5, LIR3, HL9) 

LILRB3 contains four extracellular immunoglobulin do-
mains, a transmembrane domain, and four cytoplasmic 
ITIMs. LILRB3 is constitutively expressed on monocytes, 
monocyte-derived osteoclasts, neutrophils, eosinophils, ba-
sophils, and osteoclasts [17]. LILRB3 is expressed on pro-
genitor mast cells but not on mature mast cells [60]. 
Co-ligation of LILRB3 with FcRI in vitro inhibits Fc re-
ceptor-mediated cell activities in human basophils [72]. 
LILRB3 inhibits differentiation of osteoclasts [17]. 

LILRB3 is expressed by certain myeloid leukemia, B 
lymphoid leukemia, and myeloma cells, and is co-expressed 
with leukemia stem cell marker CD34 or myeloma marker 
CD138 [35]. We showed that inhibition of LILRB3 expres-

sion in certain human leukemia cell lines inhibited growth 
of these cells [26]. An anti-LILRB3 antibody induces cyto-
toxicity of LILRB3-expressing cells via complement- 
dependent cytotoxicity and antibody-dependent cellular 
cytotoxicity [35]. 

3.4  LILRB4 (CD85K, ILT3, LIR5, HM18) 

LILRB4 contains two extracellular immunoglobulin domains, 
a transmembrane domain, and three ITIMs. It is the only 
LILRB that contains two Ig domains. The receptor is expressed 
on dendritic cells, monocytes and macrophages [15,73],  
progenitor mast cells [60], endothelial cells [74], and osteo-
clasts [17]. LILRB4 is expressed on progenitor mast cells 
but not on mature mast cells [60]. Like other inhibitory 
LILRB proteins, the intracellular ITIMs of LILRB4 recruit 
SHP-1, which transduces a negative signal that inhibits 
stimulation of an immune response. LILRB4 was shown to 
inhibit cell activation of monocytes and macrophages [15]. 
Up-regulation of LILRB4 and LILRB2 expression in toler-
ogenic antigen presenting cells, cells that may regulate the 
functions of suppressor and regulatory T cells, leads to im-
mune tolerance [70,75]. Both membrane-bound and soluble 
LILRB4 induce anergy of T helper cells and differentiation 
of CD8+ T suppressor cells, contributing to rejection of al-
logeneic tumor transplants [36,76]. LILRB4 inhibits differ-
entiation of osteoclasts [17]. LILRB4 is one of the most 
polymorphic receptors with at least 15 identified single nu-
cleotide polymorphisms (SNPs) [77]. 

LILRB4 has been shown to play important roles in  
cancer development, transplantation, and autoimmune  
diseases [73]. LILRB4 expression marks monocytic AML 
cells, and it is co-expressed with stem cell marker c-Kit or 
CD34 in 50% and 39% of cases, respectively [56]. We 
showed that inhibition of LILRB4 expression in human 
leukemia cell lines inhibited growth of these cells [26]. 
LILRB4 is also expressed on CLL B cells but not normal B 
cells and may have prognostic value in CLL [32]. LILRB4 
is expressed in human gastric cancer cells and may enhance 
tumor growth by inhibiting NK cell activity [30]. Soluble 
LILRB4 is present in more than 40% of serum samples 
from patients with colorectal carcinoma, pancreatic carci-
noma, and melanoma, and inhibits T-cell responses in  
vitro [36,37]. The supportive role of LILRB4 in develop-
ment and/or progression of these cancers was verified by 
treatment of anti-LILRB4 or by depletion of LILRB4 [36].  

3.5  LILRB5 (CD85C, LIR8) 

LILRB5 is expressed in subpopulations of monocytes, NK 
cells, and mast cell granules [12,60]. It was suggested to 
play a role in clearance of creatine kinase via the mononu-
clear phagocytic system in the liver [78]. LILRB5 is unique 
among LILRBs in that it is the only LILRB that is not 
highly expressed by M5 AML cells and in that its expres-
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sion does not correlate with the overall survival of AML 
patients based on our analysis of TCGA database of AML 
patients (https://tcga-data.nci.nih.gov/tcga/). 

3.6  Mechanisms that underlie the roles of LILRB sig-
naling in cancer cells 

The signaling mediated by LILRBs starts by the activation 
of ITIMs via the phosphorylation of tyrosines in these mo-
tifs by Src kinases, leading to the recruitment of SH2 do-
main-containing phosphatases or the inositol-phosphatase 
SHIP [2–4]. The interaction between phospho-tyrosine in 
ITIMs and phosphatases are exemplified by an analysis of 
the mouse PirB [79,80]. The known substrates of 
ITIM-recruited phosphatases include ITAMs, Src, Syk, 
ZAP70, Lyn, PI3K, PLC-, and Vav1 [6–9]. However, it is 
likely that LILRBs have additional substrates, and the 
downstream signaling molecules have not been well char-
acterized. It is also likely that ITIM receptors have diverse 
signaling branches instead of a linear signaling cascade like 
that of the janus kinase and signal transducer and activator 
of transcription (JAK/STAT) pathway. In addition, the 
LILRBs and different ligands presumably induce distinct 
signaling networks in a manner that is cell context depend-
ent.  

We studied the downstream signaling of PirB, LILRB2, 
and LAIR1 as representative ITIM-containing receptors in 
retrovirus transplantation acute leukemia models and in the 
lung cancer implantation model.  

3.7  Signaling downstream of LILRB2 and PirB in 
cancer cells 

We have studied the role of the LILRB2 mouse homolog 
PirB in MLL-AF9 AML cells and found that PirB is associ-
ated with SHP-1 and SHP-2. Defective PirB signaling re-
sults in decreased levels of phosphorylation of SHP-1 and 
SHP-2 in AML cells [21]. We also found that phosphoryla-
tion of CAMKIV can be induced by Angptl binding to 
LILRB2 in human cord blood CD34+ cells, and that 
p-CAMKIV levels are decreased in PirB-deficient AML 
cells [21]. These results suggest that LILRB2-mediated 
signaling is transmitted through SHP-1 and SHP-2 and is 
coupled with CAMKIV in AML cells. 

Several papers showed that both Angptl2 and LILRB2 
are highly expressed in non-small cell lung cancer (NSCLC) 
samples, and levels of these proteins are negatively corre-
lated with the patient prognosis [39–41]. In one case, it was 
shown that ILT4 drives B7-H3 expression via PI3K/ AKT/ 
mTOR signalling and ILT4/B7-H3 co-expression correlates 
with poor prognosis in non-small cell lung cancer [41]. In 
another case, inhibition of LILRB2 resulted in a drastic de-
crease in proliferation, colony formation, and migration of 
NSCLC cells, and Angptl2 binding to LILRB2 supports lung 
cancer development via the SHP2/CaMKI/ CREB axis [39]. 

These studies suggest that LILRB2 signaling represents a 
novel target for lung cancer treatment. 

3.8  Signaling downstream of LAIR1 in AML cells and 
B-ALL cells 

LAIR1 does not affect normal hematopoiesis but is essential 
for leukemia development [26,38,57]. LAIR1 is a type I 
transmembrane glycoprotein that shares the same domain 
organization as LILRBs, containing one extracellular Ig-like 
domain that binds collagens or surfactant protein D and two 
intracellular ITIMs that recruit SHP-1 and SHP-2 [22–25]. 
LAIR1 is known to be expressed on various lineages of 
hematopoietic cells and hematopoietic progenitor CD34+ 
cells [55]. Previous studies demonstrated that LAIR1 en-
gagement with antibodies induced apoptosis and prevented 
NF-B nuclear translocation of AML cell lines [81], and 
also blocked AKT and NF-B activation and thus cell divi-
sion of CLL cells [82]. We showed that LAIR1 is highly 
expressed on human AML and B cell ALL (B-ALL) cell 
lines, as well as on primary AML cells especially monocytic 
M5 AML cells [26]. Inhibition of LAIR1 expression de-
creases leukemia development in vitro and in xenograft ex-
periments [26,38]. In retrovirus transplantation models,  
including MLL-AF9 (AML) [83,84], AML1-ETO9a  
(AML) [85], BCR-ABL1 (B-ALL) [38], and N-Myc 
(B-ALL) [86], LAIR1 deficiency blocks leukemia devel-
opment in primary or serial transplantation [26,38], sug-
gesting that LAIR1 is critical for maintenance of the activity 
of AML stem cells [26].  

Importantly, we also found that SHP-1, but not SHP-2, 
mediates LAIR1 signaling in AML cells and prevents ex-
haustion of AML SCs in vitro and in vivo. Furthermore, we 
demonstrated that SHP-1 is a negative signaling molecule 
for normal myeloid differentiation but acts as a phospha-
tase-independent adaptor to recruit CAMKI for activation of 
the downstream transcription factor CREB in AML cells. 
The LAIR1/SHP-1/CAMKI axis may represent a target for 
treating AML [26].  

Müschen’s group [38] demonstrated that LAIR1, as well 
as other ITIM-containing receptors, supports development 
and relapse of Philadelphia chromosome-positive (Ph+) 
B-ALL. LAIR1 acts through SHP-1 and SHIP, which 
dephosphorylate Syk to support this particular type of 
B-ALL. Hyperactive Syk tyrosine kinase activity is required 
and sufficient to induce death of these B-ALL cells. This 
suggests that the basic mechanism of negative selection of 
B cells with over activation is functional in transformed 
B-ALL cells. Therefore, activating Syk and a negative 
B-cell selection strategy may overcome drug resistance in 
Ph+ B-ALL [38]. 

Together, these results suggest that ITIM-containing re-
ceptors support the development, drug resistance, relapse, or 
cancer stem cell activity of different types of cancer, even 
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though the downstream signaling differs. When SHP-1 acts 
as a mediator of the signaling, both the phosphatase-   
dependent and -independent mechanisms can be used by the 
cancer cells (Figure 2). 

4  Perspectives and future work 

Effective elimination of all cancer cells, including cancer 
stem cells, remains a major challenge in oncology. Our 
finding that LILRBs and related receptor LAIR1 directly 
support the survival and self-renewal of leukemia cells 
opened a new research front in cancer research, diagnosis, 
and treatment. Below we discuss several research questions 
of ITIM-containing receptors that should be addressed in 
the near future.  

4.1  Identification of ligands 

Cloning of unknown ligands for LILRBs is a key effort to 
elucidate how these receptors work. The ligands for 
LILRB3 and LILRB4 have not yet been identified. In addi-
tion, based on fact that LILRB2 and LAIR1 each bind to 
more than one ligand, it is possible that multiple ligands 
exist for certain ITIM-containing receptors. For example, 
the binding between LILRB1-2 and MHC-I occurs with low 
μmol L1 affinity, suggesting the possibility of the existence 
of additional high-affinity ligands, co-ligands, or binding 
proteins. To identify LILRB ligands, various methods can 
be applied including expression cloning, crosslinking fol-
lowed by co-immunoprecipitation and mass spectroscopy, 
protein array, and candidate screening. Recently developed  
 

 

Figure 2 (color online) ITIM-containing receptor downstream signaling in 
different leukemia cells. In LILRB-expressing AML cells, the ligand bind-
ing or interplays among different types of receptors activates LILRB as 
reflected by the phosphorylation of the tyrosines in ITIMs. SHP-1 is re-
cruited and acts as a phosphatase-independent scaffolding protein to form a 
complex with the kinase CAMKI. The activated CAMKI then induces 
phosphorylation of the transcription factor CREB that translocates into 
nucleus to regulate the self-renewal, survival, and differentiation of AML 
cells. By contrast, in BCR-ABL+ B-ALL cells, BCR-ABL induced phos-
phorylation of Syk is balanced by the ITIM-containing receptor mediated 
SHP-1 (or SHIP, not shown here) phospatase-dependent dephosphorylation. 
This avoids the hyperphosphorylation of Syk, thus preventing the negative 
selection of over-activated malignant B cells.  

cloning methods employing cell microarrays [87] and lig-
and-based receptor capture technologies [88] may accelerate 
the progress. 

4.2  Cell type-dependent signaling 

A key question is why some inhibitory receptors have sup-
portive effects on cancer development. The tumor-    
supportive role of SHP-1 in certain acute leukemia provides 
an explanation. A role for SHP-1 in AML development is 
supported by evidence from previous studies: human LAIR1 
is mainly associated with SHP-1 but not SHP-2 [89]; SHP-1 
suppresses differentiation in some leukemia cells [90], con-
cordant with the reported anti-differentiation activity of 
LAIR1 [91]; and SHP-1 inhibits apoptosis in freshly isolat-
ed leukemia cells [92]. While SHP-1 is capable of binding 
to Grb2 in a phosphatase-independent manner [93], the 
CAMKI recruitment of SHP-1 represents a different phos-
phatase-independent mechanism to sustain AML SC activity 
in AML. By contrast, SHP-1 utilizes a phosphatase-depend- 
ent mechanism to support Ph+ B-ALL [38]. 

Furthermore, it is known that SHP-1 is a negative regu-
lator of growth of normal hematopoietic progenitors and 
that overexpression of SHP-1 inhibits growth of cancer cell 
lines [94–98]. It was also suggested that LAIR1 signaling 
negatively regulates myeloid leukemia and CLL [81,82]. 
Therefore, it will be interesting to determine the cell speci-
ficity for ITIM-containing receptors and SHP-1 to exert the 
tumor-supportive and tumor-suppressive functions.  

The potentially overlapping but distinct roles of SHP-1. 
SHP-2, and SHIP that mediate ITIM-containing receptors’ 
signaling in different cells are largely unknown. It is gener-
ally agreed that SHP-2 plays a positive signaling role in the 
hematopoietic system, whereas SHP-1 is a negative regula-
tor of cell signaling. Therefore, the finding that SHP-1, but 
not SHP-2, mediates LAIR1 signaling to support AML de-
velopment is surprising and deserves attention. In addition, 
SHP-2 is also known to have tumor-specific functions, act-
ing as an oncogene or a tumor-suppressor in different types 
of cancers [99]. A similarly interesting observation is that, 
while SHP-1 appears to be solely responsible for LAIR1’s 
tumor-promoting function in AML cells [26], both SHP-1 
and SHIP are capable of supporting the development of Ph+ 
B-ALL [38]. Identification of the cell context for SHP-1, 
SHP-2, and SHIP’s signaling roles and their respective sub-
strates or interacting proteins in different cell types will be 
critical.  

Better understanding of the likely divergent downstream 
signaling of LILRBs in cancer is another area that deserves 
further investigations. For example, SHP-1 and CAMKI 
may have downstream effectors other than CREB in 
LAIR1-expressing AML cells. The identification of the full 
spectrum of LILRB downstream signaling in various cells is 
an important task.  
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4.3  Roles of LILRBs and additional ITIM-containing 
receptors in solid cancer 

The supportive role of LILRBs is unlikely to be limited to 
acute leukemia. While our in silico analyses indicate that 
expression of a number of ITIM inhibitory receptors nega-
tively correlates with AML patient survival, it is possible that 
some of these receptors may also play positive roles in de-
velopment of other types of cancer. Indeed, LILRB1, 2, and 4 
are expressed in solid cancer cells such as gastric cancer, 
breast cancer, and lung cancer cells [30,33,34,39–41]. Be-
cause there are numerous types of ITIM-containing recep-
tors, different receptors may have different expression pat-
terns in different types or subtypes of cancers. It will be 
interesting to determine the individual and combined effects 
of these receptors in the same cancer cells, and the extent to 
which LILRB signaling in acute leukemia cells can be gen-
eralized to other immune inhibitory receptors and other 
types of cancer.  

4.4  Therapeutic development 

The identification of LILRBs and their downstream signal-
ing as potential therapeutic targets may reshape our views 
regarding how cancer develops, how cancer cells differ 
from other cells, and how to treat this difficult disease. Our 
study suggests that some leukemia cells have unique sig-
naling pathways downstream of ITIM-containing receptors. 
These inhibitory receptors may enable the leukemia cells to 
survive conventional therapies, resulting in tumor relapse.  

Because inhibition of the signaling of certain LILRBs 
directly blocks cancer growth, and stimulates immunity that 
may suppress tumorigenesis but does not disturb normal 
development, these receptors may represent ideal targets for 
treating cancer. 

The blockade of inhibitory receptor signaling in combi-
nation with conventional therapies may prove to be an ef-
fective strategy for elimination of leukemia cells as well as 
other types of cancer cells. Inhibition of factors involved in 
the intracellular signaling will represent a more powerful 
means of blocking the effects of ITIM-containing receptors. 
In particular, the identification of the specific inhibitors of 
the phosphatase-dependent and -independent SHP-1 activity 
for cancer treatment may have significant benefits. Thera-
peutic modalities for LILRBs may also include recombinant 
soluble extracellular domains of these receptors and block-
ing antibodies against the receptors’ signaling. Moreover,  
it will be interesting to test whether chimeric antigen recep-
tors [100] engineered to target LILRBs and other ITIM- 
containing receptors are effective in treating certain types of 
cancer especially hematopoietic malignancies.  
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