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Abstract 

 A polymer network can imbibe water from environment and swell to an equilibrium state.  

If the equilibrium is reached when the network is subject to external mechanical constraint, the 

deformation of the network is typically anisotropic, and the concentration of water 

inhomogeneous.  Such an equilibrium state in a network constrained by a hard core is modeled 

here with a nonlinear differential equation.  The presence of the hard core markedly reduces the 

concentration of water near the interface and causes high stresses.    
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 A network of flexible polymers can imbibe water from environment and swell, often to a 

volume many times the initial volume of the network.  Swelling is mainly an entropic process:  

the sorption of water increases the number of configurations of the mixture, but the expansion of 

the network reduces the number of configurations of the network.1  The competing trends 

equilibrate water molecules in the network with those in the environment.  The resulting 

aggregate of polymers and water molecules is known as a polymeric hydrogel.   

 When a network equilibrates with environment under no external mechanical constraint, 

the network swells by a homogeneous and isotropic expansion, and water molecules distribute in 

the gel homogeneously.  When the network equilibrates with environment under external 

mechanical constraint, however, the network may swell by an inhomogeneous and anisotropic 

deformation, and water molecules may distribute in the gel inhomogeneously.  Such 

inhomogeneous and anisotropic equilibrium states are common, because mechanical constraint 

is ubiquitous in applications of gels.  Yet few theoretical analyses exist for gels in 

inhomogeneous and anisotropic equilibrium states, possibly due to the mathematical difficulty 

associated with large deformation and nonlinear equations.   

 This paper studies a relatively simple structure:  a spherical shell of gel surrounding a 

hard core of another material.  Such core-shell structures have been intensely studied 

experimentally in recent years2-4 . Potential applications include drug delivery5-8, controlled 

self-assembly9,10, medical devices11, photonic crystals12,13, and micro-actuators14. In many 

applications, an understanding of the equilibrium distribution of water is of essential importance.  

Also important is the distribution of stresses, as debonding between the gel and the core has 
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been reported2,15. Here we describe the inhomogeneous and anisotropic equilibrium state by 

formulating a nonlinear differential equation.     

 Fig. 1 illustrates a core-shell structure.  A water-free and stress-free polymer network is 

taken as the reference state, Fig. 1(a), where the network is a hollow spherical shell, with inner 

radius A and outer radius B.  In the equilibrium state, Fig. 1(b), the network is swollen and 

contains a hard core of radius 0λA .  The initial stretch, 0λ , is set by the method to prepare the 

structure.  For example, the structure can be prepared by first coating the core with a shell of an 

aqueous solution, and then cross-linking the polymers in the solution.  In this case, 0λ  relates 

to the volume fraction of water in the initial solution.   

 The structure is subsequently immersed in pure water to swell further.  After some time, 

water molecules in the gel equilibrate those in pure water, and the gel swells to an 

inhomogeneous and anisotropic state.  This behavior is qualitatively understood as follows.  

The core is taken to be rigid and bonded to the network, so that near the interface the network 

cannot further stretch in the circumferential directions, and is constrained to expand only in the 

radial direction.  Away from the interface, however, the network can stretch in all three directions.  

Consequently, the concentration of water in the gel is expected to be low near the interface, and 

increases away from the interface. 

 The inhomogeneous and anisotropic equilibrium state in an absorbent was formulated by 

Gibbs16.   He described large deformation with deformation gradient, mechanical equilibrium 

with differential equations involving nominal stresses, and chemical equilibrium with a uniform 

chemical potential of the solvent.  Gibbs derived the equations of state formally from a 
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free-energy density, which is a function of the deformation gradient and the solvent concentration.  

However, he did not give any explicit form of this function.  His theory has reappeared in most 

subsequent studies; see Refs17-22 for recent contributions.  Here we will follow the notation of 

our recent paper22, and adopt the free-energy function introduced by Flory and Rehner 23.   

 With reference to Fig. 1, imagine each element of the network is attached with a marker, 

which moves as the network deforms.  The marker is at distance R from the center in the 

reference state, and is at distance r from the center in the equilibrium state.  The deformed 

network is taken to retain the spherical symmetry, so that the deformation is fully specified by the 

function ( )Rr .   Markers on a spherical surface of radius R in the reference state move to a 

spherical surface of radius r in the equilibrium state.  Consequently, the stretch in every 

circumferential direction is  

  Rr /=θλ . (1)  

Two nearby markers in a radial direction, of positions R and dRR + in the reference state, move 

to positions ( )Rr  and ( )dRRr +  in the equilibrium state.  The distance between the two 

markers is dR  in the reference state, and is ( ) ( ) drRrdRRr =−+  in the equilibrium state, so 

that the stretch in the radial direction is  

  dRdrr /=λ . (2) 

 An element of the network, of unit volume in the reference state, swells to volume rλλθ
2  

in the equilibrium state.  Individual polymers and water molecules are taken to be 

incompressible, so that the change in volume of the gel is due to imbibing water molecules,  
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  12 −= rvC λλθ ,  (3) 

where v is the volume per solvent molecule, and C  is the concentration of water in the gel (i.e., 

the number of water molecules in an element of the gel in the equilibrium state divided by the 

volume of the element in the reference state). 

 In the equilibrium state, the gel develops a field of stress.  Let ( )Rsθ  be the nominal 

stress in each circumferential direction, and ( )Rsr  be the nominal stress in the radial direction.  

Mechanical equilibrium requires that  

  02 =−+
R

ss
dR
ds rr θ .  (4) 

 The chemical potential of water molecules in pure water is set to be zero.  Consequently, the 

chemical potential of water molecules in the gel is also zero in the equilibrium state.  Using the free 

energy of Flory and Rehner 23, we write the equations of state 22: 
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where N is the number of polymer chains divided by the volume of the dry network, kT  is the 

temperature in the unit of energy, and χ  is a dimensionless measure of the enthalpy of mixing.  

In practice, vN  is in the range 52 10~10 −− , and χ  is in the range 5.0~1.0  for good solvents.     

 As a special case, when the network swells freely under no external mechanical constant, in 

equilibrium, the network undergoes a homogeneous and isotropic expansion.  Setting 

( ) 3/1
freefree 1+=== vCr λλλ θ  and 0=θs  in (5), we obtain a nonlinear algebraic equation that 
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determines the equilibrium concentration of water in the free-swelling gel, freevC .      

 When the network swells subject to the constraint of the hard core, a combination of (1)-(6) 

leads to a nonlinear second-order differential equation that governs the function ( )Rr .  This 

equation is solved numerically, subject to the boundary conditions ( ) AAr 0λ=  and ( ) 0=Bsr .  

      Fig. 2 (a) plots the equilibrium concentration of water, vC , i.e., the ratio of the volume of 

water in the equilibrium state to the volume of the dry network.  The equilibrium concentration of 

water in the gel is inhomogeneous:  ~12 near the interface and ~28 at the outer surface.  The 

latter is close to the equilibrium concentration of water in a free-swelling gel, freevC , which is 

marked as the dashed line in Fig. 2(a).  Evidently the effect of the constraint on the gel is 

localized within a radius only slightly larger than the radius of the core.  The inhomogeneous 

distribution of water in a core-shell structure has been observed experimentally24.  Fig. 2(b) plots 

the stretches in the gel.  Near the interface, θλ  is constrained by the core and does not change 

during swelling, but rλ  increases substantially.  Near the outer surface, both stretches approach 

that of a free-swelling gel, freeλ .  Fig. 3(c) plots the stresses in the gel.  Near the interface, θs  

is compressive, but rs  is tensile.  Near the outer surface, both stresses diminish.  The 

magnitudes of the stresses are substantial, scaling with the elastic modulus of the dry network, 

NkT .  The tensile radial stress may cause the gel to debond from the core2,15. 

The outer radius b of the gel in the equilibrium state is important in some applications.  

Fig. 3(a) plots Bb /  as a function of AB / .  When the network is thin (i.e., AB /  is small), 

nearly the entire volume of the network is affected by the core, so that 0/ λ≈Bb .  When the 

network is thick (i.e., AB /  is large), the network away from the interface is nearly unaffected by 



 7 

the core, so that freeBb λ≈/ .  The gel swells less when the network is either more hydrophobic 

[i.e., large positive χ  in Fig. 3(b)], or more densely corssliked [i.e., large vN  in Fig. 3(c)]. 

 In summary, a polymer network swelling under external mechanical constraint typically 

attains an inhomogeneous, anisotropic equilibrium state.  Our calculations show that, near the 

core-shell interface, the concentration of water is greatly reduced, and the stresses are high.  

These trends agree with available experimental observations.  The inhomogeneous distribution 

of water in the equilibrium state clearly shows that diffusion in gels should not be analyzed using 

Fick’s law, which assumes that the diffusion flux is proportional to the concentration gradient.  

Instead, more general kinetic laws should be invoked.17-22 

 This work is supported by the MRSEC, of Harvard University, funded by the National 

Science Foundation.     
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FIG.1. (a) In the reference state, the polymer network is water-free and stress-free.  (b) In the 

equilibrium state, the network is swollen and contains the rigid core. 
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FIG. 2.  The equilibrium distributions of (a) water concentration, (b) stretches, and (c) stresses. 
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FIG. 3.  Swelling ratio Bb /  as a function of AB /  at various values of (a) 0λ , (b) χ , and (c) 

vN . 

 


