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Inhibitory microcircuits for top-down plasticity
of sensory representations
Katharina Anna Wilmes1 & Claudia Clopath 1*

Rewards influence plasticity of early sensory representations, but the underlying changes in

circuitry are unclear. Recent experimental findings suggest that inhibitory circuits regulate

learning. In addition, inhibitory neurons are highly modulated by diverse long-range inputs,

including reward signals. We, therefore, hypothesise that inhibitory plasticity plays a major

role in adjusting stimulus representations. We investigate how top-down modulation by

rewards interacts with local plasticity to induce long-lasting changes in circuitry. Using a

computational model of layer 2/3 primary visual cortex, we demonstrate how interneuron

circuits can store information about rewarded stimuli to instruct long-term changes in

excitatory connectivity in the absence of further reward. In our model, stimulus-tuned

somatostatin-positive interneurons develop strong connections to parvalbumin-positive

interneurons during reward such that they selectively disinhibit the pyramidal layer hence-

forth. This triggers excitatory plasticity, leading to increased stimulus representation. We

make specific testable predictions and show that this two-stage model allows for translation

invariance of the learned representation.
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A
nimals learn better when it matters to them. For example,
they learn to discriminate sensory stimuli when they
receive a reward. As a result of learning, neural responses

to sensory stimuli are adjusted even in primary sensory areas,
such as primary visual cortex (V1, refs. 1–3). When mice con-
sistently receive a reward after seeing a grating of a given
orientation, the tuning preference of layer 2/3 neurons for this
rewarded orientation is increased1,3. It is thought that beha-
viourally relevant stimuli, such as rewards, trigger an internal top-
down signal available to these early sensory circuits. This could be
mediated by cholinergic inputs from the basal forebrain, for
example (see refs. 4,5). By top-down signal, we mean any long-
range input to the superficial layers that delivers behaviourally
relevant information to the local circuit.

Pyramidal cells in primary sensory cortices are embedded in a
canonical microcircuit motif with different types of inhibitory
interneurons. The main inhibitory types are the PVs, the SSTs
and the VIPs. Top-down inputs project to superficial layers6–11.
They target multiple cell types. For example, VIPs in the primary
auditory cortex are activated when a reward is present9. Inhibi-
tory synapses are plastic (see ref. 12 for a review) and perturbation
of interneurons impairs learning (4,13, see ref. 14 for a recent
review).

We hypothesised that the inhibitory circuitry in layer 2/3
mediates the top-down instructions (e.g. triggered by a reward) to
guide plastic changes in the circuit beyond the presence of
reward. We wanted to test whether interneurons can learn from a
top-down signal in a model of cortical circuitry. The inhibitory
connectivity structure could then instruct the excitatory cells in
the absence of top-down modulation. To test this, we built a
biologically constrained computational model of layer 2/3 pri-
mary visual cortex. We simulated a rewarded phase in which the
presentation of one stimulus is paired with a reward signal, which
excites VIPs. We then simulated a refinement phase, where the
sensory stimuli were presented without the reward. During the
first rewarded phase, connections between SSTs and PVs devel-
oped a specific connectivity structure. This structure triggered
disinhibition of the excitatory neurons even in the absence of
reward. Plasticity in the excitatory neurons, therefore, shaped the
microcircuit during the second refinement phase. It led to an
increased stimulus preference of the previously rewarded stimu-
lus. Our model offers testable predictions on the activity of dif-
ferent cell types during and after the reward presentation. We also
propose that this two-stage mechanism allows for learned
representations to generalise across different parts of the
visual space.

Results
Two-stage model of top-down guided microcircuit plasticity.
Neural responses to visual stimuli in V1 are not a simple function
of bottom-up sensory inputs. They are additionally modulated by
various inputs from other areas15,16 and by recurrent local exci-
tatory and inhibitory neurons (especially in layer 2/3, ref. 17). We
hypothesised that top-down inputs can induce changes in sensory
representations via changes in recurrent connections in two
stages.

(i) The rewarded phase. A specific stimulus (e.g. a vertical bar)
is paired with a reward-mediated top-down signal which excites
VIPs (triple arrow in Fig. 1a top). The VIPs inhibit the SSTs,
which we assume are stimulus-tuned18,19. At the same time, the
VIPs disinhibit the PVs, which we model as untuned11,18–20.
Activity-dependent plasticity then increases the connection
strengths between SSTs which are tuned to the rewarded stimulus
(here the vertical bar, vertSSTs) and PVs (Fig. 1b top). The
inhibitory motif now carries information about the reward. In

addition, this inhibitory structure disinhibits the excitatory
neurons (Fig. 1b bottom).

(ii) The refinement phase. In the second phase, the reward and
therefore also the top-down input is absent (Fig. 1b top). As the
inhibitory (SST-PV) motif disinhibits the PCs (Fig. 1b top), it
opens a window for plasticity at the excitatory synapses. This will
result in a refinement of the excitatory connectivity. Strong
recurrent connections from PCs coding for the vertical bar to
other excitatory neurons will develop. All PCs will, therefore,
have an increased response to the vertical bar stimulus.

In summary, we hypothesised that learning can happen in two
stages. To test this, we simulated a mechanistic model of the layer
2/3 microcircuit.

Reward signal triggers plasticity in the inhibitory circuit. We
simulated a spiking neural network model of the canonical
microcircuit of layer 2/3 mouse primary visual cortex21. Neurons
were modelled as integrate-and-fire neurons. Connection
probabilities and strengths were constrained by experimental
data20–24. VIPs inhibited the SSTs, which in turn inhibited all
other cell types. The PVs inhibited the PCs and themselves. The
PCs were recurrently connected and excited all interneuron types
(Fig. 1)21. PCs and SSTs were tuned to orientation18,19, but see
ref. 25. PVs were coupled via gap junctions26. Recurrent excitatory
connections and those from SSTs to PVs were plastic according to
the classical spike-timing-dependent plasticity (STDP) model.
Unless we explicitly state that all connections were plastic (as in
Supplementary Fig. 4), the other connections were fixed (see
Methods section for details).

Before we tested our hypothesis, we needed to bring our model
from random initial connectivity to a set of weights that
corresponds to adult V1 connectivity. We call that the
developmental phase. During this phase, we randomly presented
inputs to our network corresponding to oriented gratings.
Excitatory neurons that code for the same orientation were
coactive. Therefore, they formed strong clusters due to Hebbian
learning27,28 (Fig. 2f developmental phase, Fig. 2e middle). The
SST-to-PV weights did not form a specific structure during the
developmental phase (Fig. 2b developmental phase) consistent
with experimental literature29.

We then simulated a rewarded phase (grey background in
Fig. 2b and f). A reward signal excited the VIP population when
the vertical bar stimulus was present. This top-down signal was in
itself untuned. However, the temporal coincidence with the
vertical bar made it stimulus-specific. Connections from the
vertical-bar tuned SSTs to PVs increased (purple line in Fig. 2b,
rewarded phase). The resulting SST-to-PV structure (Fig. 2d)
carried information about the identity of the rewarded stimulus.
Hence, the PVs became less responsive to the rewarded stimulus
(vertical bar, Fig. 2c). Notably, no significant stimulus-specific
structure arose between excitatory connections (Fig. 2e and f).
Accordingly, the tuning of excitatory populations did not change.
Note that an excitatory structure could also co-develop with the
inhibitory structure (Supplementary Fig. 3), depending on the
disinhibition of PCs during the reward.

In summary, unspecific top-down signals can induce an
inhibitory connectivity structure without changing excitatory
connectivity.

Inhibitory structure guides plasticity in absence of reward. We
then tested whether the interneuron structure can guide plasticity
in the excitatory neurons in the absence of reward. After the
rewarded phase, the inhibitory structure effectively disinhibited
all PCs when a vertical bar was present (corresponding to the
previously rewarded stimulus). The vertically tuned PCs fired a
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few milliseconds before the other PCs because they received
additional feedforward inputs. STDP, therefore, led to a
strengthening of the connections from the vertically tuned PCs to
the other PCs (Fig. 3b purple line). Accordingly, connections in
the reverse direction were depressed (Fig. 3b green line; see
Supplementary Fig. 1 for spiking details). As a result of the
excitatory connectivity structure (Fig. 3c), all PC populations
showed an increased response to the vertical bar (Fig. 3d). Since
PCs are driving the PVs, PVs became tuned to the vertical bar
(Fig. 3h). Synergistically, SST-to-PV connections were strength-
ened even further (Fig. 3f).

Note, the excitatory structure was stable even if we artificially
deleted the inhibitory structure (Supplementary Fig. 8). Finally,
we also showed that precise spike timing was not necessary for
our two-stage model (see a rate-based implementation in
Supplementary Fig. 10).

In summary, the inhibitory network structure can induce
changes in sensory representation by guiding excitatory plasticity.

Experimentally testable predictions. Our model makes eight
precise experimentally testable predictions. (1) PCs become more
tuned to the rewarded stimulus (Fig. 3d). (2) PVs initially become
less tuned to the rewarded stimulus (Fig. 2c), but eventually
become more tuned to the rewarded stimulus when the excitatory
structure develops (Fig. 3h). (3) SSTs also slightly increase their
response to the rewarded stimulus (Supplementary Fig. 2) and (4)

VIPs do not change their tuning. (5) Both PC and (6) PV firing
rate responses to the rewarded stimulus increase relative to other
stimuli (Fig. 4a, b). (7) Excitatory and inhibitory currents increase
during the rewarded stimulus (Fig. 4d, Supplementary Fig. 10g).
(8) The E/I ratio increases in some cells during the rewarded
stimulus (Fig. 4e).

Furthermore, although technically hard to test experimentally,
we predict that blocking excitatory plasticity during the task will
not abolish learning, whereas blocking inhibitory plasticity will.
However, blocking excitatory plasticity after the task, i.e. during
the refinement phase, will abolish learning.

Translation invariance of learned representations. Most exci-
tatory neurons in layer 2/3 are simple cells30, which respond to
dedicated visual field locations. Changes in connectivity between
these cells will hence only affect the representation of a stimulus
at that visual field location. Therefore, we wondered whether and
how the increased representation of the rewarded stimulus could
generalise to visual field locations that were not rewarded. In
particular, we asked whether learning the inhibitory structure can
lead to enhanced stimulus representations that are invariant to
the visual field location. This so-called translation invariance is a
general property of the visual system. For example, how we
perceive an edge should be independent of where in the visual
field it occurs.

Rewarded phase:

Top-down signal triggers inhibitory plasticity

Refinement phase:

Inhibitory motif guides excitatory plasticity

A
c
ti
v
it
y

In
h
ib

it
io

n

A
c
ti
v
it
y

In
h
ib

it
io

n

A
c
ti
v
it
y

In
h
ib

it
io

n

a
VIP

SST SST SST

PV PV PV

PC

Stimulus

Excitatory

population

Inhibitory

population

Inhibitory

excitatory

Top-down

input

Associated with

rewarded phase

Associated with

refinement phase

Stimulus Stimulus

PC PC

VIP VIP

b c

Fig. 1 The two-stage model of top-down guided plasticity. a Before the rewarded phase. We assume the SSTs and PCs to be stimulus-tuned and PVs to be

untuned. During the rewarded phase, the top-down signal activates VIPs when the rewarded stimulus is present (vertical bar). This triggers plasticity at the

SST-to-PV connections. b At the end of the rewarded phase and at the beginning of the refinement phase, there are strong connections from the SSTs

tuned to the vertical bar to PVs (green, top). The PV activity is therefore low for the vertical bar (bottom). The excitatory neurons coding for the vertical bar

are disinhibited (middle). During the refinement phase, the inhibitory motif guides plasticity at the excitatory neurons. c At the end of the refinement phase,

strong connections from the excitatory neurons coding for the vertical bar to the other excitatory neurons have developed (red, top). This results in an

increased activity of excitatory neurons towards the vertical bar (red line, middle) beyond that resulting from reduced inhibitory PV activity (blue line,

middle, and bottom). Note that existing connections between cell types are omitted in the figure to increase clarity
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To test this, we expanded our model to include another set of
PCs, tuned to the same orientations but to a different visual
location. All PCs in the model were innervated by the same set of
interneurons, which were tuned to both locations (Fig. 5a)
(assuming inhibition with broader spatial receptive fields, see
ref. 31). As before, SST-to-PV structure developed during the
rewarded phase (Fig. 5e). In the refinement phase, the excitatory
structure emerges in both PC subnetworks (Fig. 5b, h, and c, i),
leading to an increased representation of the stimulus for both
visual field locations (Fig. 5d and j). Note that the extent of the
generalisation is directly dependent on the spatial tuning width of
the interneurons, and on the connectivity from the interneurons
to the non-rewarded set of PCs. In summary, our two-stage
model allows for a generalisation of the learned representation to
other visual field locations, under the assumption that inter-
neurons are spatially broadly tuned and project broadly.

Discussion
We propose that a memory of the rewarded stimulus is stored in
the inhibitory structure. It can instruct excitatory plasticity in the
absence of reward via a disinhibition mechanism. The PCs then
increase their tuning to the rewarded stimulus because they
receive strong connections from PCs coding for the rewarded
stimulus, regardless of their initial tuning (see also Supplementary
Fig. 6).

We show that an unspecific top-down reward signal is sufficient
to create a specific circuit structure owing to the temporal coin-
cidence between reward signals and stimulus-evoked activity.
Where does the top-down signal come from? One candidate is
cholinergic fibres from the forebrain, which have been shown to
modulate activity in V15,32. In addition, the nucleus basalis in the
basal forebrain, which sends widespread cholinergic projections to
all sensory areas, has long been known to play a role in cortical

map plasticity33, learning, and memory. Lesioning and applying
cholinergic antagonists impair learning and memory34. Nucleus
basalis stimulation and local ACh administration alter auditory
receptive fields35,36. Finally, cholinergic inputs are involved in
experience-dependent plasticity of visual cortex37. Cholinergic
inputs target many interneuron cell types38, and continue to drive
VIP activity into adulthood39. Here we focused on top-down
modulation of VIPs, as VIPs (i) directly respond to reinforcement
signals9, (ii) inhibit other interneurons during learning4,6, and (iii)
are diversely modulated by glutamatergic, cholinergic and ser-
otonergic inputs10,40. Finally, another likely candidate are higher-
order thalamic inputs as they increase VIP-mediated disinhibition
of PCs and PVs, and thereby gate synaptic plasticity41.

Our model requires one tuned interneuron type to store the
identity of the rewarded stimulus. The stimulus selectivity of
interneurons is debated. Most data on interneuron tuning comes
from studies identifying interneurons with GAD65-GFP or
GAD67-GFP, which are non-specific GABAergic interneuron
markers that do not distinguish between different cell types (such
as SSTs and PVs). Those studies report a broad tuning of inter-
neurons in layer 2/3 of the mouse25,30,31,42. Studies looking at PV
interneurons in particular tend to find similarly broadly tuned
response properties11,20, but see ref. 43, where some PV cells were
sharply tuned. Runyan et al.44 report that PVs can both be
sharply or broadly tuned but are generally less tuned than PCs.
There are few studies investigating the tuning of SSTs18,19. These
indicate that SSTs are more sharply tuned than PVs. SSTs are
odour-tuned in piriform cortex, and also seem to be more
frequency-tuned than PVs in auditory cortex45. Therefore, SSTs
could provide the tuning properties needed for the proposed
mechanism. Importantly, the proposed mechanism does not
depend on the tuning properties of PV cells as our simulations
yield similar results for both untuned and tuned PV cells (Sup-
plementary Fig. 5).
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In Goltstein et al.1 and Goltstein et al.46, the broadening of
tuning curves was restricted to cells which were tuned to a similar
orientation as the rewarded stimulus. Our model can capture this
finding under the condition that the connectivity between pyr-
amidal cells is restricted based on the distance between their
preferred orientations (Supplementary Fig. 6).

In Khan et al.2, the majority of cells increased their selectivity
for one stimulus by selectively suppressing their response to the
other stimulus. This was not the case in Poort et al.3, where cells
both increased and decreased their responses. In Goltstein et al.1

and Goltstein et al.46, cells simply increased their response to the
rewarded stimulus by broadening their tuning curves. The

0

2

4

0

2

4

Orientation

0

2

4

F
ir
in

g
 r

a
te

0

2

4

0

2

4

0

2

4

Orientation

0

2

4

F
ir
in

g
 r

a
te

0

2

4

0 20 40 60 80 100 120

Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

E
x
c
it
a
to

ry
 w

e
ig

h
t 

[n
S

]

0 20 40 60 80 100 120

Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

S
S

T
-t

o
-P

V
 w

e
ig

h
ts

 [
n
S

]

0.0

0.2

0.4

0.6

0.8

1.0

S
S

T
-t

o
-P

V
 w

e
ig

h
ts

 [
n
S

]

0 20 40 60 80 100 120

Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

E
x
c
it
a
to

ry
 w

e
ig

h
ts

 [
n

S
]

Rewarded location

Populations tuned to

non-rewarded location

SST

PVPC PC

Populations tuned to

rewarded location

Visual field

Inhibitory SST-to-PV structure

PC tuning curves

for the rewarded location

PV tuning

Excitatory structure

for the rewarded location

Refinement

phase

Excitatory structure

for the non-rewarded location

PC tuning curves

for the non-rewarded location

Final SST-to-PV weights

SST population

Before

After

refinement

phase

PV

PV

PV

PV

Developmental

phase

Rewarded

phase

Refinement

phase

Developmental

phase

Rewarded

phase

Refinement

phase

Developmental

phase

Rewarded

phase

a

b

0

Presynaptic

0

100

200

300

400

P
o
s
ts

y
n

a
p

ti
c

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
lis

e
d
 e

x
c
ia

to
ry

 w
e

ig
h

ts

Final excitatory weights

c

f

d

e

h

g

Presynaptic

0

100

200

300

400

P
o
s
ts

y
n
a
p
ti
c

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
lis

e
d
 e

x
c
it
a
to

ry
 w

e
ig

h
tsFinal excitatory weights

i

Orientation

0

2

4

F
ir
in

g
 r

a
te

400300200100

0 400300200100

j

Fig. 5 Translation invariance of learned representations. a Illustration: Two excitatory networks with different visual receptive field locations (white circles)

share the same interneuron network. The interneurons are broadly tuned, and receive input from both visual field locations. Only one visual field location is

rewarded during the rewarded phase (rewarded location). b Evolution of excitatory weights for the rewarded location. c Final excitatory weights for the

rewarded location 1. d Tuning curves of excitatory populations with a receptive field at the rewarded location at the beginning (before) and at the end of the

simulation (after the refinement phase; measured as the number of spikes during 50ms after stimulus onset averaged over all occurrences of that stimulus

in 1 s of simulation). e Evolution of inhibitory synaptic weights. f Final inhibitory weights. g PV tuning at the beginning and after the refinement phase.

h Evolution of excitatory weights for the non-rewarded location. i Final excitatory weights for the non-rewarded population. j Tuning curves of excitatory

populations with a receptive field at the non-rewarded location (as in d)
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possible discrepancy may arise from the design of the studies.
Whereas Poort et al.3 and Khan et al.2 quantified responses to the
two task-relevant stimuli, Goltstein et al.1 calculated tuning
curves for a range of orientations including two task-relevant
orientations. In our model, we captured the increased stimulus
representation by an increase of responses to the rewarded sti-
mulus, which was observed in all experimental studies1–3. The
underlying changes likely involve a mixture of strengthening and
weakening of connections (Supplementary Fig. 7). In addition,
PVs were also shown to increase their selectivity with learning2.

Our point neuron model does not capture the fact that SSTs
and PVs target different dendritic regions. However, we do not
expect our results to change if we include dendrites in our model,
as the PV-mediated disinhibition projects somatically.

It would be interesting to study the effect of multiple mod-
ulatory inputs, such as long-range glutamatergic, serotonergic,
and cholinergic inputs. How do these inputs interact? Do they
interfere with each other? How are different signals dis-
tinguished? For instance, both learning and attention affect the
selectivity of responses of neurons in the circuit2,3.

We assume that the change in representation results from local
changes in the circuit. Alternatively, it could result from changes
in top-down or bottom-up influences. Learning an association
between an aversive stimulus and a grating, for example, was
reported to be correlated with increased top-down inputs from
the retrosplenial cortex47. Top-down influences alone, however,
do not account for the persistence of the changes during
anaesthesia1,3. Learning could involve a multitude of adjustments
in recurrent, bottom-up and top-down connectivity, including
higher thalamocortical inputs48.

What happens to the increased representation when the
environment changes? In our model, inhibitory and excitatory
structures reinforce each other, which is beneficial for main-
taining the memory. In other situations, however, it may be useful
to unlearn the structure. For example, if another stimulus is
paired with reward. It may also be possible to maintain multiple
representations simultaneously, depending on the capacity of the
network. Synaptic competition could naturally select a winner if
capacity is reached. Another example is extinction. Animals can
unlearn an association, which can be correlated with losing the
increased representation of the rewarded stimulus49. The
mechanism underlying extinction is, however, unknown. In the
amygdala for example, the neural correlate of extinction is not a
simple reversal of the changes that happened during learning, but
rather a re-learning mechanism50. This is in line with studies
showing that extinction is context-dependent and extinct asso-
ciations can be unmasked (for a review see ref. 51). It is therefore
possible that the increased low-level representation is also
maintained beyond extinction.

In our model, the development of the excitatory structure
during the refinement phase requires neural activity. We there-
fore continued to randomly present different stimuli without
pairing them with a reward signal. The question is whether this
unpairing should induce extinction of the learned association
rather than consolidation. Interestingly, in the study by Grewe
et al.50 during the presentation of the CS alone after pairing, there
was no immediate extinction, but actually a strengthening of the
changes that happened during pairing. This supports a different
underlying mechanism for extinction.

We list below alternative mechanisms that would result in an
increased stimulus representation. We argue, however, that our
model is the one most in line with experimental data from the
visual cortex.

(i) Vertically tuned PCs may develop strong connections to
VIPs. It will inhibit SSTs and therefore disinhibit PCs. This motif,

however, will cause VIPs to become more tuned during learning,
which was not observed experimentally2.

(ii) Vertically tuned PCs may develop strong connections to
SSTs. It will inhibit PVs and therefore disinhibit PCs. This motif
will result in a tuning increase of SSTs, which was also not
observed experimentally2.

(iii) Vertically tuned PCs may reduce their inhibition of PVs,
thereby increasing the activity of all PCs. This can lead to
instability and contradicts the finding that PCs and PVs increase
their effective connectivity during learning2.

(iv) SSTs may decrease their response to the rewarded stimulus
more than to other stimuli. This motif predicts a change in the
tuning of SSTs, which does not seem to be the case in Khan et al.2.

We propose three benefits of an intermediate inhibitory
structure over direct changes in recurrent excitatory connectivity.
(i) Bridging timescales: The reward is only present for a short
amount of time, but plasticity can be slow. These two timescales
can be bridged because the inhibitory and excitatory structure
mutually reinforce each other. Therefore, a strong excitatory
structure can emerge beyond the presence or even in the absence
of reward. In addition, high inhibitory firing rates, typical of PVs,
could effectively increase the inhibitory learning rate, allowing for
a rapid development of the inhibitory structure. (ii) Translation
invariance: We showed that the inhibitory structure allows for the
increased representation to generalise across visual locations.
Interestingly in machine learning, translation invariance which
improves generalisation is achieved by weight sharing. The same
weight vector (filter) is applied to different regions of the input
space. This has been considered biologically implausible, as
synaptic weights of other synapses are not locally available to each
synapse. Broadly tuned interneuron networks that are shared
across functional excitatory clusters may be a biologically plau-
sible way to implement weight sharing. Note, however, that in
contrast to global weight sharing, this biological implementation
is limited by the receptive field and the projective field of the
interneurons, such that the generalisation will likely be spatially
restricted. (iii) Stability of representations: Excitatory responses
did not change during the rewarded phase. Therefore, the
mechanism ensures a stable representation during relevant
behaviour despite learning a structure between the inhibitory
neurons.

Inhibitory connectivity is increasingly considered to be part
of memory, e.g. refs. 52,53. Mongillo et al.53 show that a
change in inhibitory connections has a larger impact on
network activity than that of excitatory connections. This makes
inhibitory synaptic changes well-suited to store memories,
but also to trigger changes in excitatory connectivity. Here we
propose that inhibitory connectivity stores a memory of the
rewarded stimulus and can hence instruct changes in excitatory
connectivity.

Interneuron circuits form canonical motifs across cortical
areas. They integrate modulatory and long-range signals from
higher cortical areas with activity in the local circuit. They are
hence well-suited to adjust local circuits according to behaviou-
rally relevant signals. We propose that interneuron circuits enable
reward-dependent changes in sensory representations in a two-
stage process. It can bridge timescales between stimulus-reward
experience and synaptic plasticity. Finally, it allows for general-
isation of the learned association.

Methods
Network model. The network consisted of 400 PCs grouped into four sub-
populations of 100 neurons each. Each subpopulation coded for a given orienta-
tion. We simulated 120 PV interneurons, 120 SST interneurons (30 in each
subpopulation), and 50 VIP interneurons.
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Neuron model. Neurons were modelled as conductance-based spiking leaky
integrate-and-fire neurons. Their membrane potential evolves according to:

Cm

dvi
dt

¼ �g lðvi � V lÞ � ðgEi ðvi � VEÞ þ gIiðvi � V IÞÞ þ

ffiffiffiffiffiffiffi

2σ2

τ

r

ξðtÞ ð1Þ

where Cm is the membrane capacitance, vi is the membrane potential of neuron i,
V l is the leak reversal potential. VE and V I are the excitatory and inhibitory
reversal potentials. g l , g

E
i and gIi are the leak, excitatory and inhibitory con-

ductances. gEi and gIi are increased by W ij upon a spike event in a presynaptic

excitatory or inhibitory neuron j, and decay exponentially with time constants τE
and τI, respectively:

dgEi
dt

¼ �
gEi
τE

þ
X

k

Wijδðt � tkj Þ ð2Þ

dgIi
dt

¼ �
gIi
τI

þ
X

k

W ijδðt � tkj Þ ð3Þ

ξ is zero-mean Gaussian white noise. Parameters defining the Ornstein-Uhlenbeck
process are σ = 2 mV and correlation time τ = 5 ms.

When the membrane potential reaches a threshold vθ , a spike event is recorded
and the membrane potential is reset to its resting value V l (Table 1).

PVs were additionally connected via gap junctions which contribute a current
Igap;i to the RHS of Eq. (1)54. The gap junction current from neuron j to neuron i is

the sum of a spikelet current and a subthreshold current. The subthreshold current
is proportional to the difference in membrane potential between neurons i and j,
with proportionality constant wgap . The spikelet current is increased by cgap upon a

spike event in a presynaptic neuron and decays to 0 with timescale τspikelet .

Mathematically,

Igap;i ¼ Ispikelet;i þ
X

j

wgapðvj � viÞ ð4Þ

dIspikelet;i

dt
¼ �

Ispikelet;i

τspikelet
þ
X

k

cgapδðt � tkj Þ ð5Þ

Connectivity. Neurons from different cell classes (E: PC, P: PV, S: SST, V:VIP) are
connected with chemical synapses as follows:

The connection probability PIJ from population J to I where I; J 2 fE; P; S;V g
was chosen based on data from Pfeffer et al.21 for connections from inhibitory
populations, and on data from Hofer et al.20 for connections from the excitatory
population. Pfeffer et al.21 provide connection probabilities and strengths for
connections between the pairs {EP,ES,EV,PP,PS} and individual neuronal
contributions (INCs) estimated from optogenetic stimulation of entire cell
populations for the other connections. In cases where the connection probability
was not measured directly, we chose the probability based on the INCs as follows:
For PPV , PVV , PSS and PSP , the INC was very low, namely 0:06 (or 0:07 for PSP).
The connection from VIPs to PCs (EV) had the same INC of 0:06, therefore we
chose the same connection probability as for PEV , which was 12.5%. For the
remaining connections, we set the connection probability to 100%.

PIJ ¼

PEE PEP PES PEV

PPE PPP PPS PPV

PSE PSP PSS PSV

PVE PVP PVS PVV

0

B

B

B

@

1

C

C

C

A

¼

1 1 1 0:125

0:88 1 0:857 0:125

1 0:125 0:125 1

1 1 1 0:125

0

B

B

B

@

1

C

C

C

A

ð6Þ

The synaptic weights WIJ from a neuron j in population J to a neuron i in

population I determine how much the synaptic conductances gE and gI increase
upon a spike in neuron j. We initialised the synaptic weights based on the
connectivity data from Pfeffer et al.21 for connections from inhibitory populations,
and based on data from refs. 20,22–24 for connections from excitatory to inhibitory
populations. The number of neurons in each population was taken into
account, when determining the connection strength. Connections between
excitatory neurons were initially small and sampled from a Gaussian distribution

truncated at 0.

W ¼

WEE WEP WES WEV

WPE WPP WPS WPV

WSE WSP WSS WSV

WVE WVP WVS WVV

0

B

B

B

@

1

C

C

C

A

¼

Nð0:01; 0:01Þ 0:55 0:3 0:0675

0:12 0:55 Nð0:2; 0:1Þ 0:0675

0:07 0:08 0:0675 0:195

0:07 0:12 0:42 0

0

B

B

B

@

1

C

C

C

A

ð7Þ

For the gap junctions between PVs, τspikelet was 9ms, except in Supplementary Fig. 4,

where it was 3ms. cgap was 13 pA, unless otherwise stated. Subthreshold currents mediated

by gap junctions were modelled only in Supplementary Fig. 9, where wgap was 0.4 nS.

Inputs. PCs and SSTs received one of four inputs (corresponding to layer 4 (L4)
inputs coding for four different orientations). Each L4 input produced a Poisson-
distributed spike train with a rate of 4 kHz during its preferred stimulus, and 0 Hz
otherwise. One of four stimuli was shown for 50 ms followed by a stimulus gap of
20 ms. During the stimulus gap, all L4 inputs produced spikes at the same rate
of 1.6 kHz. The conductance of synapses from L4 to PCs was 0.28 nS. The con-
ductances of synapses from L4 to SSTs was 0.15 nS during the stimulus and 0.165 nS
during the stimulus gap. In addition, PCs and PVs received a baseline input from a
Poisson process with a rate of 4 kHz. The weights to PCs were 0.13 nS, and to PVs
0.01 nS. VIPs received a top-down input during the vertical bar stimulus from a
group of 100 neurons with connection strength 0.2 nS, which receive input from
layer 4 with a connection strength of 0.3 nS.

Plasticity. For both excitatory and inhibitory plasticity we chose the simple clas-
sical STDP model55–57

Δw ¼
�A� expðΔtτ�

Þ if Δt < 0

Aþ expð� Δt
τþ
Þ if Δt � 0

(

ð8Þ

where Δt ¼ tpost − tpre is the difference between pre- and postsynaptic spike time,

τþ ¼ τ� = 20 ms, for excitatory plasticity Aþ = 0.005 nS and A� = 1.05Aþ , for
inhibitory plasticity Aþ = 0.015 nS and A� = 1.05Aþ . This rule leads to synaptic
potentiation when the presynaptic neuron spikes before or simultaneously with the
postsynaptic neuron, and to depression otherwise.

In the online implementation of this rule, the synaptic weight wij from neuron j

to neuron i is updated when either the pre- or the postsynaptic neuron spikes
according to:

wij ! wij � ηapostðtÞ for presynaptic spikes at time t ð9Þ

wij ! wij þ ηapreðtÞ for postsynaptic spikes at time t ð10Þ

where apostðtÞ is the postsynaptic trace and apreðtÞ is the presynaptic trace. The

traces are updated by a constant value A� or Aþ at the time of a postsynaptic or
presynaptic spike, respectively, and decay exponentially with a time constant τ� or
τþ . The learning rate η was 1.

dapost

dt
¼ �

apost

τ�
ð11Þ

dapre

dt
¼ �

apre

τþ
ð12Þ

Excitatory and inhibitory weights were constrained to be positive and had an upper
bound at 0.25 nS for excitatory weights and 1 nS for inhibitory weights.

Simulation. All spiking simulations were done with the Brian 2 simulator58, using
a time step of 0.1 ms. The model was simulated for 1.4 s without plasticity to
measure tuning curves. Then plasticity was switched on. The model was simulated
for 42 s during the developmental phase, followed by a 24.5 s simulation of the
rewarded phase, and a 66 s simulation of the refinement phase. Finally, the model
was simulated for 1.4 s without plasticity to measure final tuning curves again.

Translation invariance. To adjust for the increased number of excitatory neurons
in the network, the connection strength from PCs to all interneurons was decreased
to 0.6 times the original strength.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data is generated by the simulation code (see Code availability statement below).

Code availability
All simulation code used for this paper is available on GitHub (https://github.com/

k47h4/interneuron_circuits_plasticity) and ModelDB (accession number 259546).

Table 1 Parameters of the leaky integrate-and-fire

neuron model

Parameter Value Parameter Value

Cm 200 pF VE 0mV

V l −60mV VI −80mV

gl 10 nS τE 5ms

vθ −50mV τI 10ms
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