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An inhomogeneous backflow transformation for many-particle wave functions is presented and applied to
electrons in atoms, molecules, and solids. We report variational and diffusion quantum Monte Carlo �VMC and
DMC� energies for various systems and study the computational cost of using backflow wave functions. We
find that inhomogeneous backflow transformations can provide a substantial increase in the amount of corre-
lation energy retrieved within VMC and DMC calculations. The backflow transformations significantly im-
prove the wave functions and their nodal surfaces.
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I. INTRODUCTION

The fermion sign problem continues to preclude the appli-
cation of in principle exact quantum Monte Carlo �QMC�
methods to large systems, and so approximate QMC methods
must be used instead. Probably the most widely used of these
is the stable and efficient diffusion quantum Monte Carlo
�DMC� algorithm �1,2�, in which the fermion sign problem is
sidestepped through the introduction of the fixed-node ap-
proximation �3�. DMC calculations can provide highly accu-
rate energies for assemblies of quantum particles, but the
fixed-node approximation is uncontrolled and its accuracy is
often difficult to assess.

The fixed-node approximation �3� involves constraining
the nodal surface of the wave function to equal that of an
approximate “trial” or “guiding” wave function. The fixed-
node DMC energy is higher than the ground-state energy,
becoming equal in the limit that the fixed nodal surface is
exact. The dependence of the DMC energy on the quality of
the trial wave function is often significant in practice. It
would therefore be very useful to be able to construct trial
wave functions with better nodal surfaces to reduce the effect
of the fixed-node approximation.

Efforts to construct wave functions with accurate nodal
surfaces have continued since the introduction of the fixed-
node approximation. Single-determinant wave functions of-
ten provide good nodal surfaces for closed-shell systems, and
multideterminant wave functions can do so for small open-
shell systems, although the required number of determinants
becomes excessive for large systems. Compact pairing wave
functions consisting of an antisymmetrized product of two-
electron “geminals” �4� were introduced long ago �5,6� and
have recently been used in QMC calculations for atoms and
molecules �7,8�. Triplet-pairing Pfaffian wave functions were
first used in QMC calculations for liquid 3He by Bouchaud
and Lhuillier �9�, and recently this approach has been ex-
tended by Bajdich et al. �10�, who considered atomic and
molecular systems in which both parallel- and antiparallel-
spin electrons are paired.

Another approach for improving upon a single determi-
nant of one-electron orbitals is to introduce parameters
which allow the orbitals to depend on the positions of the
other electrons. Such a route was followed by Wigner and
Seitz �11�, who considered wave functions in which the or-

bitals of the up-spin electrons depend on the positions of the
down-spin electrons and vice versa. This idea surfaced again
much later in connection with the quantum-mechanical de-
scription of “backflow.” Classical backflow is related to the
flow of a fluid around a large impurity. Its quantum analog
was discussed by Feynman �12� and Feynman and Cohen
�13� in the contexts of excitations in 4He and the effective
mass of a 3He impurity in liquid 4He. They argued that the
energy would be lowered if the 4He atoms executed a flow
pattern around the moving 3He impurity which prevented the
atoms overlapping significantly. This effect was shown to
correspond to the requirement that the local current of par-
ticles be conserved. They recognized that, without backflow,
the effective mass of the 3He impurity would equal the bare
mass and incorporating backflow led to a substantial increase
in the effective mass. It turns out that the mathematical form
obtained by incorporating backflow into a single-determinant
wave function is related to the wave functions considered by
Wigner and Seitz �11�.

In later studies, wave functions including Jastrow factors
and backflow like correlations were used to study a 3He im-
purity in liquid 4He and liquid 3He within a Fermi-
hypernetted chain approximation �14–16�. Backflow was
first used in QMC calculations by Lee et al. �17�, who cal-
culated the total energy of liquid 3He. QMC calculations for
electrons using Slater-Jastrow wave functions with backflow
correlations were first performed by Kwon et al. �18� for the
two-dimensional homogeneous electron gas �HEG� and later
�19� for the three-dimensional HEG �see also the paper by
Zong et al. �20��. QMC calculations using Slater-Jastrow
wave functions with backflow correlations have also been
reported for solid and liquid hydrogen �21,22�, which were
the first such applications to inhomogeneous electron sys-
tems.

While Jastrow factors keep electrons away from one an-
other and greatly improve wave functions in general, they do
not alter nodal surfaces. Holzmann et al. �21� have argued
that backflow and three-body Jastrow correlations arise as
the next-order improvements to the standard Slater-Jastrow
wave function, which consists of a Slater determinant multi-
plied by a two-body Jastrow factor. The importance of back-
flow correlations within DMC calculations is that they alter
the nodal surface and can therefore be used to reduce the
fixed-node error.
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In this paper we introduce parametrized inhomogeneous
backflow transformations and apply them to atoms, mol-
ecules, and extended systems. The rest of this paper is struc-
tured as follows: a general description of the Slater-Jastrow
and backflow wave functions is given in Sec. II, an explicit
form for the backflow displacement field is developed in Sec.
III, an extensive set of results is given in Sec. IV and dis-
cussed in Sec. V, and our conclusions are summarized in Sec.
VI. Important technical information about the calculations,
including the constraints on the backflow parameters, has
been gathered in the Appendixes. Hartree atomic units
��= �e � =me=4��0=1� are used throughout.

II. SLATER-JASTROW AND SLATER-JASTROW-

BACKFLOW WAVE FUNCTIONS

The Slater-Jastrow �SJ� wave function can be written as

�T
SJ�R� = eJ�R��S�R� , �1�

where R denotes the set of electron coordinates �ri�, eJ�R� is
the Jastrow correlation factor, and the Slater part �S�R� con-
sists of a determinant or sum of determinants, defining the
nodes of �T

SJ�R�.
Backflow �BF� correlations are introduced by substituting

a set of collective coordinates X for the coordinates R in the
Slater determinants, so that

�T
BF�R� = eJ�R��S�X� , �2�

where each of the new coordinates is given by �17,23�

xi = ri + �i�R� , �3�

where �i is the backflow displacement of particle i, which
depends on the configuration of the whole system.

III. INHOMOGENEOUS BACKFLOW

TRANSFORMATIONS

The form of the backflow displacement �i in homoge-

neous systems has been taken as �17,18,23�

�i
e-e = �

j�i

Ne

�ijrij , �4�

where Ne is the number of electrons and �ij =��rij� is a func-
tion of the interparticle distance rij. Equation �4� is the most
general isotropic two-electron coordinate transformation for
a homogeneous system. A single electron i perceives space to
be isotropic, but when another electron j is introduced, the
electron-electron �e-e� vector rij becomes an inequivalent di-
rection. The e-e backflow displacement is taken to be along
this direction, as there is no reason why a displacement in a
specific perpendicular direction should occur.

In a system with nuclei a new set of directions is intro-
duced, the electron-nucleus �e-n� vectors �riI�, and one is led
to introduce an e-n contribution to �i of the form

�i
e-n = �

I

Nn

�iIriI, �5�

where �iI=��riI� and Nn is the number of nuclei.

We also introduce an electron-electron-nucleus �e-e-n�
term to describe two-electron backflow displacements in the
presence of a nearby nucleus,

�i
e-e-n = �

j�i

Ne

�
I

Nn

��i
jIrij + 	i

jIriI� , �6�

where �i
jI=�I�riI ,r jI ,rij� and 	i

jI=	I�riI ,r jI ,rij�. Note that
the vector �i

jIrij +	i
jIriI is capable of spanning the plane de-

fined by ri, r j, and rI, without the need to introduce a com-
ponent along the direction of r jI. The total backflow dis-
placement is the sum of these three components, �i=�i

e-e

+�i
e-n+�i

e-e-n.
At large distances ��rij� is expected to decay as rij

−3

in three dimensions �19� and rij
−5/2 in two dimensions �18�.

However, for computational efficiency and for compatibility
with periodic boundary conditions it is better to cut off the �
function and the other backflow functions smoothly at some
radius. We use a simple cutoff function

f�r;L� = 	L − r

L

C

H�L − r� , �7�

where r is to be substituted by an e-e or e-n distance as
appropriate, L is the cutoff length, C is the truncation order,1

and H denotes the Heaviside function. The advantages of this
cutoff function are, first, that its value can be computed rap-
idly and, second, that it has considerable flexibility because
one can choose the value of C and use L as an optimizable
parameter.

Rational �18� and Gaussian �21� forms for homogeneous
backflow functions have been used in previous work. How-
ever, we have chosen to use natural power expansions
because of the excellent results we have obtained with such
expansions for our Jastrow factor �24� and the lack of
a priori knowledge of more specific parametrizations for the
inhomogeneous functions. It is estimated that numerical er-
rors in the evaluation of natural polynomials become signifi-
cant beyond order about 20 when using double-precision
arithmetic, and although one can go to substantially larger
orders using Chebyshev polynomials, we have not found this
to be an issue in our work.

We have used the following polynomial expansions for
�ij, �iI, �i

jI, and 	i
jI:

�ij = f�rij;L���
k=0

N�

ckrij
k , �8�

�iI = f�riI;L�,I��
k=0

N�,I

dk,IriI
k , �9�

1The Cth derivative of the wave function will be discontinuous at
r=L. In particular, its Laplacian, used in the computation of the
kinetic energy, is discontinuous at r=L if C
3. In this work we
have only considered C=2 and C=3.
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�i
jI = f�riI;L�,I�f�r jI;L�,I� �

k=0

Ne-n,I

�
l=0

Ne-n,I

�
m=0

Ne-e,I

�klm,IriI
k r jI

l rij
m,

�10�

	i
jI = f�riI;L�,I�f�r jI;L�,I� �

k=0

Ne-n,I

�
l=0

Ne-n,I

�
m=0

Ne-e,I

�klm,IriI
k r jI

l rij
m,

�11�

where N�, N�,I, Ne-n,I, and Ne-e,I are the expansion orders, L�,
L�,I, and L�,I, are cutoff lengths, and �ck�, �dk,I�, ��klm,I�, and
��klm,I� are the optimizable parameters. We allow the param-
eters in �, �I, and 	I to depend on the spins of the electron
pairs and those in � to be spin dependent; for simplicity, we
have omitted such dependences in the description of the
functional forms above. In periodic systems, we constrain L�

and L� to be smaller than the Wigner-Seitz radius LWS of the
simulation cell and L� to be smaller than LWS /2, for compu-
tational efficiency.

IV. RESULTS

In this section we present variational quantum Monte
Carlo �VMC� and DMC results obtained with our implemen-

tation of backflow transformations. The CASINO code �25�
has been used for all of our QMC calculations. Our DMC
algorithm is essentially as described in Ref. �26�. All DMC
energies reported here have been extrapolated to zero time
step. We have optimized the parameters in our wave func-
tions by minimizing the unreweighted variance of the energy
�27�, using a scheme which facilitates the optimization of
parameters that modify the nodal surface �28,29�.

We have used the Jastrow correlation factor of Drum-
mond et al. �24�. In our all-electron �AE� calculations, with
the exception of those for the HEG, the orbitals were ob-
tained from Hartree-Fock �HF� calculations using large
Gaussian basis sets and the CRYSTAL98 code �30�, and the
cusp-correction algorithm of Ref. �31� was applied to each
orbital at each nucleus. In our pseudopotential �PP� calcula-
tions we used the Dirac-Fock average relativistic effective
pseudopotentials of Refs. �32,33�, the nonlocal energies be-
ing calculated within the locality approximation �34�.
The one-electron orbitals were obtained from the plane-wave
PP CASTEP code �35� using the Perdew-Burke-Ernzerhof
�PBE� generalized-gradient-approximation �36� exchange-
correlation functional. The orbitals were reexpanded in terms
of “blip” functions �37�, making the QMC calculations much
more efficient.

TABLE I. Energies and variances for three-dimensional, unpolarized HEG’s consisting of 54 electrons in
a simple cubic simulation cell. EV and ED refer to VMC and DMC energies, respectively; CEV and CED are
the percentages of the correlation energies retrieved at the VMC and DMC levels, respectively, and V

2 is the
VMC variance.

rs Wave function EV �a.u./electron� V
2 �a.u.� CEV �%� ED �a.u./electron� CED �%�

0.5 HF 3.2659�7� 76�1� 0�3�

SJ 3.2236�2� 3.34�3� 94.5�5� 3.22245�9� 97.0�3�

SJ3 3.2233�2� 3.4�2� 95.1�5�

BF 3.22132�7� 0.76�1� 99.5�2� 3.22112�4� 100.0�2�

1.0 HF 0.5689�4� 19.1�4� 0�2�

SJ 0.53211�7� 0.719�7� 94.3�3� 0.53089�9� 97.5�4�

SJ3 0.53175�7� 0.80�6� 95.3�3�

BF 0.53009�3� 0.163�2� 99.5�2� 0.52989�4� 100.0�2�

2.0 HF 0.0186�2� 4.9�1� 0�1�

SJ −0.01246�3� 0.147�2� 95.4�1� −0.01311�2� 97.4�1�

SJ3 −0.01252�3� 0.138�2� 95.6�1�

BF −0.01382�2� 0.0342�6� 99.56�7� −0.013966�9� 100.00�6�

5.0 HF −0.05625�7� 0.76�1� 0.0�6�

SJ −0.07815�1� 0.0149�2� 96.09�7�

SJ3 −0.078284�9� 0.0129�3� 96.70�6� −0.078649�7� 98.30�5�

BF3 −0.078961�5� 0.00317�6� 99.67�3� −0.079036�3� 100.00�3�

10.0 HF −0.03884�4� 0.194�4� 0.0�5�

SJ −0.053927�4� 0.00236�2� 96.69�4�

SJ3 −0.054042�4� 0.00179�3� 97.43�4� −0.054255�3� 98.80�4�

BF3 −0.054389�2� 0.00055�1� 99.65�2� −0.054443�2� 100.00�2�

20.0 HF −0.02205�2� 0.0477�9� 0.0�4�

SJ −0.031767�2� 0.000377�4� 97.20�4�

SJ3 −0.031858�1� 0.000237�2� 98.11�3� −0.031973�3� 99.26�5�

BF3 −0.0319984�8� 0.000091�1� 99.51�3� −0.032047�2� 100.00�3�
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We have reported the variance of the total local energy for

our VMC calculations, 2= �Ĥ2�− �Ĥ�2,2 while the reported
mean energies are either total, per electron, or per primitive
cell, as we have found appropriate in each case. We have
estimated the amount of correlation energy retrieved in our
calculations by comparing our energies with “exact” refer-
ence data, where available. In the case of the PP carbon atom
and PP carbon dimer we have used the estimates of the PP
valence correlation energy of Ref. �38� assuming an error bar
of 0.004 a.u. as suggested by the author. In the HEG we have
used our BF-DMC energies as if they were “exact,” and in
PP carbon diamond we have not estimated the amount of
correlation energy retrieved.

A. Homogeneous electron gas

We studied three-dimensional, unpolarized HEG’s con-
sisting of 54 electrons in a simple cubic simulation cell sub-
ject to periodic boundary conditions. As well as the densities
of rs=1, 5, 10, and 20 studied by Kwon et al. �19� and
Holzmann et al. �21� using backflow wave functions, for
completeness we studied two additional densities rs=0.5 and
2. Holzmann et al. used an analytical backflow form contain-
ing no variable parameters in addition to a Gaussian form
with variable parameters. In each case we compare our result
with the corresponding lowest-energy backflow result from
Table II of Ref. �21�.

We included a plane-wave term in our Jastrow factor, Eq.
�28� of Ref. �24�, which we found to improve the variational

energies at all densities. We also studied the effect of includ-
ing a symmetric three-electron Jastrow term W of the type
used in Ref. �18�, with

W = �
i

Ne

�
j��i�

Ne

�
k��i,j�

Ne

�wijrij� · �wikrik� , �12�

where wij is a function of the distance between electrons i

and j, which we parametrized as

wij = f�rij;Lw��
l=0

Nw

elrij
l , �13�

where Nw is the order of the expansion, �el� are expansion
parameters, and f is the cutoff function of Eq. �7�. We de-
cided to include a W term for all densities at the Slater-
Jastrow level, while we used it in conjuction with backflow
only for the three lowest densities, where its effect on the SJ
energy was found to be statistically significant. We refer to
the SJ and BF wave functions with a three-electron Jastrow
term as SJ3 and BF3, respectively. The backflow parameters
were allowed to depend on the spins of the electron pairs,
while the parameters in the three-electron Jastrow factors
were constrained to be independent of spin, as this gave
slightly better results. The expansion orders N� and Nw were
set to 8 for all densities. The cutoff lengths L� and Lw were
optimized, but at all densities they adjusted themselves to the
maximum allowed value �the Wigner-Seitz radius�. The en-
ergies and variances obtained are given in Table I, and the
energies are illustrated in Fig. 1, which gives the percentage
of the correlation energy retrieved at different levels as well
as the SJ and BF energies of Ref. �21�. The introduction of
backflow increases the kinetic energy, but decreases the po-
tential energy by a larger amount. Our SJ-DMC energies are
in good agreement with those of Holzmann et al., which of
course they should be, because the SJ trial wave functions
have identical nodal surfaces. Our SJ-VMC calculations re-

2
Ĥ is the Hamiltonian operator of the system, and the total local

energy is defined as EL=�T
−1Ĥ�T.

FIG. 1. �Color online� Percentages of the correlation energy
recovered at the �solid circles from top to bottom� BF-DMC, BF-
VMC, SJ-DMC, and SJ-VMC levels as a function of the density
parameter rs �see Table I�. Zero correlation energy corresponds to
HF-VMC and 100% to BF-DMC. The open circles are the best
BF-DMC, BF-VMC, SJ-DMC, and SJ-VMC energies of Holzmann
et al. �21� in the same order. The statistical error bars on the QMC
data are smaller than the symbols except where error bars are
shown.

FIG. 2. �Color online� VMC variances achieved at the SJ level
�top solid line� and BF level �bottom solid line� as a function of the
density parameter rs �see Table I�. The open circles are the best
SJ-VMC and BF-VMC variances of Holzmann et al. �21� in the
same order. The statistical error bars on the QMC data are smaller
than the symbols except where error bars are shown.
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trieve a higher percentage of the correlation energy than
those of Holzmann et al., and we believe this is mainly due
to the plane-wave term in our Jastrow factor. Our BF-VMC
calculations consistently retrieve 99.5% of the correlation
energy throughout the density range considered, while those
of Holzmann et al. drop below 99% for rs�5. Our BF-DMC
energies are within error bars of those of Holzmann et al. In
agreement with the work of Refs. �19,21�, we found that
backflow gives a larger energy reduction at the VMC level
than the three-body Jastrow term W at all densities, although
W becomes more important at large rs.

The variances of the VMC energies reported in Table I are
illustrated in Fig. 2. The lines on the log-log plot correspond-
ing to our SJ and BF variances are almost parallel, indicating
an almost constant ratio of the SJ to BF variances of about 4.
The variances of Holzmann et al. are systematically higher
than ours for comparable calculations, and at rs=20 our SJ
variance is lower than their BF variance.3

The optimized homogeneous backflow displacement
��rij�rij is plotted in Figs. 3 and 4, and the optimized
three-body function wij is shown in Fig. 5. Holzmann et al.

�21� and Kwon et al. �19� used identical � functions for
parallel- and antiparallel-spin pairs, whereas we have al-
lowed them to differ. At each density, the maximum value of
��rij�rij for antiparallel spins is over twice as large as that for
parallel spins and occurs at smaller electron separations. The
backflow displacements for antiparallel spins are generally
larger than for parallel spins, and hence antiparallel-spin
backflow is much more important than parallel-spin back-
flow. Our antiparallel-spin � function is similar to the spin-
independent � function of Kwon et al. �19�, except that we

do not find an attractive tail at rs=20. Note that, to obey the
cusp conditions, we constrain the parallel-spin ��rij� function
to have zero derivative at rij =0, while the antiparallel-spin �
function may have a nonzero derivative: see Appendix A 1.
This accounts for the differences in the behavior of the
parallel- and antiparallel-spin � functions at small rij which
are visible in Figs. 3 and 4.

The magnitude of our optimized three-electron Jastrow
factor, represented in Fig. 5, increases monotonically with rs,
and the maximum of 6�rijwij�

2 is at about rij /rs=0.4 for all
densities. This is in contrast with the behavior of the three-
electron Jastrow factor of Kwon et al. �see Fig. 1 of Ref.
�19��, which changes sign at rs=1 �our parametrization is not
allowed to do so� and breaks its monotonicity with rs at rs

=20. Kwon et al. find that the maximum of the plotted func-
tion is located at about rij /rs=1.

3The VMC variances for the HEG at rs=1 reported in Table II of
Kwon et al. �19� have been confirmed by the authors to be in error;
the true values are a factor of 10 smaller. These data were later used
in Table II of Holzmann et al. �21�, who corrected the mistakes,
except for the variance of the SJ calculation. We have compared our
data with the corrected values.
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FIG. 3. �Color online� Antiparallel-spin homogeneous backflow
displacement ��rij�rij for the HEG at the different densities studied.
For the three highest densities, the curves correspond to BF wave
functions, while the others are for BF3 wave functions.
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FIG. 4. �Color online� Parallel-spin homogeneous backflow dis-
placement ��rij�rij for the HEG at the different densities studied.
For the three highest densities, the curves correspond to BF wave
functions, while the others are for the BF3 wave function.
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FIG. 5. �Color online� Three-body contribution to the Jastrow
function for the HEG due to three electrons at the vertices of an
equilateral triangle of side rij at the different densities studied. For
the three highest densities, the curves correspond to SJ3 wave func-
tions, while the other three are for BF3 wave functions.
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B. Lithium atom and dimer

1. AE lithium atom

Our results for the 1S ground state of the AE lithium atom
are given in Table II. The SJ wave function gives a reason-
ably good VMC energy. Our backflow function consists of a
spin-pair-dependent e-e-n term with Ne-n=Ne-e=3; this pro-
duces a BF-VMC energy that is within statistical error bars
of the exact value. Note that the BF-VMC, SJ-DMC, and
BF-DMC energies are within statistical error bars of each
other and are very close to the exact value. The excellent
performance of the BF-VMC calculation is particularly note-
worthy. The single-determinant nodal surface of the 1S

ground state of lithium is certainly extremely accurate and
may even be exact, although some contrary evidence has
been cited �41�. It is therefore unlikely that backflow could
improve upon the SJ-DMC energy, and indeed it leaves it
essentially unchanged.

2. AE lithium dimer

We studied the ground state of the AE Li2 dimer at the
experimental bond length of 5.051 a.u. �42�. We tested sev-

eral different backflow functions, obtaining the results given
in Table III. The use of homogeneous backflow retrieves
only an additional 0.7% of the correlation energy. A plot of
the VMC energy as a function of the number of parameters is
displayed in Fig. 6, which shows that the reduction in VMC
energy is very small beyond about 150 parameters. Whereas
backflow gave 99.89�6�% of the correlation energy at the
VMC level for the lithium atom, for the dimer our best back-
flow transformation retrieves only 87.79�8�%. At the DMC
level the improvement is small: using a SJ wave function we
obtain 96.2�3�% of the correlation energy while with the
backflow wave function this improves slightly �to 97.1�3�%�.
Considerably better DMC results for Li2 have been obtained
using multideterminant �MD� wave functions. Bressanini et

al. �43� obtained a DMC energy of −14.9923�2� with one
configuration-state function �CSF�, while their best result
was −14.9952�1� with four CSF’s.

The computed binding energies of Li2 are presented in
Table IV. The BF-VMC, SJ-DMC, and BF-DMC energies of

TABLE II. Slater-Jastrow and backflow results for the AE
lithium atom. The number of free backflow parameters, excluding
cutoff lengths, is Np. The Hartree-Fock �HF� and exact energies
were taken from Refs. �39,40�.

Method
Wave

function Np E �a.u.� 2 �a.u.�
% corr.
energy

HF −7.43273 0.0

Exact −7.47806 100.0

VMC SJ 0 −7.47648�3� 0.00385�2� 96.52�8�

BF 114 −7.47801�3� 0.00241�1� 99.89�6�

DMC SJ 0 −7.47803�8� 99.9�2�

BF 114 −7.47802�6� 99.9�1�

TABLE III. Slater-Jastrow and backflow results for the AE Li2 molecule. The different backflow forms
have been put in order of decreasing energy. The number of free backflow parameters, excluding cutoff
lengths, is Np. The Hartree-Fock �HF� and exact energies were taken from Ref. �43�.

Method Wave function N� N� Ne-n Ne-e Np E �a.u.� 2 �a.u.� % corr. energy

HF −14.871545 0.0

Exact −14.9954 100.0

VMC SJ 0 −14.9751�1� 0.0165�1� 83.6�1�

BF 0 6 0 0 14 −14.9755�1� 0.01607�9� 83.9�1�

BF 8 0 0 0 17 −14.9760�1� 0.01590�7� 84.3�1�

BF 0 0 2 2 16 −14.9768�1� 0.01424�7� 84.9�1�

BF 0 0 2 4 44 −14.9782�1� 0.01273�7� 86.15�9�

BF 0 0 2 6 72 −14.9789�1� 0.0125�1� 86.65�9�

BF 0 0 3 4 156 −14.9797�1� 0.01102�5� 87.33�8�

BF 0 0 4 4 308 −14.9802�1� 0.01030�6� 87.71�8�

BF 0 0 4 3 230 −14.9803�1� 0.01038�4� 87.79�8�

DMC SJ 0 −14.9907�4� 96.2�3�

BF 0 0 4 3 230 −14.9918�4� 97.1�3�
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FIG. 6. The VMC energy of AE Li2 versus the total number of
parameters in the backflow functions.
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the AE lithium atom are within error bars of the exact energy,
and therefore the error in the binding energy arises solely
from the Li2 energy. Backflow improves the VMC and DMC
binding energies of Li2 a little, but it is still somewhat short
of the exact value. The single-determinant nodal surface of
Li2 is quite poor, and backflow is not very effective at im-
proving it. Combining MD wave functions with backflow
might yield significant improvements in this case.

C. Carbon atom, carbon dimer, and diamond

1. AE carbon atom

The 3P ground state of the AE carbon atom is a good
example of a system where single-determinant wave func-

tions result in large fixed-node errors: see Table V. In this
case, we have tested several combinations of terms, expan-
sion orders, and constraints to explore the possibilities of
backflow transformations. The VMC data in Table V, and
additional data, are plotted in Fig. 7, where the performance
of the different backflow functions used can be compared
conveniently. Using only homogeneous backflow �first BF-

TABLE IV. Slater-Jastrow and backflow binding energies for the
AE Li2 molecule, computed using the best results from Tables II
and III. The Hartree-Fock �HF� and exact energies were taken from
Refs. �39,40,43�, and references therein.

Method Wave function Eb �a.u.�

HF 0.0061

Exact 0.0393

VMC SJ 0.0221�1�

BF 0.0243�1�

DMC SJ 0.0346�4�

BF 0.0358�4�

TABLE V. Slater-Jastrow and backflow results for the AE carbon atom. The different backflow forms
have been put in order of decreasing energy. Key: N�Ne-n=Ne-e; S indicates whether the parameters are
spin and spin-pair dependent �T� or not �F�; I indicates whether the constraints for irrotational backflow have
been applied �T� or not �F�; Np is the number of free backflow parameters, excluding cutoff lengths. Where
the † symbol is used, we constrained �klm,I=0; where the ‡ symbol appears, we constrained �klm,I=0. The
Hartree-Fock �HF� and exact energies were taken from Refs. �39,40�.

Method Wave function N� N� N� S I Np E �a.u.� 2 �a.u.� % corr. energy

HF −37.688619 0.0

Exact −37.8450 100.0

VMC SJ 0 −37.8064�3� 0.193�2� 75.3�2�

BF 8 0 0 T 17 −37.8089�3� 0.194�2� 76.9�2�

BF 0 6 0 T 10 −37.8089�3� 0.184�1� 76.9�2�

BF 0 0 2 F F 10 −37.8119�3� 0.1685�8� 78.8�2�

BF 8 6 0 T 27 −37.8126�3� 0.178�2� 79.3�2�

BF 0 0 4 T T 35 −37.8140�3� 0.171�2� 80.2�2�

BF† 0 0 3 T F 56 −37.8155�3� 0.1578�9� 81.1�2�

BF 0 0 5 T T 121 −37.8177�3� 0.153�2� 82.5�2�

BF 0 0 2 T F 16 −37.8180�3� 0.159�4� 82.7�2�

BF‡ 0 0 3 T F 58 −37.8198�3� 0.144�2� 83.7�2�

BF 0 0 3 F F 60 −37.8225�3� 0.135�2� 85.5�2�

BF 0 0 4 F F 158 −37.8239�3� 0.119�6� 86.5�2�

BF 0 0 3 T F 114 −37.8246�3� 0.127�2� 87.0�2�

BF 0 6 3 T F 124 −37.8252�3� 0.122�1� 87.3�2�

BF 0 0 4 T F 308 −37.8259�3� 0.109�1� 87.8�2�

DMC SJ 0 −37.8297�2� 90.2�1�

BF 0 6 3 T F 124 −37.8324�1� 92.0�1�
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FIG. 7. �Color online� The VMC energy versus its variance for
AE carbon �see Table V�. The open symbols denote that the back-
flow parameters are independent of spin, while the solid symbols
denoted spin-dependent parameters. The exact nonrelativistic en-
ergy is −37.8450 a.u. �39,40�
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VMC result in Table V� gives a very small reduction in en-
ergy. It seems that inhomogeneous systems require inhomo-
geneous backflow to produce good wave functions, and the
e-e-n term is particularly successful in providing this. To
evaluate the relative importance of the two e-e-n functions
�i

jI and 	i
jI, we performed calculations constraining the pa-

rameters in one of them to be zero. The results are also given
in Table V. In this case 	i

jI, which contributes to the back-
flow displacement in the direction of riI, is slightly more
important than �i

jI. Applying both terms gives better results
than using only one of them, as we expected. We also tested
the effect of constraining the backflow displacement to be
irrotational, which was suggested in Ref. �21�. The applica-
tion of this constraint,which is explained in Appendix A 2,
approximately halves the number of parameters in the back-
flow functions, but it gives very poor results for the carbon
atom.

The most satisfactory backflow forms reduce the differ-
ence between the VMC and exact energies by a factor of
about 2. The further energy reduction from using DMC is
quite small, and our BF-DMC calculation gave an energy of
−37.8324�1� a.u., which corresponds to 92.0�1�% of the total
correlation energy. This suggests that, although backflow im-
proves significantly upon the single-determinant nodal sur-
face of the carbon atom, it misses some important features of
the exact nodal surface. It is well known that the single-
determinant nodal surface of the carbon atom can be substan-
tially improved by using MD trial wave functions. Barnett et

al. �44� used an MD trial wave function consisting of 14

CSF’s and obtained a DMC energy of −37.8420�3� a.u.,
which corresponds to 98.1�2�% of the correlation energy.
Glauser et al. �45� showed that the configuration space of a
single-determinant of HF orbitals for the 3P ground state
carbon atom is divided into four nodal pockets,4 but more
accurate wave functions indicate that the exact wave function
has two nodal pockets. It appears that backflow transforma-
tions are unable to correct this defect in the single-
determinant nodal surface.

2. PP carbon atom

We have also studied how backflow performs in systems
where PP’s are used. Our results for a PP carbon atom are
given in Table VI. The reduction in the VMC energy ob-
tained with backflow is much smaller than for the AE carbon
atom, but the corresponding energy reduction within DMC
of 0.0039�1� a.u. is somewhat larger than the AE one of
0.0027�2� a.u. A peculiarity of this case is that the reduction
in the DMC energy resulting from the use of backflow is
71% of the reduction in the VMC energy, which is the largest
such percentage amongst the calculations described here.

3. PP carbon dimer

For the PP carbon dimer we used the experimental bond
length of 2.3622 a.u. �42�, obtaining the results given in
Table VII. The carbon dimer is another example of a system
in which MD effects are known to be substantial. Backflow
results in larger energy reductions per atom than for the iso-
lated atom at both the VMC and DMC levels. The computed
binding energies of C2 are presented in Table VIII. The use
of backflow slightly improves the binding energy of the
dimer.

4. PP diamond

We have also studied PP carbon diamond with the experi-
mental cubic lattice constant of 6.741 a.u. �46�, representing

4Two configurations are in the same nodal pocket if there exists a
continuous path between the two along which the wave function
does not change sign and is not equal to zero. Nodal pockets are
bounded by nodal surfaces, which determine the shape and number
of the former.

TABLE VI. Slater-Jastrow and backflow results for the PP car-
bon atom. The number of free backflow parameters, excluding cut-
off lengths, is Np. The exact energy was taken from Ref. �38�.

Method
Wave

function Np E �a.u.� 2 �a.u.�
% corr.
energy

HF −5.31663 0.0

Exact −5.420�4� 100�8�

VMC SJ 0 −5.4007�1� 0.0582�4� 81�3�

BF 218 −5.4061�1� 0.0502�6� 87�3�

DMC SJ 0 −5.40886�7� 89�4�

BF 218 −5.41273�9� 93�4�

TABLE VII. Slater-Jastrow and backflow results for the PP C2

molecule. The number of free backflow parameters, excluding cut-
off lengths, is Np. The exact energy was taken from Ref. �38�.

Method
Wave

function Np E �a.u.� 2 �a.u.�
% corr.
energy

HF −10.652399 0.0

Exact −11.055�4� 100�2�

VMC SJ 0 −10.9870�3� 0.168�1� 83.1�9�

BF 214 −11.0173�2� 0.156�2� 91�1�

DMC SJ 0 −11.0237�4� 92�1�

BF 214 −11.0348�6� 95�1�

TABLE VIII. Slater-Jastrow and backflow binding energies for
the PP C2 molecule, computed using the results from Tables VI and
VII. The Hartree-Fock �HF� and exact energies were taken from
Refs. �39,40,43�, and the references therein. The data in Ref. �38�
can be used to estimate an approximate binding energy of
0.215�6� a.u.

Method Wave function Eb �a.u.�

HF 0.02896

Exact 0.233�5�

VMC SJ 0.1856�3�

BF 0.2051�2�

DMC SJ 0.2060�4�

BF 0.2093�6�
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the solid by a 2�2�2 supercell containing 16 atoms subject
to periodic boundary conditions. Diamond is an insulator
with a large band gap, and therefore we expect the single-
determinant nodal surface to be quite accurate. We param-
etrized our backflow function using N�=8, N�=8, and Nee
=Nen=2, allowing all parameters to be spin and spin-pair
dependent. The cutoff lengths were optimized, and they went
to the maximum allowed values. The results in Table IX
show that backflow gives a substantial reduction in the VMC
energy of 0.0131�2� a.u. per atom �0.356�5� eV per atom�,
which is accompanied by a reduction in the variance by a
factor of nearly 2. The reduction in the VMC energy of dia-
mond from using backflow is somewhat smaller than that
obtained in the dimer �0.411�5� eV per atom� and substan-
tially larger than that in the atom �0.147�3� eV per atom�.
This may arise from the fact that the backflow functions in
diamond are quite long ranged and cover several atoms.
Backflow reduces the DMC energy of diamond by
0.0035�2� a.u. �0.095�5� eV per atom� per atom, which is a
little less than in the dimer �0.15�1� eV per atom� and atom
�0.106�3� eV per atom�.

We do not discuss the cohesive energy of the diamond
crystal, as we would need to account for finite-size effects to
be able to compare with experimental data. Within the VMC
calculations, the energy gain per atom from using backflow
is larger in the solid than in the atom, and hence the cohesive
energy is substantially reduced. Within the DMC calcula-
tions, both the solid and the atom present a similar energy
gain per atom, and the cohesive energy is not changed sig-
nificantly.

V. DISCUSSION

A. Electron-by-electron and configuration-by-configuration

algorithms

The additional complexity of BF wave functions com-
pared with SJ ones leads to greater computational expense in
QMC calculations. One of the most costly operations in
QMC calculations is the evaluation of the orbitals and their
first two derivatives at points in the configuration space. The
evaluation of the collective coordinates involves some extra
cost. Furthermore, while QMC calculations with SJ wave
functions require only the value, gradient, and Laplacian of
each orbital �, calculations with BF wave functions also re-

quire cross derivatives such as �
2� /�x�y, as explained in

Ref. �18�. However, the most important complicating factor
arising from backflow transformations is that they make each
orbital in the Slater determinants depend on the coordinates
of every particle. In standard QMC algorithms with SJ wave
functions one moves the electrons sequentially in what we
call the electron-by-electron algorithm �EBEA�. Fast update
algorithms are used in the EBEA to replace altered rows in
the Slater determinants efficiently and the accept-reject step
is performed on each particle separately. However, in BF
calculations each collective coordinate depends on every
electron position and therefore the fast update algorithms
used in the EBEA are no longer appropriate, so that one must
recalculate the determinants at each step using LU decompo-
sition. Nevertheless, the implementation of the EBEA for
backflow wave functions can take advantage of other optimi-
zations to make the algorithm more efficient, such as buffer-
ing the separate contributions to the collective coordinates,
which we have exploited as far as possible.

In previous fermion backflow calculations �18,19,21� the
electrons have all been moved together and a single accept-
reject step has been performed, in what we call the
configuration-by-configuration algorithm �CBCA�. We have
compared the efficiency of the EBEA and CBCA. The rela-
tive efficiency of the EBEA and CBCA depends on the com-
putational costs of moving the electrons and the correlation
time of the local energies, which is proportional to the num-
ber of moves of all the electrons required before the local
energies are uncorrelated. Let A and B be two calculations
for the same system, identical except for the use of different
sampling algorithms. We define the relative efficiency � of A

and B as

��A,B� =
tAA

2

tBB
2 , �14�

where t is the CPU time and  is the standard error in the
mean energy �47�. � represents the ratio of the time required
to achieve a fixed error in the mean energy in calculation A

to that required in calculation B and is hence appropriate for
comparing the efficiency of the two algorithms.

In Table X we report results for the systems studied in this
paper. For each system, the EBEA and CBCA time steps
were chosen so that the same proportion of proposed moves
were accepted: in the VMC calculations the target accep-
tance ratio was 50%, which corresponds to fairly efficient
sampling, and in the DMC calculations it was around 99.5%.
The correlation times for the CBCA are considerably longer
than for the EBEA. The ratio of the correlation time of the
CBCA to that of the EBEA �the “correlation time ratio” or
CTR� appears to increase roughly linearly with the number
of atoms �for example, compare the AE Li atom and Li2
molecule and the PP C atom, C2 molecule, and diamond� or
with the number of electrons. ��CBCA,EBEA� is larger than
unity in all cases except the BF-VMC calculation of lithium
atom, so the EBEA is generally found to be more efficient
than the CBCA. ��CBCA,EBEA� is larger for SJ wave func-
tions than for BF ones because for SJ wave functions and the
EBEA one uses fast update algorithms.

TABLE IX. Slater-Jastrow and backflow energies per primitive
cell for PP carbon diamond using a face-centered-cubic cell con-
taining 16 atoms. The number of free backflow parameters, exclud-
ing cutoff lengths, is Np.

Method Wave function Np E �a.u./prim. cell� 2 �a.u.�

DFT-PBE −11.368208

VMC SJ 0 −11.3708�2� 1.51�8�

BF 96 −11.3970�3� 0.897�8�

DMC SJ 0 −11.40717�8�

BF 96 −11.4141�3�
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Apart from the tests reported in this section, all the VMC
and DMC results reported in this paper have been obtained
using the EBEA.

B. Computational expense of backflow calculations

We now investigate the relative cost of BF and SJ calcu-
lations. The additional computational expense of each step in
a BF calculation is offset by the fact that BF wave functions
are generally more accurate than SJ ones, so that the variance
of the energy is smaller, and consequently the number of
statistically independent local energies required to achieve a
given error bar in the mean energy is also smaller.

Let A and B be two calculations for the same system,
identical except for the use of different wave functions. We
define the time ratio as ��A ,B�= tA / tB, the squared-error ra-

tio as ��A ,B�=A
2 /B

2 , and the relative efficiency as ��A ,B�
=��A ,B���A ,B�, where t is the CPU time and  is the stan-
dard error in the mean energy. ��A ,B� represents the relative
expense per move of calculation A with respect to calculation
B or, equivalently, the relative expense of generating a fixed
number of configurations. The latter is relevant to the wave-
function optimization procedure, as the number of configu-
rations used should, if anything, increase with the number of
parameters in the wave function. ��A ,B� measures the rela-
tive ability of calculation A to produce a total energy to a
desired degree of certainty with respect to B.

In Table XI we compile the BF-to-SJ ratios �, �, and � for
each calculation. For the HEG at rs=20 we report BF3-to-
SJ3 ratios instead. The performance of backflow in the HEG
is impressive: backflow not only improves the energies but
also makes the calculations less costly.

The lithium atom is another example of improved effi-
ciency. According to Table II, the SJ-DMC and BF-DMC

energies are equal, so it does not seem advantageous to use
backflow at all in this system. However, due to the BF-VMC
energy being so close to the BF-DMC value, the variance of
the BF-DMC run is enormously lowered and the CPU time is
reduced to 25% of the time taken by the SJ-DMC run.5

In all cases except PP diamond, � is less than 3 in VMC
and 6 in DMC. However, the crystalline PP calculations be-
come significantly more expensive when backflow is used. A
great part of this increase is due to the computation of the
nonlocal PP energy, which involves several evaluations of
the wave function �12, in this case� for each electron and
each ion, every time the local energy is computed.

C. Backflow and nodes

HF nodes have been compared with either exact or very
accurate nodes in a number of studies �39,45,50–52�. It has
been found that the HF wave function often has too many
nodal pockets for the ground states of atoms with four or
more electrons. It is conceivable that coordinate transforma-
tions could modify the number of nodal pockets of a wave
function. However, we believe this to be unlikely for the
backflow transformation presented in this paper, because this
would require the backflow displacement field to be discon-
tinuous at very specific configurations or exhibit other un-
usual features. The development of a general backflow trans-
formation with the appropriate discontinuities to correct HF
nodes, which we have not attempted, seems likely to be a
tremendously difficult task.

We now illustrate graphically how our backflow transfor-
mations changes nodal surfaces. Note that the figures de-

5The variance of the local energies encountered during a DMC
calculation is approximately proportional to EVMC−EDMC �48,49�.

TABLE X. Comparison of the EBEA and CBCA for SJ and BF
wave functions. Key: Ne is the number of electrons; “CTR” is the
ratio of the correlation time in the CBCA to that in the EBEA; � is
��CBCA,EBEA�, as defined in Eq. �14�. Where a separate “CTR”
for the BF wave function has not been reported, it is because it was
found to equal that of the SJ wave function.

System Ne Wave function CTR �VMC �DMC

HEG �rs=1.0� 54 SJ 70 44.0 7.5

BF 34.0 1.2

AE Li atom 3 SJ 9 4.6 1.8

BF 1 0.43 1.9

AE Li2 molecule 6 SJ 15 15.4 5.0

BF 9.9 3.8

AE C atom 6 SJ 9 5.1 7.9

BF 3 2.4 3.7

PP C atom 4 SJ 3 3.3 3.7

BF 2 2.3 1.3

PP C2 molecule 8 SJ 10 6.9 3.5

BF 6.9 1.5

PP C diamond 64 SJ 80 99.0

�2�2�2� BF 39.0

TABLE XI. Data from the timing tests performed on different
systems. Key: Ne is the number of electrons; �, �, and � are
��BF,SJ�, ��BF,SJ�, and ��BF,SJ�, as defined in the text.

System Ne Method � � �

HEG �rs=1.0� 54 VMC 2.9 0.18 0.52

DMC 4.9 0.15 0.75

HEG �rs=20.0� 54 VMC 1.4 0.48 0.67

DMC 2.0 0.15 0.28

AE Li atom 3 VMC 2.3 0.52 1.2

DMC 4.3 0.06 0.25

AE Li2 molecule 6 VMC 3.9 0.71 2.8

DMC 8.3 0.71 5.9

AE C atom 6 VMC 3.5 0.69 2.4

DMC 5.9 0.41 2.4

PP C atom 4 VMC 3.1 0.79 2.4

DMC 2.8 0.73 2.1

PP C2 molecule 8 VMC 3.9 0.65 2.5

DMC 3.3 0.47 1.6

PP C diamond 64 VMC 27.0 0.31 8.3

�2�2�2� DMC
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scribed below are single projections of high-dimensional
nodal surfaces, from which almost no useful conclusions re-
garding the full topology of the nodes can be extracted. Two-
dimensional projections of the HF and BF nodes for a two-
dimensional HEG are depicted in Fig. 8 at two different
densities. The effect of backflow on the nodes is much more
pronounced for the low-density HEG. For an unpolarized
system, the nodal changes should be larger than those seen in
Fig. 8 at all densities. Some regions of these plots suggest
that the displacement of the nodes due to backflow is largest
at points where the curvature of the nodal surface is large,
away from electron-electron coalescences. There are a num-
ber of avoided crossings in Fig. 8 �3 at rs=0.5 and 6 at

rs=10� whose connectivity �in the projection� is modified by
backflow.

Three-dimensional projections of the HF and BF nodes of
the AE carbon atom are compared in Fig. 9. The nodes are
substantially modified by the introduction of backflow. New
nodal regions appear in this projection because the electron
being moved “pushes” the other electrons �via the backflow
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FIG. 8. �Color online� Nodes encountered when moving one of
the electrons of a two-dimensional HEG of 101 like-spin electrons
at two different densities �top: rs=0.5; bottom: rs=10�.The HF and
BF nodes are in black and orange, respectively. The green circles
indicate the positions of the remaining 100 electrons, at which the
nodes are required to remain fixed. The backflow wave functions
were obtained by variance minimization; the energy reductions
from SJ-VMC to BF-VMC at rs=0.5 and 10 were
0.0007�1� a.u./electron and 0.00005�1� a.u./electron, respectively.

FIG. 9. �Color online� HF �top� and BF �bottom� nodes encoun-
tered when moving one of the �majority spin� up-spin electrons of
an AE carbon atom. The blue circle corresponds to the position of
the nucleus, the red upward-pointing triangles indicate the positions
of the remaining up-spin electrons, and the green downward-
pointing triangles indicate the positions of the down-spin ones. The
HF node consists of a �seemingly� infinite sheet with a bubble at-
tached to it, which contains the nucleus. Backflow slightly modifies
this node and adds three large lobes �detached from one another; all
intersect the HF node� and a small bubble next to a down-spin
electron.
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transformation� through the nodal surface of the HF wave
function.

VI. CONCLUSIONS

We have devised an inhomogeneous backflow transforma-
tion for systems consisting of electrons and either nuclei or
ions represented by pseudopotentials. We have applied our
backflow transformation to single-determinant Slater-Jastrow
wave functions for the HEG and for atomic, molecular, and
solid systems. In each case backflow gives a substantial re-
duction in the VMC energy and a smaller reduction in the
DMC energy.

The homogeneous backflow transformation reduces the
variance of the VMC energy of the HEG by a factor of about
4, which is the largest such factor we have encountered, and
we believe that our backflow wave functions for the HEG are
very accurate. VMC calculations retrieve more than 99.5%
of the DMC correlation energy in the density range studied
�rs=0.5−20�. The effects of backflow on the nodes increase
with rs, even though the additional percentage of the corre-
lation energy retrieved in VMC decreases with rs, implying
that the energies of dilute HEG’s are less sensitive to the
nodal structure of the trial wave function than those of
denser systems.

Although backflow works very well in the HEG, as pre-
vious studies have already concluded, we find that purely
homogeneous backflow transformations give poor results
when atoms are present, as we demonstrated for the AE
lithium dimer and the AE carbon atom. However, in these
cases inhomogeneous backflow transformations can improve
the wave functions substantially.

For the AE lithium atom the HF nodal surface of the SJ
wave function is essentially exact. Although in this case
backflow cannot improve the DMC energy, it gives a very
accurate VMC energy. This shows that backflow transforma-
tions can improve the wave function away from the nodes as
well as improving the nodal surface itself. The quality of the
SJ and BF wave functions for the AE lithium dimer is much
lower than for the atom, and consequently the binding energy
of the dimer is underestimated. The wave function and nodal
surface of the AE lithium dimer can be substantially im-
proved by using several determinants �50�, but it appears that
only modest improvements can be obtained using backflow.

Backflow reduces the VMC energy of the AE carbon atom
by about 49% of the correlation energy missing at the SJ-
VMC level, but at the DMC level the improvement is
smaller; the BF-DMC energy is only 18% closer to the exact
value than SJ-DMC. Backflow makes a more significant im-
provement to the DMC energy of a PP carbon atom than the
AE carbon atom. The PP and AE carbon atoms are also cases
where substantial improvements to the wave functions can
be obtained by using several determinants. This indicates
that the SJ nodal surfaces of these two systems need a more
drastic correction than backflow transformations can provide.

When the initial nodal surface is reasonably accurate,
backflow does an excellent job in improving the VMC en-
ergy and correcting the remaining errors in the nodal surface,
as was seen in our study of the HEG and AE lithium. How-

ever, when the initial nodal surface is intrinsically poor, as is
the case, for example, with the HF nodal surfaces of the
carbon atom and dimer, backflow is apparently incapable of
making the gross changes to the nodal surface required to
correct the flaws, although it normally lowers the VMC and
DMC energies somewhat. We do not believe that our back-
flow transformation is capable of changing the number of
nodal pockets of the starting wave function.

The cost of using BF wave functions can be substantial,
but we have given evidence that the expense relative to that
of using SJ wave functions increases smoothly with the num-
ber of atoms in the system. Backflow transformations, like
Jastrow factors and unlike multideterminant expansions, are
compact parametrizations, meaning that the number of pa-
rameters required to retrieve a given fraction of the correla-
tion energy increases only slowly with system size. This can
be seen by comparing the number of backflow parameters
that we have used and the energies we have obtained for PP
carbon atom, dimer, and diamond. We have found that it is
much more efficient to move electrons one at a time �the
EBEA� than to move all the electrons at once �the CBCA�, as
has been done in previous backflow calculations. The reason
for this is that the correlation time of the energy is consider-
ably shorter with the EBEA. It is important to use the EBEA
for large systems, as the CBCA-to-EBEA ratio of correlation
times seems to increase linearly with the number of elec-
trons.

BF-VMC energies are normally significantly lower than
SJ-VMC ones, and therefore BF-VMC might be a useful
alternative to a �normally more expensive� SJ-DMC calcula-
tion. The use of more accurate trial wave functions improves
the statistical efficiency of VMC and DMC calculations. The
variance of the local energies encountered in a DMC calcu-
lation is approximately proportional to the error in the VMC
energy, and when backflow leads to a significant reduction in
the VMC energy it also improves the statistical efficiency of
DMC calculations, even when backflow improves the DMC
energy only slightly. The improved trial wave functions
could also be useful in DMC calculations of quantities other
than the energy, which are normally more difficult to obtain
accurately than the energy.

Backflow would appear to give significant improvements
in trial wave functions for a wide variety of systems, includ-
ing various different atoms and small and large systems. In
the present work, we have applied the inhomogeneous back-
flow transformation to single-determinant Slater-Jastrow
wave functions only, but it can be combined with multideter-
minant wave functions, and we will report on such calcula-
tions elsewhere �53�. It can also be combined with pairing
wave functions �54�. We believe that inhomogeneous back-
flow transformations will play an important role in improv-
ing trial wave functions for use in VMC and DMC calcula-
tions.
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APPENDIX A: CONSTRAINTS ON THE BACKFLOW

PARAMETERS

1. Cusp conditions

The Kato cusp conditions �55,56� �KCC’s� are enforced
so that the local energy is finite when two electrons or an
electron and a nucleus are coincident. For SJ wave functions
it is common practice to impose the electron-electron KCC’s
�EKCC’s� by constraining the parameters in the Jastrow
function and the electron-nucleus KCC’s �NKCC’s� by con-
straining the orbitals in the Slater determinant. The backflow
transformation can alter the nature of the cusps, but we have
chosen to constrain the backflow parameters so that they do
not modify the KCC’s as applied to the Slater-Jastrow wave
function.6

Let i and j be two different electrons in the system. To
satisfy the EKCC’s, we require that the total backflow dis-
placement �i have a well-defined gradient �i.e., it should be
cuspless� when rij→0 if i and j are distinguishable particles,
and have zero gradient when rij→0 if i and j are indistin-
guishable. Thus, the e-e term is affected by these constraints
only if i and j are like-spin electrons, in which case the
EKCC’s are satisfied if L�c1=Cc0.

Let I be a nucleus in the system. To satisfy the NKCC’s,
we require that the total backflow displacement �i have a
well-defined gradient when riI→0, and that it be zero when
riI→0 if I is an AE atom. The NKCC’s are satisfied if
L�,Id1,I=Cd0,I for all I, and in addition, d0,I=0, if I is an AE
atom.

The constraints on the e-e-n functions, some of which
only apply to those functions centered on AE atoms, are as
follows. �We omit the I index in the parameters for clarity.�

�i� There are 3�Ne-e+Ne-n+1� constraints from the
NKCC’s,

�
l,m

�l+m=��

�C�0lm − L��1lm� = �
k,m

�k+m=��

�C�k0m − L��k1m�

= �
k,m

�k+m=��

�C�k0m − L��k1m�

= 0 ∀ � . �A1�

�ii� There are 2Ne-n+1 constraints from the EKCC’s,

�
k,l

�k+l=��

�kl1 = 0 ∀ � , �A2�

and 2Ne-n+1 extra constraints for like-spin electron pairs,

�
k,l

�k+l=��

�kl1 = 0 ∀ � . �A3�

�iii� �AE only� There are 4�Ne-e+Ne-n�+2 constraints on
�klm,

�
l,m

�l+m=��

�0lm = �
l,m

�l+m=��

m�0lm

= �
k,m

�k+m=��

�k0m = �
k,m

�k+m=��

m�k0m = 0 ∀ � .

�A4�

�iv� �AE only� There are 3�Ne-e+Ne-n�+2 constraints on
�klm,

�
l,m

�l+m=��

�0lm = �
l,m

�l+m=��

m�0lm = �
k,m

�k+m=��

m�k0m = 0 ∀ � .

�A5�

These constraints form an indeterminate system of homo-
geneous algebraic linear equations for the e-e-n parameters.
Hence, a subset of the parameters can be put in terms of the
rest. This subset can be determined from the “free” param-
eters by putting the constraints in matrix form and using
Gaussian elimination. This procedure is the one described in
Ref. �24�, where it is applied to the parameters in the e-e-n
term of the Jastrow factor.

2. Constraints for irrotational backflow

In the derivation of homogeneous backflow in Ref. �21� it
was suggested that the backflow displacement should satisfy
�i=�iY, where Y =Y�R� is an object called the backflow po-

tential. This equation is already satisfied by both the e-e and
e-n terms, by definition, and it can be imposed on the
e-e-n functions by using an appropriate set of constraints.
From �i��i=0, it follows that

rij

�

�riI

��i
jIf�riI;L�,I�� = riI

�

�rij

�	i
jIf�riI;L�,I�� , �A6�

for all i, j, and I and all rij, riI, and r jI. For C�0, this results
in the equation

�C + k��k,l,m−1 − L��k + 1��k+1,l,m−1 − �m + 1��k−2,l,m+1

+ L��m + 1��k−1,l,m+1 = 0, �A7�

while for C=0,

�k + 1��k+1,l,m−1 − �m + 1��k−1,l,m+1 = 0. �A8�

In both cases, 0�k�Ne-n+2, 0� l�Ne-n, and 0�m�Ne-e
+1, and parameters with indices out of the allowed range are
to be taken as equal to zero. The I index has been omitted for
clarity.

6In principle, it would be possible to apply the KCC’s to the
Jastrow and backflow parameters together. However, the resulting
constraints are configuration dependent and involve orbital deriva-
tives, making this approach difficult.
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The application of these constraints results in a reduction
in the number of free parameters by more than one-half, as
one would expect, because an equivalent backflow displace-
ment would be obtained by parametrizing the scalar field Y

and computing its gradient, whereas we use two scalar fields
in the full e-e-n term.

APPENDIX B: ZEROING THE BACKFLOW

DISPLACEMENT AT AE ATOMS

When AE atoms are present, the NKCC’s cannot be ful-
filled unless the backflow displacement at the nuclear posi-
tion is zero. This can be obtained by applying smooth cutoffs
around such atoms. In this scheme, an artificial multiplica-
tive cutoff function g�riI� is applied to all contributions to the
backflow displacement of particle i that do not depend on the

distance riI to the AE atom I. This includes the homogeneous
backflow displacement and the inhomogeneous contributions
centered on each atom J� I.

The g�riI� function must go to zero at riI→0 and become
unity when riI is equal to or greater than a threshold Lg,I. For
the local energy to be well defined, we require that g�riI� and
its first two derivatives be continuous at riI=Lg,I, and to ful-
fill the NKCC’s correctly, g�riI� and its first derivative must
go to zero at riI=0. The simplest g�riI� obeying these condi-
tions is the fourth-order polynomial,

g�riI� = 	 riI

Lg,I

2�6 − 8	 riI

Lg,I

 + 3	 riI

Lg,I

2� , �B1�

which we have used in our calculations. Although it is per-
fectly possible to optimize the Lg,I, we have used the fixed
value of 1 a.u. in all of our AE calculations for simplicity.
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